
Powertrain Blockset™

Reference

MATLAB&SIMULINK®

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

T

Phone: 508-647-7000

The MathWorks, Inc. 1 Apple Hill Drive Natick, MA 01760-2098

Powertrain Blockset™ Reference

© COPYRIGHT 2016-2020 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

 $MathWorks\ products\ are\ protected\ by\ one\ or\ more\ U.S.\ patents.\ Please\ see\ www.mathworks.com/patents\ for\ more\ information.$

Revision History

October 2016	Online only	New for Version 1.0 (Release 2016b+)
March 2017	Online only	Revised for Version 1.1 (Release 2017a)
September 2017	Online only	Revised for Version 1.2 (Release 2017b)
March 2018	Online only	Revised for Version 1.3 (Release 2018a)
September 2018	Online only	Revised for Version 1.4 (Release 2018b)
March 2019	Online only	Revised for Version 1.5 (Release 2019a)
September 2019	Online only	Revised for Version 1.6 (Release 2019b)
March 2020	Online only	Revised for Version 1.7 (Release 2020a)

Contents

Drivetrain Blocks	1
Vehicle Dynamics Blocks	2
Energy Storage Blocks	3 [
Propulsion Blocks	4
Electric Motor, Converters, Inverter Blocks	5
Scenario Creation Blocks	6
Transmission Blocks	7 [
Functions	8 [

Drivetrain Blocks

Rotational Inertia

Ideal mechanical rotational inertia

Library: Powertrain Blockset / Drivetrain / Couplings

Vehicle Dynamics Blockset / Powertrain / Drivetrain /

Couplings

Description

The Rotational Inertia block implements an ideal mechanical rotational inertia.

Power Accounting

For the power accounting, the block implements these equations.

Bus Signa	ıl		Description	Variable	Equations
PwrInfo	PwrTrnsfrd — Power transferred between	PwrR	Mechanical power from base shaft	P_{TR}	$P_{TR} = T_R \omega$
	 Positive signals indicate flow into block 	PwrC	Mechanical power from follower shaft	P_{TC}	$P_{TC} = T_C \omega$
	Negative signals indicate flow out of block				
	PwrNotTrnsfrd — Power crossing the block boundary, but not transferred	PwrDampLoss	Power loss due to damping	P_d	$P_d = -b \omega ^2$
	Positive signals indicate an input				
	Negative signals indicate a loss				
	PwrStored — Stored energy rate of change	PwrStoredShft	Rate change of stored internal torsional energy	P_s	$P_S = \omega \dot{\omega} J$
	Positive signals indicate an increase		torsional energy		
	Negative signals indicate a decrease				

The equations use these variables.

 T_R Input torque

 T_C Output torque

 ω Driveshaft angular velocity

J Rotational inertia

b Rotational viscous damping P_d Power loss due to damping P_s Rate change of stored internal torsional energy

Ports

Input

RTrq — Input torque

scalar

Applied input driveshaft torque, T_R , in N·m.

Dependencies

To enable this port, for **Port Configuration**, select Simulink.

CTrq — Output torque

scalar

Load driveshaft torque, T_C , in N·m.

Dependencies

To enable this port, for **Port Configuration**, select Simulink.

R — Angular velocity and torque

two-way connector port

Angular velocity in rad/s. Torque is in N·m.

Dependencies

To enable this port, for **Port Configuration**, select Two-way connection.

Inertia — Input

scalar

Rotational inertia, in kg·m^2.

Dependencies

To create the Inertia port, select **External inertia input**.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal		Description	Variable	Units	
Trq	R		Applied input driveshaft torque	T_R	N·m
	С	С		T_C	N·m
	Damp		Damping torque	$T_d=b\omega$	N·m
Spd	Spd		Angular driveshaft speed	ω	rad/s
PwrInfo	PwrTrnsfrd	PwrR	Mechanical power from base shaft	P_{TR}	W
		PwrC	Mechanical power from follower shaft	P_{TC}	W
	PwrNotTrnsf rd	PwrDampLos s	Power loss due to damping	P_d	W
	PwrStored	PwrStoredS hft	Rate change of stored internal torsional energy	P_s	W

Dependencies

To enable this port, select **Output Info bus**.

Spd — Driveshaft speed

scalar

Angular driveshaft speed, ω , in rad/s.

Dependencies

To enable this port, for **Port Configuration**, select Simulink.

C — Angular velocity and torque

two-way connector port

Angular velocity in rad/s. Torque is in N·m.

Dependencies

To enable this port, for **Port Configuration**, select Two-way connection.

Parameters

Block Options

Port Configuration — Specify configuration

Simulink (default) | Two-way connection

Specify the port configuration.

Dependencies

Specifying Simulink creates these ports:

- RTrq
- CTrq
- Spd

Specifying Two-way connection creates these ports:

- R
- C

Output Info bus - Selection

off (default) | on

Select to create the Info output port.

External inertia input — Input rotational inertia

off (default) | on

Dependencies

To create the Inertia port, select External inertia input.

Parameters

Rotational inertia, J — Inertia

.01 (default) | scalar

Rotational inertia, in kg·m^2.

Dependencies

To enable this parameter, clear **Input rotational inertia**.

Torsional damping, b — Damping

.001 (default) | scalar

Torsional damping, in $N \cdot m \cdot s/rad$.

Initial velocity, omega o — Angular

0 (default) | scalar

Initial angular velocity, in rad/s.

Extended Capabilities

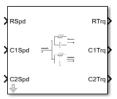
C/C++ Code Generation

Generate C and C++ code using Simulink® Coder $^{\text{\tiny TM}}$.

See Also

Split Torsional Compliance | Torsional Compliance

Introduced in R2017a


Split Torsional Compliance

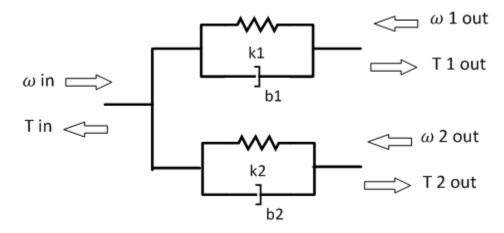
Split torsional coupler

Library: Powertrain Blockset / Drivetrain / Couplings

Vehicle Dynamics Blockset / Powertrain / Drivetrain /

Couplings

Description


The Split Torsional Compliance block implements parallel spring-damper coupling between shafts. You can specify the type of coupling by selecting one of the **Coupling Configuration** parameters:

- Shaft split Single input shaft coupled to two output shafts
- Shaft merge Two input shafts coupled to a single output shaft

In fuel economy and emissions studies, you can use the Split Torsional Compliance block to model mechanical rotational compliance between common driveline elements such as motors, planetary gears, and clutches. For example, use the Shaft split configuration to couple a motor and two planetary gear sets. Use the Shaft merge configuration to couple a dual clutch transmission to an output shaft.

Shaft Split

For the Shaft split configuration, the block implements this schematic and equations.

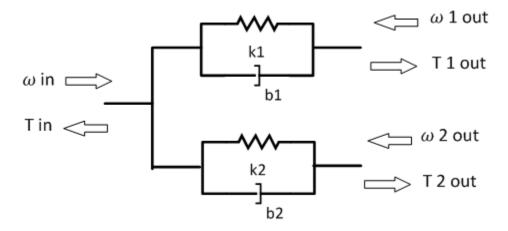
$$T_{in} = -(\omega_{in} - \omega_{1out})b_1 - (\omega_{in} - \omega_{2out})b_2 - \theta_1 k_1 - \theta_2 k_2$$

$$T_{1out} = (\omega_{in} - \omega_{1out})b_1 + \theta_1 k_1$$

$$T_{2out} = (\omega_{in} - \omega_{2out})b_2 + \theta_2 k_2$$

$$\dot{\theta}_1 = (\omega_{in} - \omega_{1out})$$

$$\dot{\theta}_2 = (\omega_{in} - \omega_{2out})$$


To account for frequency-dependent damping, both damping terms incorporate a low-pass filter.

The equations use these variables.

T_{in}	Resulting applied input reaction torque
ω_{in}	Input shaft rotational velocity
T_{1out}	Resulting applied torque to first output shaft
ω_{1out}	First output shaft rotational velocity
T_{2out}	Resulting applied torque to second output shaft
ω_{2out}	Second output shaft rotational velocity
θ_1 , θ_2	First, second shaft rotation, respectively
b_1 , b_2	First, second shaft viscous damping, respectively
k_1, k_2	First, second shaft torsional stiffness, respectively

Shaft Merge

For the Shaft merge configuration, the block implements this schematic and equations.

$$\begin{split} T_{out} &= (-\omega_{out} + \omega_{1in})b_1 + (-\omega_{out} + \omega_{2in})b_2 + \theta_1k_1 + \theta_2k_2 \\ T_{1out} &= (\omega_{out} - \omega_{1in})b_1 - \theta_1k_1 \\ T_{2out} &= (\omega_{out} - \omega_{2in})b_2 - \theta_2k_2 \\ \dot{\theta}_1 &= (\omega_{1in} - \omega_{out}) \\ \dot{\theta}_2 &= (\omega_{2in} - \omega_{out}) \end{split}$$

To account for frequency-dependent damping, both damping terms incorporate a low-pass filter.

The equations use these variables.

T_{out}	Resulting applied output torque
ω_{out}	Output shaft rotational velocity
T_{1in}	Resulting reaction torque to first input shaft

ω_{1in}	First input shaft rotational velocity
T_{2in}	Resulting reaction torque to second input shaft
ω_{2in}	Second input shaft rotational velocity
θ_1 , θ_2	First, second shaft rotation, respectively
b_1, b_2	First, second shaft viscous damping, respectively
k_1 , k_2	First, second shaft torsional stiffness, respectively

Power Accounting

For the power accounting, the block implements these equations.

Bus Signa	al		Description	Variable	Equations
transferred between blocks • Positive signals indicate flow into block • Negative signals indicate flow out of block	PwrR	For the Shaft split configuration, mechanical power from input shaft	P_{TR}	$P_{TR} = -T_R \omega_R$	
	PwrC1	For the Shaft split configuration, mechanical power from first output shaft	P_{TC1}	$P_{TC1} = -T_{C1}\omega_{C1}$	
	PwrC2	For the Shaft split configuration, mechanical power from second output shaft	P_{TC2}	$P_{TC2} = -T_{C2}\omega_{C2}$	
		PwrC	For the Shaft merge configuration, mechanical power from output shaft	P_{TC}	$P_{TC} = T_C \omega_C$
		PwrR1	For the Shaft merge configuration, mechanical power from first input shaft	P_{TR1}	$P_{TR1} = \\ T_{R1}\omega_{R1}$

Bus Signal		Description	Variable	Equations
	PwrR2	For the Shaft merge configuration, mechanical power from second input shaft	P_{TR2}	$P_{TR2} = T_{R2}\omega_{R2}$
PwrNotTrnsfrd — Power crossing the block boundary, but transferred • Positive signals indicate an inpu • Negative signals indicate a loss	t not	Mechanical damping loss	P_d	$P_d = -\left(b_1 \middle \dot{\theta}_1 \middle ^2\right) + b_2 \middle \dot{\theta}_2 \middle ^2\right)$
PwrStored — Storenergy rate of channer of channer of the signals indicate an increase of the signals indicate a decrease of the storenergy rate of channer of the signals indicate and signals indicate a decrease of the storenergy rate of the signals indicate and	ease s	Rate change in spring energy	P_s	$P_{S} = (k_{1}\theta_{1}\dot{\theta}_{1} + k_{2}\theta_{2}\dot{\theta}_{2})$

The equations use these variables.

T_R	Shaft R torque
T_C	Shaft C torque
ω_R	Shaft R angular velocity
ω_C	Shaft C angular velocity
θ	Coupled shaft rotation
k	Shaft torsional stiffness
b	Rotational viscous damping
P_t	Total mechanical power
P_d	Power loss due to damping
P_s	Rate change of stored spring energy

Ports

Input

RSpd — Input shaft speed

scalar

Input shaft rotational velocity, ω_{in} , in rad/s.

Dependencies

To enable this port, set both of these parameters:

- **Port Configuration** to Simulink
- Coupling Configuration to Shaft split

C1Spd — First output shaft speed

scalar

First output shaft rotational velocity, ω_{1out} , in rad/s.

Dependencies

To enable this port, set both of these parameters:

- **Port Configuration** to Simulink
- Coupling Configuration to Shaft split

C2Spd — Second output shaft speed

scalar

Second output shaft rotational velocity, ω_{2out} , in rad/s.

Dependencies

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split

CSpd — Input speed

scalar

Output shaft rotational velocity, ω_{out} , in rad/s.

Dependencies

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

R1Spd — First input shaft speed

scalar

First input shaft rotational velocity, ω_{1in} , in rad/s.

Dependencies

To enable this port, set both of these parameters:

- **Port Configuration** to Simulink
- Coupling Configuration to Shaft merge

R2Spd — Second input shaft speed

scalar

Second input shaft rotational velocity, ω_{2in} , in rad/s.

Dependencies

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

R - Input shaft angular velocity and torque

two-way connector port

Input shaft angular velocity, ω_{in} , in rad/s and torque, T_{in} , in N·m.

Dependencies

To enable this port, select:

- **Port Configuration**>Two-way connection
- Coupling Configuration>Shaft split

R1 — First input shaft angular velocity and torque

two-way connector port

First input shaft angular velocity, ω_{1in} , in rad/s and torque, T_{1in} , in N·m.

Dependencies

To enable this port, select:

- **Port Configuration**>Two-way connection
- Coupling Configuration>Shaft merge

R2 — Second input shaft angular velocity and torque

two-way connector port

Second input shaft angular velocity, ω_{2in} , in rad/s and torque, T_{2in} , in N·m.

Dependencies

To enable this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft merge

Output

Info — Bus signal

bus

If you set **Coupling Configuration** to **Shaft** split, the Info bus contains these signals.

Signal		Description	Variable	Units
Trq	R	Input shaft torque	T_{in}	N·m
	C1	First output shaft torque	T_{1out}	N·m

Signal			Description	Variable	Units
	C2		Second output shaft torque	T_{2out}	N·m
	Damp	C1	First output shaft damping torque	$b_1\omega_{1out}$	N·m
		C2	Second output shaft damping torque	$b_2\omega_{2out}$	N·m
	Spring	C1	First output shaft spring torque	$k_1\theta_1$	N·m
		C2	Second output shaft spring torque	$k_2\theta_2$	N·m
Spd	R	'	Input shaft angular velocity	ω_{in}	rad/s
	C1		First output shaft angular velocity	ω_{1out}	rad/s
	C2		Second output shaft angular velocity	ω_{2out}	rad/s
	deltadot1		Difference in input and first output shaft angular velocity	$\dot{ heta}_1$	rad/s
	deltadot2		Difference in input and second output shaft angular velocity	$\dot{ heta}_2$	rad/s
PwrInfo	PwrTrnsfrd	PwrR	Mechanical power from input shaft	P_{TR}	W
		PwrC1	Mechanical power from first output shaft	P_{TC1}	W
		PwrC2	Mechanical power from second output shaft	P_{TC2}	W
	PwrNotTrnsf rd	PwrDampLo ss	Mechanical damping loss	P_d	W
	PwrStored	PwrStored Shft	Rate change of stored internal torsional energy	P_s	W

If you set **Coupling Configuration** to Shaft merge, the Info bus contains these signals.

Signal			Description	Variable	Units
Trq	С		Output shaft torque	T_{out}	N·m
	R1		First input shaft torque	T_{1in}	N·m
	R2		Second input shaft torque	T_{2in}	N⋅m
	Damp	Damp R1	First input shaft damping torque	$b_1\omega_{1in}$	N⋅m
		R2	Second in shaft damping torque	$b_2\omega_{2in}$	N⋅m
	Spring	R1	First input shaft spring torque	$k_1\theta_1$	N⋅m
		R2	Second in shaft spring torque	$k_2\theta_2$	N⋅m
Spd	С	<u>'</u>	Output shaft angular velocity	ω_{out}	rad/s
	R1		First input shaft angular velocity	ω_{1in}	rad/s

Signal		Description	Variable	Units	
	R2		Second input shaft angular velocity	ω_{2in}	rad/s
	deltadot1		Difference in first input and output shaft angular velocity	$\dot{ heta}_1$	rad/s
	deltadot2		Difference in second input and output shaft angular velocity	$\dot{ heta}_2$	rad/s
PwrInfo	PwrTrnsfrd	PwrC	Mechanical power from output shaft	P_{TC}	W
		PwrR1	Mechanical power from first input shaft	P_{TR1}	W
		PwrR2	Mechanical power from second input shaft	P_{TR2}	W
	PwrNotTrnsf rd	PwrDampLo ss	Mechanical damping loss	P_d	W
	PwrStored	PwrStored Shft	Rate change of stored internal torsional energy	P_s	W

Dependencies

To enable this port, select **Output Info bus**.

RTrq — Input shaft torque

scalar

Input shaft torque, T_{in} , in N·m.

Dependencies

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split

C1Trq — First output shaft torque

scalar

First output shaft torque, T_{1out} , in N·m.

Dependencies

To enable this port, set both of these parameters:

- **Port Configuration** to Simulink
- Coupling Configuration to Shaft split

C2Trq — Second output shaft torque

scalar

Second output shaft torque, T_{2out} , in N·m.

Dependencies

To enable this port, set both of these parameters:

- **Port Configuration** to Simulink
- Coupling Configuration to Shaft split

CTrq — Output shaft torque

scalar

Output shaft torque, T_{out} , in N·m.

Dependencies

To enable this port, set both of these parameters:

- **Port Configuration** to Simulink
- Coupling Configuration to Shaft merge

R1Trq — First input shaft torque

scalar

First input shaft torque, T_{1in} , in N·m.

Dependencies

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

R2Trq — Second input shaft torque

scalar

Second input shaft torque, T_{2in} , in N·m.

Dependencies

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

C1 — First output shaft angular velocity and torque

two-way connector port

First output shaft angular velocity, ω_{1out} , in rad/s and torque, T_{1out} , in N·m.

Dependencies

To enable this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft split

C2 — Second output shaft angular velocity and torque

two-way connector port

Second output shaft angular velocity, ω_{2out} , in rad/s and torque, T_{2out} , in N·m.

Dependencies

To enable this port, select:

- **Port Configuration**>Two-way connection
- Coupling Configuration>Shaft split

C — Output shaft angular velocity and torque

two-way connector port

Output shaft angular velocity, ω_{out} , in rad/s and torque, T_{out} , in N·m.

Dependencies

To enable this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft merge

Parameters

Block Options

Port Configuration — Specify configuration

Simulink (default) | Two-way connection

Specify the port configuration.

Coupling Configuration — Specify configuration

Shaft split (default) | Shaft merge

Specify the coupling type.

Output Info bus — Selection

off (default) | on

Select to create the Info output port.

Coupling 1

Torsional stiffness, k1 — Stiffness

5e4 (default) | scalar

Rotational inertia, k_1 , in N·m/rad.

Torsional damping, b1 — Damping

1e2 (default) | scalar

Torsional damping, b_1 , in N·m· s/rad.

Damping cutoff frequency, omegal_c — Frequency

3000 (default) | scalar

Damping cutoff frequency, in rad/s.

Coupling 2

Torsional stiffness, k2 — Stiffness

5e4 (default) | scalar

Rotational inertia, k_2 , in N·m/rad.

Torsional damping, b2 — Damping

1e2 (default) | scalar

Torsional damping, b_2 , in N·m· s/rad.

Damping cutoff frequency, omega2_c — Frequency

3000 (default) | scalar

Damping cutoff frequency, in rad/s.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also

Rotational Inertia | Torsional Compliance

Introduced in R2017b

Torsional Compliance

Parallel spring-damper

Library: Powertrain Blockset / Drivetrain / Couplings

Vehicle Dynamics Blockset / Powertrain / Drivetrain /

Couplings

Description

The Torsional Compliance block implements a parallel spring-damper to couple two rotating driveshafts. The block uses the driveshaft angular velocities, torsional stiffness, and torsional damping to determine the torques.

$$T_R = -(\omega_R - \omega_C)b - \theta k$$

$$T_C = (\omega_R - \omega_C)b + \theta k$$

$$\dot{\theta} = (\omega_R - \omega_C)$$

Power Accounting

For the power accounting, the block implements these equations.

Bus Signa	nl .		Description	Variable	Equations
PwrInfo	PwrTrnsfrd — Power transferred between blocks	PwrR	Mechanical power from driveshaft R	P_{TR}	$P_{TR} = T_R \omega_R$
	Positive signals indicate flow into blockNegative signals indicate flow out of block	PwrC	Mechanical power from driveshaft C	P_{TC}	$P_{TC} = T_c \omega_c$
	PwrNotTrnsfrd — Power crossing the block boundary, but not transferred • Positive signals indicate an input • Negative signals indicate a loss	PwrDampLoss	Mechanical damping loss	P_d	$P_d = -b \dot{\theta} ^2$
	PwrStored — Stored energy rate of change • Positive signals indicate an increase • Negative signals indicate a decrease	PwrStoredShft	Rate change in spring energy	P_S	$P_S = -\theta k \dot{\theta}$

The equations use these variables.

T_R	Driveshaft R torque
T_C	Driveshaft C torque
ω_R	Driveshaft R angular velocity
ω_C	Driveshaft C angular velocity
θ	Coupled driveshaft rotation
k	Driveshaft torsional stiffness
b	Rotational viscous damping
P_d	Power loss due to damping
P_s	Rate change of stored spring energy

Ports

Input

RSpd — Driveshaft R angular velocity

scalar

Input driveshaft angular velocity, in rad/s.

Dependencies

To enable this port, for **Port Configuration**, select Simulink.

CSpd — Driveshaft C angular velocity

scalar

Output driveshaft angular velocity, in rad/s.

Dependencies

To enable this port, for **Port Configuration**, select Simulink.

R — Angular velocity and torque

two-way connector port

Angular velocity in rad/s. Torque is in N·m.

Dependencies

To enable this port, for **Port Configuration**, select Two-way connection.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal		Description	Variable	Units
Trq	R	Input driveshaft torque	T_R	N·m
	С	Output driveshaft torque	T_C	N·m

Signal		Description	Variable	Units	
	Damp		Damping torque	$T_S = b\dot{\theta}$	N·m
	Spring		Spring torque	$T_d = k\theta$	N·m
Spd	R		Input driveshaft angular velocity	ω_R	rad/s
	С		Output driveshaft angular velocity	ω_{C}	rad/s
	deltadot		Difference in input and output driveshaft angular velocity	$\dot{\theta}$	rad/s
PwrInfo	PwrTrnsfrd	PwrR	Mechanical power from driveshaft R	P_{TR}	W
		PwrC	Mechanical power from driveshaft C	P_{TC}	W
	PwrNotTrnsf rd	PwrDampLos s	Power loss due to damping	P_d	W
	PwrStored	PwrStoredS hft	Rate change of stored internal kinetic energy	P_s	W

Dependencies

To enable this port, select **Output Info bus**.

RTrq — Driveshaft R torque

scalar

Input drive shaft torque, in N·m.

Dependencies

To enable this port, for **Port Configuration**, select Simulink.

CTrq — Driveshaft C torque

scalar

Applied output driveshaft torque, in N·m.

Dependencies

To enable this port, for **Port Configuration**, select **Simulink**.

C — Angular velocity and torque

two-way connector port

Angular velocity in rad/s. Torque is in N·m.

Dependencies

To enable this port, for **Port Configuration**, select Two-way connection.

Parameters

Block Options

Port Configuration — Specify configuration

Simulink (default) | Two-way connection

Specify the port configuration.

Dependencies

Specifying Simulink creates these ports:

- RSpd
- CSpd
- RTrq
- CTrq

Specifying Two-way connection creates these ports:

- R
- C

Output Info bus — Selection

off (default) | on

Select to create the Info output port.

Torsional stiffness, k — Inertia

1e4 (default) | scalar

Torsional stiffness, in N·m/rad.

Torsional damping, b — Damping

1e2 (default) | scalar

Torsional damping, in $N \cdot m \cdot s/rad$.

Initial deflection, theta_o — Angular

0 (default) | scalar

Initial deflection, in rad.

Initial velocity difference, domega o — Angular

0 (default) | scalar

Initial velocity difference, in rad/s.

Damping cut-off frequency, omega_c — Frequency

3000 (default) | scalar

Damping cut-off frequency, in rad/s.

Extended Capabilities

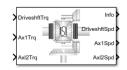
C/C++ Code Generation

Generate C and C++ code using Simulink® Coder $^{\text{\tiny TM}}$.

See Also

Rotational Inertia | Split Torsional Compliance

Introduced in R2017a


Limited Slip Differential

Limited differential as a planetary bevel gear

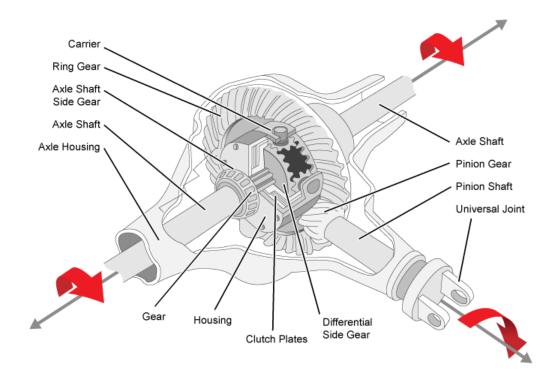
Library: Powertrain Blockset / Drivetrain / Final Drive Unit

Vehicle Dynamics Blockset / Powertrain / Drivetrain / Final

Drive Unit

Description

The Limited Slip Differential block implements a differential as a planetary bevel gear train. The block matches the driveshaft bevel gear to the crown (ring) bevel gear. You can specify:


- · Carrier-to-driveshaft ratio
- · Crown wheel location
- Viscous and damping coefficients for the axles and carrier
- · Type of slip coupling

Use the block in system-level driveline analysis to account for the power transfer from the transmission to the wheels. The block is suitable for use in hardware-in-the-loop (HIL) and optimization workflows. All the parameters are tunable.

In a limited slip differential, to prevent one of the wheels from slipping, the differential splits the torque applied to the left and right axles. With different torque applied to the axles, the wheels can move at different angular velocities, preventing slip. The block implements three methods for coupling the different torques applied to the axes:

- Pre-loaded ideal clutch
- · Slip speed-dependent torque data
- · Input torque dependent torque data

The block uses a coordinate system that produces positive tire and vehicle motion for standard engine, transmission, and differential configurations. The arrows indicate positive motion.

Efficiency

To account for the block efficiency, use the $\mathbf{Efficiency}$ factors parameter. This table summarizes the block implementation for each setting.

Setting	Implementation
Constant	Constant efficiency that you can set with the Constant efficiency factor , eta parameter.
Driveshaft torque, temperature and speed	Efficiency as a function of base gear input torque, air temperature, and driveshaft speed. Use these parameters to specify the lookup table and breakpoints:
	Efficiency lookup table, eta_tbl
	Efficiency torque breakpoints, Trq_bpts
	Efficiency speed breakpoints, omega_bpts
	Efficiency temperature breakpoints, Temp_bpts
	For the air temperature, you can either:
	Select Input temperature to create an input port.
	Set a Ambient temperature, Tamb parameter value.
	To select the interpolation method, use the Interpolation method parameter. For more information, see "Interpolation Methods" (Simulink).

Power Accounting

For the power accounting, the block implements these equations.

Bus Signa	al		Description	Equations	
PwrInfo	PwrTrnsfrd — Power transferred between blocks	PwrDriveshft	Mechanical power from driveshaft	$\eta T_d \omega_d$	
	Positive signals indicate flow into block	PwrAxl1	Mechanical power from axle 1	$\eta T_1 \omega_1$	
	Negative signals indicate flow out of block	PwrAxl2	Mechanical power from axle 2	$\eta T_2 \omega_2$	
	PwrNotTrnsfrd — Power crossing the block boundary, but not	PwrMechLoss	Total power loss	$\dot{W}_{loss} = -(P_t + P_d + P_d)$ $P_t = \eta (T_d \omega_d + T_1 \omega_1 + T_2 \omega_1 + T_3 \omega_2)$	
	transferred • Positive signals indicate	PwrDampLoss	Power loss due to damping	$P_d = -(b_1 \omega_1 + b_2 \omega_2 + b_d \omega_d)$	
	an inputNegative signals indicate a loss	PwrCplngLoss	Power loss due to clutch	$P_c = T_c \overline{\omega} $	
	PwrStored — Stored energy rate of change	PwrStoredShft	Rate change of stored internal energy	$P_{s} = -(\omega_{1}\dot{\omega}_{1}J_{1} + \omega_{2}\dot{\omega}_{2}J_{2} + \omega_{d}\dot{\omega}_{d}J_{d})$	
	Positive signals indicate an increase		3,3		
	Negative signals indicate a decrease				

Dynamics

The Limited Slip Differential block implements these differential equations to represent the mechanical dynamic response for the crown gear, left axle, and right axle.

Mechanical Dynamic Response	Differential Equation
Crown Gear	$\dot{\omega}_d J_d = \eta T_d - \omega_d b_d - T_i$
Left Axle	$\dot{\omega}_1 J_1 = \eta T_1 - \omega_1 b_1 - T_{i1}$
Right Axle	$\dot{\omega}_2 J_2 = \eta T_2 - \omega_2 b_2 - T_{i2}$

The block assumes rigid coupling between the crown gear and axles. These constraint equations apply.

$$\eta T_1 = \frac{N}{2} T_i - \frac{1}{2} T_c$$

$$\eta T_2 = \frac{N}{2}T_i + \frac{1}{2}T_c$$

$$\omega_d = \frac{N}{2}(\omega_1 + \omega_2)$$

The equations use these variables.

N	Carrier-to-driveshaft gear ratio
J_d	Rotational inertia of the crown gear assembly
b_d	Crown gear linear viscous damping
ω_d	Driveshaft angular speed
ϖ	Slip speed
J_1	Axle 1 rotational inertia
b_1	Axle 1 linear viscous damping
ω_1	Axle 1 speed
J_2	Axle 2 rotational inertia
b_2	Axle 2 linear viscous damping
ω_2	Axle 2 angular speed
η	Efficiency
T_d	Driveshaft torque
T_1	Axle 1 torque
T_2	Axle 2 torque
T_i	Axle internal resistance torque
T_{i1}	Axle 1 internal resistance torque
T_{i2}	Axle 2 internal resistance torque
μ	Coefficient of friction
R_{eff}	Effective clutch radius
R_o	Annular disk outer radius
R_i	Annular disk inner radius
F_c	Clutch force
T_c	Clutch torque
μ	Coefficient of friction

Table blocks in the Limited Slip Differential have these parameter settings:

- Interpolation method Linear
- Extrapolation method Clip

Ideal Clutch Coupling

The ideal clutch coupling model uses the axle slip speed and friction to calculate the clutch torque. The friction coefficient is a function of the slip speed.

$$T_c = F_c N \mu(|\varpi|) R_{eff} \tanh(4|\varpi|)$$

The disc radii determine the effective clutch radius over which the clutch force acts.

$$R_{eff} = \frac{2(R_o 3 - R_i 3)}{3(R_o 2 - R_i 2)}$$

The angular velocities of the axles determine the slip speed.

$$\varpi = \omega_1 - \omega_2$$

Slip Speed Coupling

To calculate the clutch torque, the slip speed coupling model uses torque data that is a function of slip speed. The angular velocities of the axles determine the slip speed.

$$\varpi = \omega_1 - \omega_2$$

Input Torque Coupling

To calculate the clutch torque, the input torque coupling model uses torque data that is a function of input torque.

The Open Differential block assumes rigid coupling between the crown gear and axles. These constraint equations apply.

$$\eta T_1 = \eta T_2 = \frac{N}{2} T_i$$

$$\omega_{d=}=\frac{N}{2}(\omega_1+\omega_2)$$

Ports

Inputs

DriveshftTrq — Torque

scalar

Applied input torque, typically from the engine crankshaft, in N·m.

Axl1Trq - Torque

scalar

Axle 1 torque, T_1 , in N·m.

Axl2Trq — Torque

scalar

Axle 2 torque, T_2 , in N·m.

Temp — Temperature

scalar

Temperature, in K.

Dependencies

To enable this port:

- Set Efficiency factors to Driveshaft torque, speed and temperature.
- Select Input temperature.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal		Description	Units	
Driveshft	DriveshftTrq		Driveshaft torque	N·m
	DriveshftSp	od	Driveshaft speed	rad/s
Axl1	Axl1Trq		Axle 1 torque	N·m
	Axl1Spd		Axle 1 speed	rad/s
Axl2	Axl2Trq		Axle 2 torque	N·m
	Axl2Spd		Axle 2 speed	rad/s
Cplng	CplngTrq		Torque coupling	N·m
	CplngSlipSp	od	Slip speed	rad/s
PwrInfo	PwrTrnsfrd	PwrDrivesh ft	Mechanical power from driveshaft	W
		PwrAxl1	Mechanical power from axle 1	W
		PwrAxl2	Mechanical power from axle 2	W
	PwrNotTrns frd	PwrMechLos s	Total power loss	W
		PwrDampLos s	Power loss due to damping	W
		PwrCplngLo ss	Power loss due to clutch	W
	PwrStoredS hft	PwrStoredS hft	Rate change of stored internal energy	W

DriveshftSpd — Angular speed

scalar

Driveshaft angular speed, ω_d , in rad/s.

Axl1Spd — Angular speed

scalar

Axle 1 angular speed, ω_1 , in rad/s.

Axl2Spd — Angular speed

scalar

Axle 2 angular speed, ω_2 , in rad/s.

Parameters

Block Options

Efficiency factors — Specify configuration

Constant (default) | Driveshaft torque, speed and temperature

To account for the block efficiency, use the **Efficiency factors** parameter. This table summarizes the block implementation for each setting.

Setting	Implementation
Constant	Constant efficiency that you can set with the Constant efficiency factor , eta parameter.
Driveshaft torque, temperature and speed	Efficiency as a function of base gear input torque, air temperature, and driveshaft speed. Use these parameters to specify the lookup table and breakpoints:
	Efficiency lookup table, eta_tbl
	Efficiency torque breakpoints, Trq_bpts
	Efficiency speed breakpoints, omega_bpts
	Efficiency temperature breakpoints, Temp_bpts
	For the air temperature, you can either:
	Select Input temperature to create an input port.
	Set a Ambient temperature, Tamb parameter value.
	To select the interpolation method, use the Interpolation method parameter. For more information, see "Interpolation Methods" (Simulink).

Interpolation method — Method

Flat | Nearest | Linear point-slope | Linear Lagrange | Cubic spline

For more information, see "Interpolation Methods" (Simulink).

Dependencies

To enable this parameter, set **Efficiency factors** to Driveshaft torque, speed and temperature.

Input temperature — Create input port

off (default) | on

Select to create input port Temp for the temperature.

Dependencies

To enable this parameter, set **Efficiency factors** to Driveshaft torque, speed and temperature.

Open Differential

Crown wheel (ring gear) located — Specify crown wheel connectionTo the left of center-line (default) | To the right of center-line

Specify the crown wheel connection to the driveshaft.

Carrier to drive shaft ratio, NC/ND — Ratio

4 (default) | scalar

Carrier-to-driveshaft gear ratio, N.

Carrier inertia, Jd — Inertia

.1 (default) | scalar

Rotational inertia of the crown gear assembly, J_d , in kg·m². You can include the driveshaft inertia.

Carrier damping, bd — Damping

1e-3 (default) | scalar

Crown gear linear viscous damping, b_d , in N·m·s/rad.

Axle 1 inertia, Jw1 — Inertia

.1 (default) | scalar

Axle 1 rotational inertia, J_1 , in kg·m².

Axle 1 damping, bw1 — Damping

1e-3 (default) | scalar

Axle 1 linear viscous damping, b_1 , in N·m·s/rad.

Axle 2 inertia, Jw2 — Inertia

.1 (default) | scalar

Axle 2 rotational inertia, J_2 , in kg·m².

Axle 2 damping, bw2 — Damping

1e-3 (default) | scalar

Axle 2 linear viscous damping, b_2 , in N·m·s/rad.

Axle 1 initial velocity, omegawlo — Angular velocity

0 (default) | scalar

Axle 1 initial velocity, ω_{o1} , in rad/s.

Axle 2 initial velocity, omegaw2o — Angular velocity

0 (default) | scalar

Axle 2 initial velocity, ω_{o2} , in rad/s.

Constant efficiency factor, eta — Efficiency

1 (default) | scalar

Constant efficiency, η .

Dependencies

To enable this parameter, set **Efficiency factors** to Constant.

Efficiency lookup table, eta_tbl — Lookup table

M-by-N-by-L array

Dimensionless array of values for efficiency as a function of:

- · M input torques
- N input speed
- Lair temperatures

Each value specifies the efficiency for a specific combination of torque, speed, and temperature. The array size must match the dimensions defined by the torque, speed, and temperature breakpoint vectors.

Dependencies

To enable this parameter, set **Efficiency factors** to Driveshaft torque, speed and temperature.

Efficiency torque breakpoints, Trq_bpts — Torque breakpoints

[25, 50, 75, 100, 150, 200, 250] (default) | 1-by-M vector

Vector of input torque, breakpoints for efficiency, in $N \cdot m$.

Dependencies

To enable this parameter, set **Efficiency factors** to Driveshaft torque, speed and temperature.

Efficiency speed breakpoints, omega_bpts — Speed breakpoints

[52.4 78.5 105 131 157 183 209 262 314 419 524] (default) | 1-by-N vector

Vector of speed, breakpoints for efficiency, in rad/s.

Dependencies

To enable this parameter, set **Efficiency factors** to Driveshaft torque, speed and temperature.

Efficiency temperature breakpoints, Temp_bpts — Temperature breakpoints

[290 358] (default) | 1-by-L vector

Vector of ambient temperature breakpoints for efficiency, in K.

Dependencies

To enable this parameter, set **Efficiency factors** to Driveshaft torque, speed and temperature.

Ambient temperature, Tamb — Ambient temperature

297.15 (default) | scalar

Ambient air temperature, T_{air} , in K.

Dependencies

To enable this parameter:

- Set Efficiency factors to Driveshaft torque, speed and temperature.
- Clear Input temperature.

Slip Coupling

Coupling type — Torque coupling

Pre-loaded ideal clutch (default) | Slip speed dependent torque data | Input torque dependent torque data

Specify the type of torque coupling.

Number of disks, Ndisks — Torque coupling

4 (default) | scalar

Number of disks.

Dependencies

To enable the ideal clutch parameters, select Pre-loaded ideal clutch for the **Coupling type** parameter.

Effective radius, Reff — Radius

.20 (default) | scalar

The effective radius, R_{eff} , used with the applied clutch friction force to determine the friction force. The effective radius is defined as:

$$R_{eff} = \frac{2(R_0^3 - R_i^3)}{3(R_0^2 - R_i^2)}$$

The equation uses these variables.

 R_o Annular disk outer radius

 R_i Annular disk inner radius

Dependencies

To enable the clutch parameters, select Pre-loaded ideal clutch for the **Coupling type** parameter.

Nominal preload force, Fc — Force

500 (default) | scalar

Nominal preload force, in N.

Dependencies

To enable the clutch parameters, select Pre-loaded ideal clutch for the **Coupling type** parameter.

Friction coefficient vector, muc — Friction

[.16 0.13 0.115 0.11 0.105 0.1025 0.10125] (default) | vector

Friction coefficient vector.

Dependencies

To enable the clutch parameters, select Pre-loaded ideal clutch for the Coupling type parameter.

Slip speed vector, dw — Angular velocity

[0 10 20 40 60 80 100] (default) | vector

Slip speed vector, in rad/s.

Dependencies

To enable the clutch parameters, select Pre-loaded ideal clutch for the Coupling type parameter.

Torque - slip speed vector, Tdw — Torque

```
[-100, -90, -50, -5, 0, 5, 50, 90, 100] (default) | vector
```

Torque vector, in N·m.

Dependencies

To enable the slip speed parameters, select Slip speed dependent torque data for the Coupling type parameter.

Slip speed vector, dwT — Angular velocity

```
[-200, -175, -100, - 50, 0, 50, 100, 175, 200] (default) | vector
```

Slip speed vector, in rad/s.

Dependencies

To enable the slip speed parameters, select Slip speed dependent torque data for the Coupling type parameter.

Torque - input torque vector, TTin — Torque

```
[-200 -175 -100 - 50 0 50 100 175 200] (default) | vector
```

Torque vector, in N·m.

Dependencies

To enable the input torque parameters, select Input torque dependent torque data for the Coupling type parameter.

Input torque vector, Tin — Torque

```
[-200 -175 -100 - 50 0 50 100 175 200] (default) | vector
```

Torque vector, in N·m.

Dependencies

To enable the input torque parameters, select Input torque dependent torque data for the **Coupling type** parameter.

Coupling time constant, tauC — Constant

```
.01 (default) | scalar
```

Coupling time constant, in s.

References

[1] Deur, J., Ivanović, V., Hancock, M., and Assadian, F. "Modeling of Active Differential Dynamics." In ASME proceedings. *Transportation Systems*. Vol. 17, pp. 427-436.

Extended Capabilities

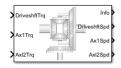
C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also

Open Differential

Introduced in R2017a


Open Differential

Differential as a planetary bevel gear

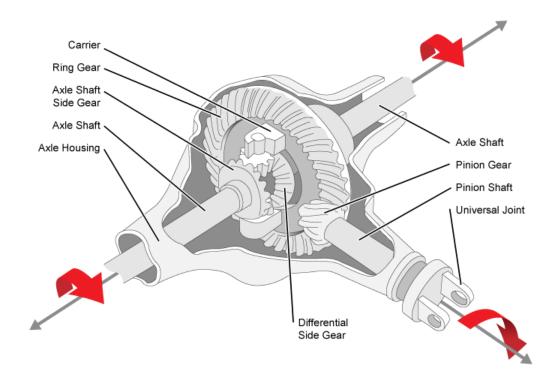
Library: Powertrain Blockset / Drivetrain / Final Drive Unit

Vehicle Dynamics Blockset / Powertrain / Drivetrain / Final

Drive Unit

Description

The Open Differential block implements a differential as a planetary bevel gear train. The block matches the driveshaft bevel gear to the crown (ring) bevel gear. You can specify:


- · Carrier-to-driveshaft ratio
- Crown wheel location
- · Viscous and damping coefficients for the axles and carrier

Use the Open Differential block to:

- Dynamically couple the post-transmission driveshaft to the wheel axles or universal joints
- Model simplified or older drivetrains when optimal traction control does not require passive or active torque vectoring
- Model mechanical power splitting in generic gearbox and drive line scenarios

The block is suitable for use in hardware-in-the-loop (HIL) and optimization workflows. All the parameters are tunable.

The block uses a coordinate system that produces positive tire and vehicle motion for standard engine, transmission, and differential configurations. The arrows indicate positive motion.

Efficiency

To account for the block efficiency, use the $\mathbf{Efficiency}$ factors parameter. This table summarizes the block implementation for each setting.

Setting	Implementation		
Constant	Constant efficiency that you can set with the Constant efficiency factor , eta parameter.		
Driveshaft torque, temperature and speed	Efficiency as a function of base gear input torque, air temperature, and driveshaft speed. Use these parameters to specify the lookup table and breakpoints:		
	Efficiency lookup table, eta_tbl		
	Efficiency torque breakpoints, Trq_bpts		
	Efficiency speed breakpoints, omega_bpts		
	Efficiency temperature breakpoints, Temp_bpts		
	For the air temperature, you can either:		
	Select Input temperature to create an input port.		
	Set a Ambient temperature, Tamb parameter value.		
	To select the interpolation method, use the Interpolation method parameter. For more information, see "Interpolation Methods" (Simulink).		

Power Accounting

For the power accounting, the block implements these equations.

Bus Signa	Bus Signal			Equations
PwrInfo	transferred between blocks	PwrDriveshft	Mechanical power from driveshaft	$\eta T_d \omega_d$
	 Positive signals indicate flow into block Negative signals indicate flow out of block 	PwrAxl1	Mechanical power from axle 1	$\eta T_1 \omega_1$
	now out of block	PwrAxl2	Mechanical power from axle 2	$\eta T_2 \omega_2$
	PwrNotTrnsfrd — Power crossing the block boundary, but not transferred	PwrMechLoss	Total power loss	$\dot{W}_{loss} = -(P_t + P_d) + P_s$ $P_t = \eta T_d \omega_d + \eta T_1 \omega_1 + \eta T_2 \omega_1$
	 Positive signals indicate an input Negative signals indicate a loss 	PwrDampLoss	Power loss due to damping	$P_d = -(b_1 \omega_1 + b_2 \omega_2 + b_d \omega_d)$
	PwrStored — Stored energy rate of change • Positive signals indicate an increase	PwrStoredShft	Rate change of stored internal energy	$P_{s} = -(\omega_{1}\dot{\omega}_{1}J_{1} + \omega_{2}\dot{\omega}_{2}J_{2} + \omega_{d}\dot{\omega}_{d}J_{d})$
	Negative signals indicate a decrease			

Dynamics

The Open Differential block implements these differential equations to represent the mechanical dynamic response for the crown gear, left axle, and right axle.

Mechanical Dynamic Response	Differential Equation
Crown Gear	$\dot{\omega}_d J_d = \eta T_d - \omega_d b_d - T_i$
Left Axle	$\dot{\omega}_1 J_1 = \eta T_1 - \omega_1 b_1 - T_{i1}$
Right Axle	$\dot{\omega}_2 J_2 = \eta T_2 - \omega_2 b_2 - T_{i2}$

The Open Differential block assumes rigid coupling between the crown gear and axles. These constraint equations apply.

$$\eta T_1 = \eta T_2 = \frac{N}{2} T_i$$

$$\omega_{d=}=\frac{N}{2}(\omega_1+\omega_2)$$

The equations use these variables.

Carrier-to-driveshaft gear ratio
Rotational inertia of the crown gear assembly
Crown gear linear viscous damping
Driveshaft angular speed
Differential efficiency
Axle 1 rotational inertia
Axle 1 linear viscous damping
Axle 1 speed
Axle 2 rotational inertia
Axle 2 linear viscous damping
Axle 2 angular speed
Driveshaft torque
Axle 1 torque
Axle 2 torque
Driveshaft internal resistance torque
Axle 1 internal resistance torque
Axle 2 internal resistance torque

Ports

Inputs

${\bf DriveshftTrq-Torque}$

scalar

Applied input torque, typically from the engine crankshaft, in N·m.

Axl1Trq — Torque

scalar

Axle 1 torque, T_1 , in N·m.

Axl2Trq — Torque

scalar

Axle 2 torque, T_2 , in N·m.

Temp — Temperature

scalar

Temperature, in K.

Dependencies

To enable this port:

- Set Efficiency factors to Driveshaft torque, speed and temperature.
- Select Input temperature.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal		Description	Units	
Driveshft DriveshftTrq			Driveshaft torque	N·m
	DriveshftSpd		Driveshaft speed	rad/s
Axl1	Axl1Trq		Axle 1 torque	N·m
	Axl1Spd	Axl1Spd		rad/s
Axl2	Axl2Trq	Axl2Trq		N·m
	Axl2Spd	Axl2Spd		rad/s
PwrInfo	PwrTrnsfrd	PwrDriveshft	Mechanical power from driveshaft	W
		PwrAxl1	Mechanical power from axle 1	W
		PwrAxl2	Mechanical power from axle 2	W
	PwrTrnsfrd	PwrMechLoss	Total power loss	W
		PwrDampLoss	Power loss due to damping	W
	PwrStored	PwrStoredShft	Rate change of stored internal energy	W

DriveshftSpd — Angular speed

scalar

Driveshaft angular speed, ω_d , in rad/s.

Axl1Spd — Angular speed

scalar

Axle 1 angular speed, ω_1 , in rad/s.

Axl2Spd — Angular speed

scalar

Axle 2 angular speed, ω_2 , in rad/s.

Parameters

Block Options

Efficiency factors — Specify configuration

Constant (default) | Driveshaft torque, speed and temperature

To account for the block efficiency, use the **Efficiency factors** parameter. This table summarizes the block implementation for each setting.

Setting	Implementation		
Constant	Constant efficiency that you can set with the Constant efficiency factor , eta parameter.		
Driveshaft torque, temperature and speed	Efficiency as a function of base gear input torque, air temperature, and driveshaft speed. Use these parameters to specify the lookup table and breakpoints:		
	Efficiency lookup table, eta_tbl		
	Efficiency torque breakpoints, Trq_bpts		
	Efficiency speed breakpoints, omega_bpts		
	Efficiency temperature breakpoints, Temp_bpts		
	For the air temperature, you can either:		
	Select Input temperature to create an input port.		
	Set a Ambient temperature, Tamb parameter value.		
	To select the interpolation method, use the Interpolation method parameter. For more information, see "Interpolation Methods" (Simulink).		

Interpolation method — Method

Flat | Nearest | Linear point-slope | Linear Lagrange | Cubic spline

For more information, see "Interpolation Methods" (Simulink).

Dependencies

To enable this parameter, set **Efficiency factors** to Driveshaft torque, speed and temperature.

Input temperature — Create input port

off (default) | on

Select to create input port Temp for the temperature.

Dependencies

To enable this parameter, set **Efficiency factors** to Driveshaft torque, speed and temperature.

Crown wheel (ring gear) located — Specify crown wheel connection

To the left of center-line (default) | To the right of center-line

Specify the crown wheel connection to the driveshaft.

Carrier to drive shaft ratio, Ndiff — Ratio

4 (default) | scalar

Carrier-to-driveshaft gear ratio, *N*, dimensionless.

Carrier inertia, Jd — Inertia

.1 (default) | scalar

Rotational inertia of the crown gear assembly, J_d , in kg·m². You can include the driveshaft inertia.

Carrier damping, bd — Damping

1e-3 (default) | scalar

Crown gear linear viscous damping, b_d , in N·m·s/rad.

Axle 1 inertia, Jw1 — Inertia

.1 (default) | scalar

Axle 1 rotational inertia, J_1 , in kg·m².

Axle 1 damping, bw1 — Damping

1e-3 (default) | scalar

Axle 1 linear viscous damping, b_1 , in N·m·s/rad.

Axle 2 inertia, Jw2 - Inertia

.1 (default) | scalar

Axle 2 rotational inertia, J_2 , in kg·m².

Axle 2 damping, bw2 — Damping

1e-3 (default) | scalar

Axle 2 linear viscous damping, b_2 , in N·m·s/rad.

Axle 1 initial velocity, omegawlo — Angular velocity

0 (default) | scalar

Axle 1 initial velocity, ω_{o1} , in rad/s.

Axle 2 initial velocity, omegaw2o — Angular velocity

0 (default) | scalar

Axle 2 initial velocity, ω_{o2} , in rad/s.

Efficiency

Constant efficiency factor, eta — Efficiency

1 (default) | scalar

Constant efficiency, η .

Dependencies

To enable this parameter, set **Efficiency factors** to Constant.

Efficiency lookup table, eta_tbl — Lookup table

M-by-N-by-L array

Dimensionless array of values for efficiency as a function of:

- · M input torques
- · N input speed
- L air temperatures

Each value specifies the efficiency for a specific combination of torque, speed, and temperature. The array size must match the dimensions defined by the torque, speed, and temperature breakpoint vectors.

Dependencies

To enable this parameter, set **Efficiency factors** to Driveshaft torque, speed and temperature.

Efficiency torque breakpoints, Trq_bpts — Torque breakpoints

[25, 50, 75, 100, 150, 200, 250] (default) | 1-by-M vector

Vector of input torque, breakpoints for efficiency, in N·m.

Dependencies

To enable this parameter, set **Efficiency factors** to Driveshaft torque, speed and temperature.

Efficiency speed breakpoints, omega_bpts — Speed breakpoints

[52.4 78.5 105 131 157 183 209 262 314 419 524] (default) | 1-by-N vector

Vector of speed, breakpoints for efficiency, in rad/s.

Dependencies

To enable this parameter, set **Efficiency factors** to Driveshaft torque, speed and temperature.

Efficiency temperature breakpoints, Temp_bpts — Temperature breakpoints [290 358] (default) | 1-by-L vector

Vector of ambient temperature breakpoints for efficiency, in K.

Dependencies

To enable this parameter, set **Efficiency factors** to Driveshaft torque, speed and temperature.

Ambient temperature, Tamb — Ambient temperature

297.15 (default) | scalar

Ambient air temperature, T_{air} , in K.

Dependencies

To enable this parameter:

- Set **Efficiency factors** to Driveshaft torque, speed and temperature.
- Clear Input temperature.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder $^{\text{\tiny TM}}$.

See Also

Limited Slip Differential

Introduced in R2017a

Longitudinal Wheel

Library: Powertrain Blockset / Drivetrain / Wheels
Vehicle Dynamics Blockset / Wheels and Tires

Description

The Longitudinal Wheel block implements the longitudinal behavior of an ideal wheel. You can specify the longitudinal force and rolling resistance calculation method, and brake type. Use the block in driveline and longitudinal vehicle simulations where low frequency tire-road and braking forces are required to determine vehicle acceleration, braking, and wheel-rolling resistance. For example, you can use the block to determine the torque and power requirements for a specified drive cycle or braking event. The block is not suitable for applications that require combined lateral slip.

There are four types of Longitudinal Wheel blocks. Each block implements a different brake type.

Block Name	Brake Type Setting	Brake Implementation
Longitudinal Wheel - No Brake	None	None
Longitudinal Wheel - Disc Brake	Disc	Brake that converts the brake cylinder pressure into a braking force.
Longitudinal Wheel - Drum Brake	Drum	Simplex drum brake that converts the applied force and brake geometry into a net braking torque.
Longitudinal Wheel - Mapped Brake	Mapped	Lookup table that is a function of the wheel speed and applied brake pressure.

The block models longitudinal force as a function of wheel slip relative to the road surface. To calculate the longitudinal force, specify one of these **Longitudinal Force** parameters.

Setting	Block Implementation
Magic Formula constant value	Magic Formula with constant coefficient for stiffness, shape, peak, and curvature.
Magic Formula pure longitudinal slip	Magic Formula with load-dependent coefficients that implement equations 4.E9 through 4.E18 in <i>Tire and Vehicle Dynamics</i> .
Mapped force	Lookup table that is a function of the normal force and wheel slip ratio.

To calculate the rolling resistance torque, specify one of these **Rolling Resistance** parameters.

Setting	Block Implementation
None	None
Pressure and velocity	Method in Stepwise Coastdown Methodology for Measuring Tire Rolling Resistance. The rolling resistance is a function of tire pressure, normal force, and velocity.
ISO 28580	Method specified in ISO 28580:2018, Passenger car, truck and bus tyre rolling resistance measurement method — Single point test and correlation of measurement results.
Magic Formula	Magic formula equations from 4.E70 in <i>Tire and Vehicle Dynamics</i> . The magic formula is an empirical equation based on fitting coefficients.
Mapped torque	Lookup table that is a function of the normal force and spin axis longitudinal velocity.

To calculate vertical motion, specify one of these **Vertical Motion** parameters.

Setting	Block Implementation
None	Block passes the applied chassis forces directly through to the rolling resistance and longitudinal force calculations.
Mapped stiffness and damping	Vertical motion depends on wheel stiffness and damping. Stiffness is a function of tire sidewall displacement and pressure. Damping is a function of tire sidewall velocity and pressure.

Rotational Wheel Dynamics

The block calculates the inertial response of the wheel subject to:

- · Axle losses
- · Brake and drive torque
- Tire rolling resistance
- · Ground contact through the tire-road interface

The input torque is the summation of the applied axle torque, braking torque, and moment arising from the combined tire torque.

$$T_i = T_a - T_b + T_d$$

For the moment arising from the combined tire torque, the block implements tractive wheel forces and rolling resistance with first order dynamics. The rolling resistance has a time constant parameterized in terms of a relaxation length.

$$T_d(s) = \frac{1}{\frac{|\omega|R_e}{L_e}s + 1} (F_x R_e + M_y)$$

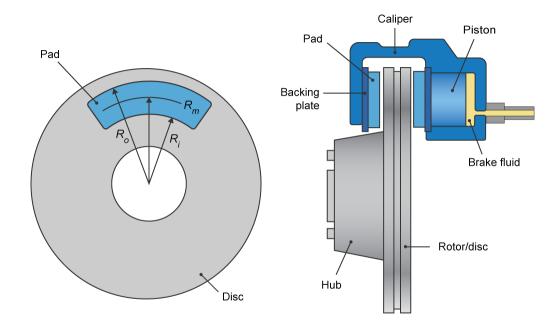
To calculate the rolling resistance torque, you can specify one of these **Rolling Resistance** parameters.

Setting	Block Implementation		
None	Block sets rolling resistance, M_y , to zero.		
Pressure and velocity	Block uses the method in SAE Stepwise Coastdown Methodology for Measuring Tire Rolling Resistance. The rolling resistance is a function of tire pressure, normal force, and velocity. Specifically, $M_{\rm V}=R_e\{a+b V_{\rm X} +cV_{\rm X}^2\}\{F_{\rm Z}\beta p_{\rm i}\alpha\}\tanh(4V_{\rm X})$		
ISO 28580	Block uses the method specified in ISO 28580:2018, Passenger car, truck and bus tyre rolling resistance measurement method — Single point test and correlation of measurement results. The method accounts for normal load, parasitic loss, and thermal corrections from test conditions. Specifically, $M_y = R_e(\frac{F_z C_r}{1 + K_t (T_{amb} - T_{meas})} - F_{pl}) \tanh(\omega)$		
Magic Formula	Block calculates the rolling resistance, M_y , using the Magic Formula equations from 4.E70 in <i>Tire and Vehicle Dynamics</i> . The magic formula is an empirical equation based on fitting coefficients.		
Mapped torque	For the rolling resistance, M_y , the block uses a lookup table that is a function of the normal force and spin axis longitudinal velocity.		

If the brakes are enabled, the block determines the braking locked or unlocked condition based on an idealized dry clutch friction model. Based on the lock-up condition, the block implements these friction and dynamic models.

If	Lock-Up Condition	Friction Model	Dynamic Model
$\omega \neq 0$	Unlocked	$T_f = T_k$	$\dot{\omega}J = -\omega b + T_i + T_o$
or		where,	
$ T_S < T_i + T_f - \omega b $		$T_k = F_c R_{eff} \mu_k \tanh[4(-\omega_d)]$	
		$T_S = F_c R_{eff} \mu_S$	
		$R_{eff} = \frac{2(R_o^3 - R_i^3)}{3(R_o^2 - R_i^2)}$	
$\omega = 0$	Locked	$T_f = T_S$	$\omega = 0$
and			
$T_S \ge \left T_i + T_f - \omega b \right $			

The equations use these variables.


ω	Wheel angular velocity
а	Velocity-independent force component
b	Linear velocity force component
\boldsymbol{c}	Quadratic velocity force component
L_e	Tire relaxation length
J	Moment of inertia

$M_{ m y}$	Rolling resistance torque
T_a	Applied axle torque
T_b	Braking torque
T_d	Combined tire torque
T_f	Frictional torque
T_i	Net input torque
T_k	Kinetic frictional torque
T_o	Net output torque
T_s	Static frictional torque
F_c	Applied clutch force
F_{x}	Longitudinal force developed by the tire road interface due to slip
R_{eff}	Effective clutch radius
R_o	Annular disk outer radius
R_i	Annular disk inner radius
R_e	Effective tire radius while under load and for a given pressure
$V_{\scriptscriptstyle X}$	Longitudinal axle velocity
F_z	Vehicle normal force
C_r	Rolling resistance constant
T_{amb}	Ambient temperature
T_{meas}	Measured temperature for rolling resistance constant
F_{pl}	Parasitic force loss
K_t	Thermal correction factor
α	Tire pressure exponent
β	Normal force exponent
p_i	Tire pressure
μ_s	Coefficient of static friction
μ_k	Coefficient of kinetic friction

Brakes

Disc

If you specify the ${\bf Brake\ Type}$ parameter ${\tt Disc}$, the block implements a disc brake. This figure shows the side and front views of a disc brake.

A disc brake converts brake cylinder pressure from the brake cylinder into force. The disc brake applies the force at the brake pad mean radius.

The block uses these equations to calculate brake torque for the disc brake.

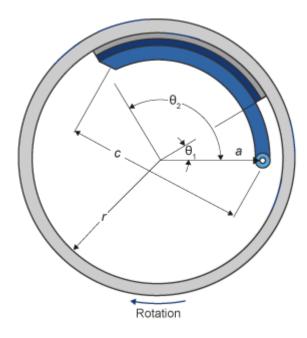
$$T = \begin{cases} \frac{\mu P \pi B_a^2 R_m N_{pads}}{4} & \text{when } N \neq 0 \\ \frac{\mu_{static} P \pi B_a^2 R_m N_{pads}}{4} & \text{when } N = 0 \end{cases}$$

$$Rm = \frac{Ro + Ri}{2}$$

The equations use these variables.

T	Brake torque
P	Applied brake pressure
N	Wheel speed
N_{pads}	Number of brake pads in disc brake assembly
μ_{static}	Disc pad-rotor coefficient of static friction
μ	Disc pad-rotor coefficient of kinetic friction
B_a	Brake actuator bore diameter
R_m	Mean radius of brake pad force application on brake rotor
R_o	Outer radius of brake pad

R_i Inner radius of brake pad


Drum

If you specify the **Brake Type** parameter Drum, the block implements a static (steady-state) simplex drum brake. A simplex drum brake consists of a single two-sided hydraulic actuator and two brake shoes. The brake shoes do not share a common hinge pin.

The simplex drum brake model uses the applied force and brake geometry to calculate a net torque for each brake shoe. The drum model assumes that the actuators and shoe geometry are symmetrical for both sides, allowing a single set of geometry and friction parameters to be used for both shoes.

The block implements equations that are derived from these equations in *Fundamentals of Machine Elements*.

$$\begin{split} T_{rshoe} &= \left(\frac{\pi\mu cr(\cos\theta_2 - \cos\theta_1)B_a^2}{2\mu(2r\left(\cos\theta_2 - \cos\theta_1\right) + a\left(\cos^2\theta_2 - \cos^2\theta_1\right)\right) + ar(2\theta_1 - 2\theta_2 + \sin2\theta_2 - \sin2\theta_1)}\right)P \\ T_{lshoe} &= \left(\frac{\pi\mu cr(\cos\theta_2 - \cos\theta_1)B_a^2}{-2\mu(2r\left(\cos\theta_2 - \cos\theta_1\right) + a\left(\cos^2\theta_2 - \cos^2\theta_1\right)\right) + ar(2\theta_1 - 2\theta_2 + \sin2\theta_2 - \sin2\theta_1)}\right)P \\ T &= \begin{cases} T_{rshoe} + T_{lshoe} & \text{when } N \neq 0 \\ (T_{rshoe} + T_{lshoe})\frac{\mu_{static}}{\mu} & \text{when } N = 0 \end{cases} \end{split}$$

The equations use these variables.

T Brake torque

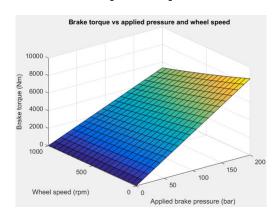
P Applied brake pressure

N Wheel speed

Disc pad-rotor coefficient of static friction
Disc pad-rotor coefficient of kinetic friction
Right shoe brake torque
Left shoe brake torque
Distance from drum center to shoe hinge pin center
Distance from shoe hinge pin center to brake actuator connection on brake shoe
Drum internal radius
Brake actuator bore diameter
Angle from shoe hinge pin center to start of brake pad material on shoe
Angle from shoe hinge pin center to end of brake pad material on shoe

Mapped

If you specify the **Brake Type** parameter Mapped, the block uses a lookup table to determine the brake torque.


$$T = \begin{cases} f_{brake}(P,N) & \text{when } N \neq 0 \\ \left(\frac{\mu_{static}}{\mu}\right) f_{brake}(P,N) & \text{when } N = 0 \end{cases}$$

The equations use these variables.

T	Brake torque
$f_{brake}(P, N)$	Brake torque lookup table
P	Applied brake pressure
N	Wheel speed
μ_{static}	Friction coefficient of drum pad-face interface under static conditions
μ	Friction coefficient of disc pad-rotor interface

The lookup table for the brake torque, $f_{brake}(P, N)$, is a function of applied brake pressure and wheel speed, where:

- T is brake torque, in N·m.
- *P* is applied brake pressure, in bar.
- N is wheel speed, in rpm.

Longitudinal Force

To model the Longitudinal Wheel block longitudinal forces, you can use the Magic Formula. The model provides a steady-state tire characteristic function $F_x = f(\kappa, F_z)$, the longitudinal force F_x on the tire, based on:

- Vertical load F_z
- Wheel slip *k*

Ω

The Magic Formula model uses these variables.

$r_{ m w}$	Wheel radius
V_{x}	Wheel hub longitudinal velocity
$r_w\Omega$	Tire tread longitudinal velocity
$V_{\rm sx} = r_{\rm w}\Omega - V_{\rm x}$	Wheel slip velocity
$\kappa = V_{\rm sx}/ V_{\rm x} $	Wheel slip

Wheel angular velocity

 F_z , F_{z0} Vertical load and nominal vertical load on tire $F_x = f(\kappa, F_z)$ Longitudinal force exerted on the tire at the contact points.

Longitudinal force exerted on the tire at the contact point. Also a characteristic function f of the tire.

Magic Formula Constant Value

If you set **Longitudinal Force** to Magic Formula constant value, the block implements the Magic Formula as a specific form of the tire characteristic function, characterized by four dimensionless coefficients (B, C, D, E), or stiffness, shape, peak, and curvature:

$$F_{\rm X} = f(\kappa, F_{\rm Z}) = F_{\rm Z} D \sin \left(C \tan^{-1} \left[\left\{ B \kappa - E[B \kappa - \tan^{-1}(B \kappa) \right] \right\} \right] \right)$$

The slope of f at $\kappa = 0$ is $BCD \cdot F_z$.

The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

Surface	В	С	D	E
Dry tarmac	10	1.9	1	0.97
Wet tarmac	12	2.3	0.82	1
Snow	5	2	0.3	1
Ice	4	2	0.1	1

Magic Formula Pure Longitudinal Slip

If you set **Longitudinal Force** to Magic Formula pure longitudinal slip, the block implements a more general Magic Formula using dimensionless coefficients that are functions of the tire load. The block implements the longitudinal force equations in Chapter 4 of *Tire and Vehicle Dynamics*, including 4.E9 through 4.E18:

$$\begin{split} F_{\text{X}0} &= D_{\text{X}} \text{sin} \Big(C_{\text{X}} \text{tan}^{-1} \big[\left\{ B_{\text{X}} K_{\text{X}} - E_{\text{X}} \big[B_{\text{X}} K_{\text{X}} - \text{tan}^{-1} (B_{\text{X}} K_{\text{X}}) \right] \right\} \big] \big) + S_{\text{V}_{\text{X}}} \end{split}$$
 where:
$$\kappa_{\text{X}} &= \kappa + S_{H_{\text{X}}} \\ C_{\text{X}} &= p_{C_{\text{X}1}} \lambda_{C_{\text{X}}} \\ D_{\text{X}} &= \mu_{\text{X}} F_{z} \varsigma_{1} \\ \mu_{\text{X}} &= (p_{D_{\text{X}1}} + p_{D_{\text{X}2}} df_{z}) (1 + p_{p_{\text{X}3}} dp_{i} + p_{p_{\text{X}4}} dp_{i}^{2}) (1 - p_{D_{\text{X}3}} \gamma^{2}) \lambda^{*}_{\mu_{\text{X}}} \\ E_{\text{X}} &= (p_{E_{\text{X}1}} + p_{E_{\text{X}2}} df_{z} + p_{E_{\text{X}3}} df_{z}^{2}) \big[1 - p_{E_{\text{X}4}} \text{sgn}(\kappa_{\text{X}}) \big] \lambda_{E_{\text{X}}} \\ K_{\text{X}K} &= F_{z} (p_{K_{\text{X}1}} + p_{K_{\text{X}2}} df_{z}) \exp(p_{K_{\text{X}3}} df_{z}) (1 + p_{p_{\text{X}1}} dp_{i} + p_{p_{\text{X}2}} dp_{i}^{2}) \\ B_{\text{X}} &= K_{\text{X}K} / (C_{\text{X}} D_{\text{X}} + \varepsilon_{\text{X}}) \\ S_{H_{\text{X}}} &= p_{H_{\text{X}1}} + p_{H_{\text{X}2}} df_{z} \\ S_{V_{\text{X}}} &= F_{z} \cdot (p_{V_{\text{X}1}} + p_{V_{\text{X}2}} df_{z}) \lambda_{V_{\text{X}}} \lambda^{'}_{\text{UX}} \varsigma_{1} \end{split}$$

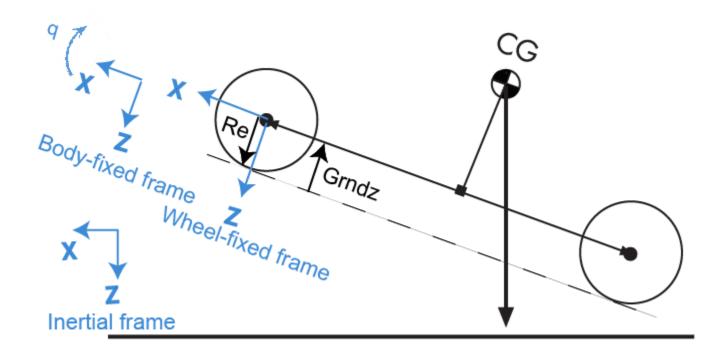
 S_{Hx} and S_{Vx} represent offsets to the slip and longitudinal force in the force-slip function, or horizontal and vertical offsets if the function is plotted as a curve. μ_x is the longitudinal load-dependent friction coefficient. ε_x is a small number inserted to prevent division by zero as F_z approaches zero.

Vertical Dynamics

If you select no vertical degrees-of-freedom by setting **Vertical Motion** to **None**, the block passes the applied chassis forces directly through to the rolling resistance and longitudinal force calculations.

If you set **Vertical Motion** to Mapped stiffness and damping, the vertical motion depends on wheel stiffness and damping. Stiffness is a function of tire sidewall displacement and pressure. Damping is a function of tire sidewall velocity and pressure.

$$Fztire(z, \dot{z}, P_{tire}) = F_{zk}(z, P_{tire}) + F_{zh}(\dot{z}, P_{tire})$$


The block determines the vertical response using this differential equation.

$$\ddot{z}m = Fztire - F_z - mg$$

When you disable the vertical degree-of-freedom, the input normal force from the vehicle passes directly to the longitudinal and rolling force calculations.

$$\ddot{z} = \dot{z} = m = 0$$
 $Fztire = mg$

The block uses the wheel-fixed frame to resolve the vertical forces.

The equations use these variables.

Fztire	Tire normal force along the wheel-fixed z -axis
m	Axle mass
F_{zk}	Tire normal force due to wheel stiffness along the wheel-fixed z -axis
F_{zb}	Tire normal force due to wheel damping along the wheel-fixed z -axis
F_z	Suspension or vehicle normal force along the wheel-fixed z-axis
P_{Tire}	Tire pressure
z,\dot{z},\ddot{z}	Tire displacement, velocity, and acceleration, respectively, along the wheel-fixed z -axis

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal		Description	Equations	
О	PwrTrnsfrd — Power transferred		Tractive power applied from the axle	$P_{road} = F_{\chi} V_{\chi}$
	between blocks	•	External torque applied by the axle to the wheel	$P_T = T\omega$

Bus Signal			Description	Equations
Positive indicate into block Negative signals i flow out block	flow ck e ndicate		Vertical force applied to the wheel by the vehicle or suspension	$P_{Fz} = F_z \dot{z}$
PwrNotTrn — Power cr		ip	Tractive power loss	$P_{\kappa} = F_{\chi}V_{\chi} + ($ $-F_{cp}R_e + M_y)\omega$
the block boundary, b	ut not PwrMy	Roll	Rolling resistance power	$P_{My} = M_y \omega$
transferred		Brk	Braking power	$P_{brk} = M_{brk}\omega$
Positive		b	Rolling viscous damping loss	$P_b = -b\omega^2$
indicate input Negative signals i a loss	e PwrFz	Damp	Vertical damping power	$P_{Fzb} = F_{zb}\dot{z}$
PwrStored Stored ener	_	oredzdot	Rate of change of vertical kinetic energy	$P_{\dot{z}} = m\ddot{z}\dot{z}$
of change • Positive	PwrSt	oredq	Rate of change of rotational kinetic energy	$P_{\omega} = I_{yy}\dot{\omega}\omega$
indicate increase	an PwrSt	oredFsFzSp	Rate of change of stored sidewall potential energy	$P_{Fzk} = F_{zk}\dot{z}_x$
Negative signals i a decrea	ndicate	oredGrvty	Rate of change of gravitational potential energy	$P_g = -mg\dot{Z}$

The equations use these variables.

ω	Wheel angular velocity
b	Linear velocity force component
$F_{\scriptscriptstyle \chi}$	Longitudinal force developed by the tire road interface due to slip
F_{cp}	Tire slip force at contact patch
F_z	Vehicle normal force
F_{zb}	Tire normal force due to wheel damping
F_{zk}	Tire normal force due to wheel stiffness
I_{yy}	Wheel rotational inertia
M_{brk}	Braking moment
M_{y}	Rolling resistance torque
R_e	Effective tire radius while under load and for a given pressure
T	Axle torque applied on wheel
V_{χ}	Longitudinal axle velocity

z,\dot{z},\ddot{z}	Tire displacement, velocity, and acceleration, respectively
ω	Wheel angular velocity
Ż	Vehicle vertical velocity along the vehicle-fixed z-axis

Ports

Input

BrkPrs — **Brake** pressure

scalar

Brake pressure, in Pa.

Dependencies

To enable this port, for the **Brake Type** parameter, specify one of these types:

- Disc
- Drum
- Mapped

AxlTrq — Axle torque

scalar

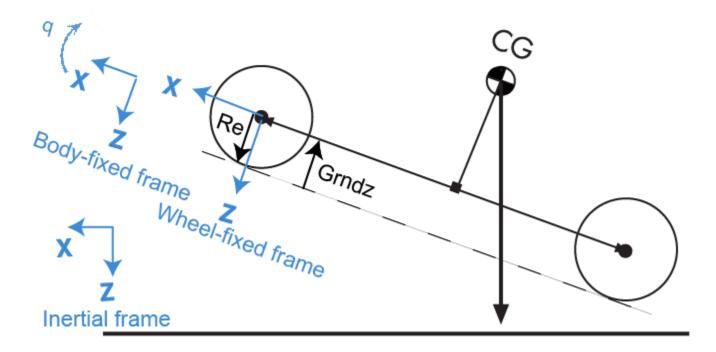
Axle torque, T_a , about wheel spin axis, in N·m.

Vx — Velocity

scalar

Axle longitudinal velocity along vehicle(body)-fixed *x*-axis, in m/s.

Fz — Normal force


scalar

Absolute value of suspension or vehicle normal force along body-fixed *z*-axis, in N.

Gnd — **Ground displacement**

scalar

Ground displacement, Grndz, along negative wheel-fixed z-axis, in m.

Dependencies

To create Gnd:

- Set Vertical Motion to Mapped stiffness and damping.
- On the **Vertical** pane, select **Input ground displacement**.

lam_mux — Friction scaling factor

scalar

Longitudinal friction scaling factor, dimensionless.

Dependencies

To enable this port, select **Input friction scale factor**.

TirePrs — Tire pressure

scalar

Tire pressure, in Pa.

Dependencies

To enable this port:

- Set one of these parameters:
 - Longitudinal Force to Magic Formula pure longitudinal slip.
 - Rolling Resistance to Pressure and velocity or Magic Formula.
 - Vertical Motion to Mapped stiffness and damping.

• On the Wheel Dynamics pane, select Input tire pressure.

Tamb — Ambient temperature

scalar

Ambient temperature, T_{amb} , in K.

Dependencies

To enable this port:

- 1 Set **Rolling Resistance** to ISO 28580.
- 2 On the Rolling Resistance pane, select to Input ambient temperature.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Units
AxlTrq	Axle torque about body-fixed y-axis	N·m
Omega	Wheel angular velocity about body-fixed <i>y</i> -axis	rad/s
Omegadot	Wheel angular acceleration about body-fixed y-axis	rad/s^2
Fx	Longitudinal vehicle force along body-fixed <i>x</i> -axis	N
Fz	Vertical vehicle force along body-fixed z -axis	N
Fzb	Tire normal force due to wheel damping along the wheel-fixed z-axis	N
Fzk	Tire normal force due to wheel stiffness along the wheel-fixed z-axis	N
Му	Rolling resistance torque about body-fixed <i>y</i> -axis	N·m
Myb	Rolling resistance torque due to damping about body-fixed y-axis	N·m
Карра	Slip ratio	NA
Vx	Vehicle longitudinal velocity along body-fixed <i>x</i> -axis	m/s
Re	Wheel effective radius along wheel-fixed z-axis	m

Signal			Description	Units
BrkTrq		Brake torque about body-fixed y-axis	N·m	
BrkPrs		Brake pressure	Pa	
Z			Wheel vertical deflection along wheel-fixed z-axis	m
zdot			Wheel vertical velocity along wheel-fixed <i>z</i> -axis	m/s
zddot			Wheel vertical acceleration along wheel-fixed <i>z</i> -axis	m/s^2
Gndz		Ground displacement along negative of wheel-fixed z-axis (positive input produces wheel lift)	m	
GndFz		Vertical wheel force on ground along negative of wheel-fixed z-axis	N	
TirePrs		Tire pressure	Pa	
Fpatch		Tractive power applied from the axle		
PwrInfo	PwrInfo PwrTrnsfrd	PwrRoad	External torque applied by the axle to the wheel	W
		PwrAxlTrq	Vertical force applied to the wheel by the vehicle or suspension	W
		PwrFz	Tractive power loss	W
	PwrNotTrnsfrd	PwrSlip	Rolling resistance power	W
		PwrMyRoll	Braking power	W
		PwrMyBrk	Rolling viscous damping loss	W
		PwrMyb	Vertical damping power	W
	PwrFzDamp	Rate of change of vertical kinetic energy	W	
PwrStored	PwrStoredzdot	Rate of change of rotational kinetic energy	W	
	PwrStoredq	Rate of change of stored sidewall potential energy	W	
		PwrStoredFsFzSprng	Rate of change of gravitational potential energy	W
		PwrStoredGrvty	Tractive power applied from the axle	W

Fx — Longitudinal axle force scalar

Longitudinal force acting on axle, along body-fixed x-axis, in N. Positive force acts to move the vehicle forward.

Omega — Wheel angular velocity

scalar

Wheel angular velocity, about body-fixed y-axis, in rad/s.

z - Wheel vertical deflection

scalar

Wheel vertical deflection along wheel-fixed *z*-axis, in m.

Dependencies

To enable this port, set **Vertical Motion** to Mapped stiffness and damping.

zdot — Wheel vertical velocity

scalar

Wheel vertical velocity along wheel-fixed *z*-axis, in m/s.

Dependencies

To enable this port, set **Vertical Motion** to Mapped stiffness and damping.

Parameters

Block Options

Longitudinal Force — Select type

Magic Formula constant value (default) | Magic Formula pure longitudinal slip | Mapped force

The block models longitudinal force as a function of wheel slip relative to the road surface. To calculate the longitudinal force, specify one of these **Longitudinal Force** parameters.

Setting	Block Implementation
Magic Formula constant value	Magic Formula with constant coefficient for stiffness, shape, peak, and curvature.
Magic Formula pure longitudinal slip	Magic Formula with load-dependent coefficients that implement equations 4.E9 through 4.E18 in <i>Tire and Vehicle Dynamics</i> .
Mapped force	Lookup table that is a function of the normal force and wheel slip ratio.

Dependencies

Selecting	Enables These Parameters
Magic Formula constant value	Pure longitudinal peak factor, Dx
	Pure longitudinal shape factor, Cx
	Pure longitudinal stiffness factor, Bx
	Pure longitudinal curvature factor, Ex

Selecting	Enables These Parameters
Magic Formula pure	Cfx shape factor, PCX1
longitudinal slip	Longitudinal friction at nominal normal load, PDX1
	Frictional variation with load, PDX2
	Frictional variation with camber, PDX3
	Longitudinal curvature at nominal normal load, PEX1
	Variation of curvature factor with load, PEX2
	Variation of curvature factor with square of load, PEX3
	Longitudinal curvature factor with slip, PEX4
	Longitudinal slip stiffness at nominal normal load, PKX1
	Variation of slip stiffness with load, PKX2
	Slip stiffness exponent factor, PKX3
	Horizontal shift in slip ratio at nominal normal load, PHX1
	Variation of horizontal slip ratio with load, PHX2
	Vertical shift in load at nominal normal load, PVX1
	Variation of vertical shift with load, PVX2
	Linear variation of longitudinal slip stiffness with tire pressure, PPX1
	Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2
	Linear variation of peak longitudinal friction with tire pressure, PPX3
	Quadratic variation of peak longitudinal friction with tire pressure, PPX4
	Linear variation of longitudinal slip stiffness with tire pressure, PPX1
	Slip speed decay function scaling factor, lam_muV
	Brake slip stiffness scaling factor, lam_Kxkappa
	Longitudinal shape scaling factor, lam_Cx
	Longitudinal curvature scaling factor, lam_Ex

Selecting	Enables These Parameters	
	Longitudinal horizontal shift scaling factor, lam_Hx	
	Longitudinal vertical shift scaling factor, lam_Vx	
Mapped force	Slip ratio breakpoints, kappaFx	
	Normal force breakpoints, FzFx	
	Longitudinal force map, FxMap	

Rolling Resistance — Select type None (default) | Pressure and velocity | ISO 28580 | Magic Formula | Mapped torque

To calculate the rolling resistance torque, specify one of these **Rolling Resistance** parameters.

Setting	Block Implementation
None	None
Pressure and velocity	Method in Stepwise Coastdown Methodology for Measuring Tire Rolling Resistance. The rolling resistance is a function of tire pressure, normal force, and velocity.
ISO 28580	Method specified in ISO 28580:2018, Passenger car, truck and bus tyre rolling resistance measurement method — Single point test and correlation of measurement results.
Magic Formula	Magic formula equations from 4.E70 in <i>Tire and Vehicle Dynamics</i> . The magic formula is an empirical equation based on fitting coefficients.
Mapped torque	Lookup table that is a function of the normal force and spin axis longitudinal velocity.

Dependencies

Selecting	Parameters
Pressure and velocity	Velocity independent force coefficient, aMy
	Linear velocity force component, bMy
	Quadratic velocity force component, cMy
	Tire pressure exponent, alphaMy
	Normal force exponent, betaMy

Selecting	Parameters
ISO 28580	Parasitic losses force, Fpl
	Rolling resistance constant, Cr
	Thermal correction factor, Kt
	Measured temperature, Tmeas
	Parasitic losses force, Fpl
	Ambient temperature, Tamb
Magic Formula	Rolling resistance torque coefficient, QSY
	Longitudinal force rolling resistance coefficient, QSY2
	Linear rotational speed rolling resistance coefficient, QSY3
	Quartic rotational speed rolling resistance coefficient, QSY4
	Camber squared rolling resistance torque, QSY5
	Load based camber squared rolling resistance torque, QSY6
	Normal load rolling resistance coefficient, QSY7
	Pressure load rolling resistance coefficient, QSY8
	Rolling resistance scaling factor, lam_My
Mapped torque	Spin axis velocity breakpoints, VxMy
	Normal force breakpoints, FzMy
	Rolling resistance torque map, MyMap

Brake Type — Select type None | Disc | Drum | Mapped

There are four types of Longitudinal Wheel blocks. Each block implements a different brake type.

Block Name	Brake Type Setting	Brake Implementation
Longitudinal Wheel - No Brake	None	None
Longitudinal Wheel - Disc Brake	Disc	Brake that converts the brake cylinder pressure into a braking force.
Longitudinal Wheel - Drum Brake	Drum	Simplex drum brake that converts the applied force and brake geometry into a net braking torque.

Block Name	Brake Type Setting	Brake Implementation
Longitudinal Wheel - Mapped Brake		Lookup table that is a function of the wheel speed and applied brake pressure.

Vertical Motion — Select type

None (default) | Mapped stiffness and damping

To calculate vertical motion, specify one of these **Vertical Motion** parameters.

Setting	Block Implementation
None	Block passes the applied chassis forces directly through to the rolling resistance and longitudinal force calculations.
Mapped stiffness and damping	Vertical motion depends on wheel stiffness and damping. Stiffness is a function of tire sidewall displacement and pressure. Damping is a function of tire sidewall velocity and pressure.

Selecting	Enables These Parameters	Creates These Output Ports
Mapped stiffness	Wheel and unsprung mass, m	Z
and damping	Initial deflection, zo	zdot
	Initial velocity, zdoto	
	Gravitational acceleration, g	
	Vertical deflection breakpoints, zFz	
	Pressure breakpoints, pFz	
	Force due to deflection, Fzz	
	Vertical velocity breakpoints, zdotFz	
	Force due to velocity, Fzzdot	
	Ground displacement, Gndz	
	Input ground displacement	

Longitudinal scaling factor, $lam_x - Friction$ scaling factor 1 (default)

Longitudinal friction scaling factor, dimensionless.

Dependencies

To enable this parameter, clear **Input friction scale factor**.

Input friction scale factor — Selection Off (default)

Create input port for longitudinal friction scaling factor.

Dependencies

Selecting this parameter:

- Creates input port lam mux.
- Disables parameter **Longitudinal scaling factor, lam_x**.

Wheel Dynamics

Axle viscous damping coefficient, br — Damping 0.001 (default) | scalar

Axle viscous damping coefficient, br, in N·m·s/rad.

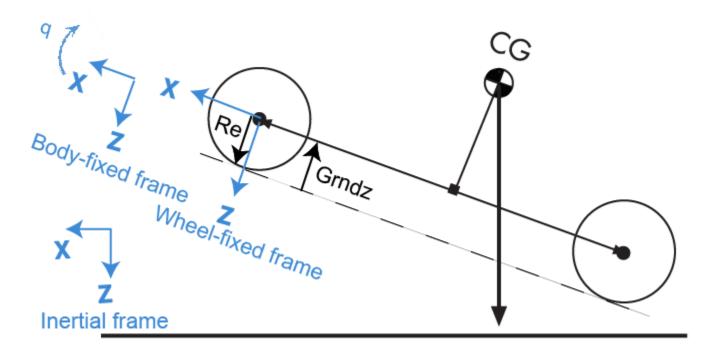
Wheel inertia, Iyy — Inertia 0.8 (default) | scalar

o.o (delddit) | Sed cdi

Wheel inertia, in kg·m².

Wheel initial angular velocity, omegao — Wheel speed θ (default) | scalar

Initial angular velocity of wheel, along body-fixed y-axis, in rad/s.


Relaxation length, Lrel — Relaxation length 0.5 (default) | scalar

Wheel relaxation length, in m.

Loaded radius, Re — Loaded radius

0.3 (default) | scalar

Loaded wheel radius, Re, in m.

Unloaded radius, UNLOADED_RADIUS — Unloaded radius

0.4 (default) | scalar

Unloaded wheel radius, in m.

Dependencies

To create this parameter, set **Rolling Resistance** to Pressure and velocity or Magic Formula.

Nominal longitudinal speed, LONGVL — Speed

16 (default) | scalar

Nominal longitudinal speed along body-fixed *x*-axis, in m/s.

Dependencies

To enable this parameter, set **Longitudinal Force** to Magic Formula pure longitudinal slip.

Nominal camber angle, gamma — Camber

0 (default) | scalar

Nominal camber angle, in rad.

Dependencies

To enable this parameter, set either:

- Longitudinal Force to Magic Formula pure longitudinal slip.
- Rolling Resistance to Magic Formula.

Nominal pressure, NOMPRES — Pressure

220000 (default) | scalar

Nominal pressure, in Pa.

Dependencies

To enable this parameter, set either:

- Longitudinal Force to Magic Formula pure longitudinal slip.
- Rolling Resistance to Magic Formula.

Pressure, press — Pressure

220000 (default) | scalar

Pressure, in Pa.

Dependencies

To enable this parameter:

- Set one of these:
 - Longitudinal Force to Magic Formula pure longitudinal slip.
 - Rolling Resistance to Pressure and velocity or Magic Formula.
 - Vertical Motion to Mapped stiffness and damping.
- On the **Wheel Dynamics** pane, clear **Input tire pressure**.

Longitudinal

Magic Formula Constant Value

Pure longitudinal peak factor, Dx — Factor

1 (default) | scalar

Pure longitudinal peak factor, dimensionless.

The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

Surface	В	С	D	E
Dry tarmac	10	1.9	1	0.97
Wet tarmac	12	2.3	0.82	1
Snow	5	2	0.3	1
Ice	4	2	0.1	1

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula constant value.

Pure longitudinal shape factor, Cx — Factor

1.65 (default) | scalar

Pure longitudinal shape factor, dimensionless.

The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

Surface	В	С	D	E
Dry tarmac	10	1.9	1	0.97
Wet tarmac	12	2.3	0.82	1
Snow	5	2	0.3	1
Ice	4	2	0.1	1

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula constant value.

Pure longitudinal stiffness factor, Bx — Factor

10 (default) | scalar

Pure longitudinal stiffness factor, dimensionless.

The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

Surface	В	С	D	E
Dry tarmac	10	1.9	1	0.97
Wet tarmac	12	2.3	0.82	1
Snow	5	2	0.3	1
Ice	4	2	0.1	1

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula constant value.

Pure longitudinal curvature factor, $\operatorname{Ex}-\operatorname{Factor}$

0.01 (default) | scalar

Pure longitudinal curvature factor, dimensionless.

The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

Surface	В	С	D	E
Dry tarmac	10	1.9	1	0.97
Wet tarmac	12	2.3	0.82	1
Snow	5	2	0.3	1
Ice	4	2	0.1	1

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula constant value.

Magic Formula Pure Longitudinal Slip

Cfx shape factor, PCX1 — Factor

1.6 (default) | scalar

Cfx shape factor, PCX1, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Longitudinal friction at nominal normal load, PDX1 — Factor 1 (default) | scalar

Longitudinal friction at nominal normal load, PDX1, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Frictional variation with load, PDX2 — Factor

-0.08 (default) | scalar

Frictional variation with load, PDX2, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Frictional variation with camber, PDX3 — Factor

0 (default) | scalar

Frictional variation with camber, PDX3, 1/rad^2.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Longitudinal curvature at nominal normal load, PEX1 — Factor

0.112 (default) | scalar

Longitudinal curvature at nominal normal load, PEX1, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Variation of curvature factor with load, PEX2 — Factor

0.313 (default) | scalar

Variation of curvature factor with load, PEX2, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Variation of curvature factor with square of load, PEX3 — Factor 0 (default) | scalar

Variation of curvature factor with square of load, PEX3, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Longitudinal curvature factor with slip, PEX4 — Factor

0.0016 (default) | scalar

Longitudinal curvature factor with slip, PEX4, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Longitudinal slip stiffness at nominal normal load, PKX1 — Factor 21.7 (default) | scalar

Longitudinal slip stiffness at nominal normal load, PKX1, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Variation of slip stiffness with load, PKX2 — Factor

13.77 (default) | scalar

Variation of slip stiffness with load, PKX2, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Slip stiffness exponent factor, PKX3 — Factor

-0.412 (default) | scalar

Slip stiffness exponent factor, PKX3, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Horizontal shift in slip ratio at nominal normal load, PHX1 — Factor 2.1585E-4 (default) | scalar

Horizontal shift in slip ratio at nominal normal load, PHX1, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Variation of horizontal slip ratio with load, PHX2 — Factor 0.00115 (default) | scalar

Variation of horizontal slip ratio with load, PHX2, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Vertical shift in load at nominal normal load, PVX1 — Factor 1.5973E-5 (default) | scalar

Vertical shift in load at nominal normal load, PVX1, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Variation of vertical shift with load, PVX2 — Factor 1.043E-4 (default) | scalar

Variation of vertical shift with load, PVX2, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Linear variation of longitudinal slip stiffness with tire pressure, PPX1 — Factor

```
-0.3489 (default) | scalar
```

Linear variation of longitudinal slip stiffness with tire pressure, PPX1, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2 — Factor

```
0.382 (default) | scalar
```

Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Linear variation of peak longitudinal friction with tire pressure, PPX3 — Factor

-0.09634 (default) | scalar

Linear variation of peak longitudinal friction with tire pressure, PPX3, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Quadratic variation of peak longitudinal friction with tire pressure, PPX4 — Factor

0.06447 (default) | scalar

Quadratic variation of peak longitudinal friction with tire pressure, PPX4, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Slip speed decay function scaling factor, lam_muV — Factor 1 (default) | scalar

Slip speed decay function scaling factor, lam muV, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Brake slip stiffness scaling factor, lam_Kxkappa — Factor 1 (default) | scalar

Brake slip stiffness scaling factor, lam Kxkappa, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Longitudinal shape scaling factor, lam_Cx — Factor 1 (default) | scalar

Longitudinal shape scaling factor, lam Cx, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Longitudinal curvature scaling factor, lam_Ex — Factor

0 (default) | scalar

Longitudinal curvature scaling factor, lam Ex, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Longitudinal horizontal shift scaling factor, lam_Hx — Factor

1 (default) | scalar

Longitudinal horizontal shift scaling factor, lam Hx, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Longitudinal vertical shift scaling factor, lam_Vx — Factor

1 (default) | scalar

Longitudinal vertical shift scaling factor, lam Vx, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Mapped Force

Slip ratio breakpoints, kappaFx — Breakpoints

vector

Slip ratio breakpoints, dimensionless.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Mapped force.

Normal force breakpoints, FzFx — Breakpoints

vector

Normal force breakpoints, N.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Mapped force.

Longitudinal force map, FxMap — Lookup table

array

Longitudinal force versus slip ratio and normal force, N.

Dependencies

To create this parameter, select the **Longitudinal Force** parameter Mapped force.

Rolling Resistance

Pressure and Velocity

Velocity independent force coefficient, aMy — Force coefficient

8e-4 (default) | scalar

Velocity-independent force coefficient, *a*, in s/m.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter Pressure and velocity.

Linear velocity force component, bMy — Force component

.001 (default) | scalar

Linear velocity force component, *b*, in s/m.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter Pressure and velocity.

Quadratic velocity force component, cMy — Force component

1.6e-4 (default) | scalar

Quadratic velocity force component, c, in s^2/m^2 .

Dependencies

To create this parameter, select the **Rolling Resistance** parameter Pressure and velocity.

Tire pressure exponent, alphaMy — Pressure exponent

-0.003 (default) | scalar

Tire pressure exponent, α , dimensionless.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter Pressure and velocity.

Normal force exponent, betaMy — Force exponent

0.97 (default) | scalar

Normal force exponent, β , dimensionless.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter Pressure and velocity.

ISO 28580

Parasitic losses force, Fpl — Force loss

10 (default) | scalar

Parasitic force loss, F_{pl} , in N.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter ISO 28580.

Rolling resistance constant, Cr — Constant

1e-3 (default) | scalar

Rolling resistance constant, C_r , in N/kN. ISO 28580 specifies the rolling resistance unit as one newton of tractive resistance for every kilonewtons of normal load.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter ISO 28580.

Thermal correction factor, Kt — Correction factor

.008 (default) | scalar

Thermal correction factor, K_t , in 1/degC.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter ISO 28580.

Measured temperature, Tmeas — Temperature

298.15 (default) | scalar

Measured temperature, T_{meas} , in K.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter ISO 28580.

Ambient temperature, Tamb — Temperature

298.15 (default) | scalar

Measured temperature, T_{amb} , in K.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter ISO 28580.

Input ambient temperature — Selection

off (default) | on

Select to create input port Tamb.

Dependencies

To create this parameter, select the Rolling Resistance parameter ISO 28580.

Magic Formula

Rolling resistance torque coefficient, QSY1 — Torque coefficient 0.007 (default) | scalar

Rolling resistance torque coefficient, dimensionless.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

Longitudinal force rolling resistance coefficient, QSY2 — Force resistance coefficient

0 (default) | scalar

Longitudinal force rolling resistance coefficient, dimensionless.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

Linear rotational speed rolling resistance coefficient, QSY3 — Linear speed coefficient

0.0015 (default) | scalar

Linear rotational speed rolling resistance coefficient, dimensionless.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

Quartic rotational speed rolling resistance coefficient, QSY4 — Quartic speed coefficient

8.5e-05 (default) | scalar

Quartic rotational speed rolling resistance coefficient, dimensionless.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

Camber squared rolling resistance torque, QSY5 — Camber resistance torque 0 (default) \mid scalar

Camber squared rolling resistance torque, in 1/rad^2.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

Load based camber squared rolling resistance torque, QSY6 — Load resistance torque

0 (default) | scalar

Load based camber squared rolling resistance torque, in 1/rad^2.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

Normal load rolling resistance coefficient, QSY7 — Normal resistance coefficient $0.9~(default) \mid scalar$

Normal load rolling resistance coefficient, dimensionless.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

Pressure load rolling resistance coefficient, QSY8 — Pressure resistance coefficient

-0.4 (default) | scalar

Pressure load rolling resistance coefficient, dimensionless.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

Rolling resistance scaling factor, $lam_My - Scale$

1 (default) | scalar

Rolling resistance scaling factor, dimensionless.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

Mapped

Spin axis velocity breakpoints, VxMy — Breakpoints

-20:1:20 (default) | vector

Spin axis velocity breakpoints, in m/s.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter Mapped torque.

Normal force breakpoints, FzMy — Breakpoints

0:200:1e4 (default) | vector

Normal force breakpoints, in N.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter Mapped torque.

Rolling resistance torque map, MyMap - Lookup table

array

Rolling resistance torque versus axle speed and normal force, in N·m.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter Mapped torque.

Brake

Static friction coefficient, mu_static — Static friction

.3 (default) | scalar

Static friction coefficient, dimensionless.

Dependencies

To enable this parameter, for the **Brake Type** parameter, specify one of these types:

- Disc
- Drum
- Mapped

Kinetic friction coefficient, mu_kinetic — Kinetic friction

.2 (default) | scalar

Kinematic friction coefficient, dimensionless.

Dependencies

To enable this parameter, for the **Brake Type** parameter, specify one of these types:

- Disc
- Drum
- Mapped

Disc

Disc brake actuator bore, disc_abore — Bore distance

.05 (default) | scalar

Disc brake actuator bore, in m.

Dependencies

To enable the disc brake parameters, select Disc for the **Brake Type** parameter.

Brake pad mean radius, Rm — Radius

.177 (default) | scalar

Brake pad mean radius, in m.

Dependencies

To enable the disc brake parameters, select Disc for the **Brake Type** parameter.

Number of brake pads, num_pads — Count

2 (default) | scalar

Number of brake pads.

Dependencies

To enable the disc brake parameters, select Disc for the **Brake Type** parameter.

Drum

Drum brake actuator bore, disc_abore — Bore distance

0.0508 (default) | scalar

Drum brake actuator bore, in m.

Dependencies

To enable the drum brake parameters, select Drum for the **Brake Type** parameter.

Shoe pin to drum center distance, drum_a — Distance 0.123 (default) | scalar

Shoe pin to drum center distance, in m.

Dependencies

To enable the drum brake parameters, select Drum for the **Brake Type** parameter.

Shoe pin center to force application point distance, drum_c — Distance 0.212 (default) | scalar

Shoe pin center to force application point distance, in m.

Dependencies

To enable the drum brake parameters, select Drum for the **Brake Type** parameter.

Drum internal radius, drum r — Radius

0.15 (default) | scalar

Drum internal radius, in m.

Dependencies

To enable the drum brake parameters, select Drum for the **Brake Type** parameter.

Shoe pin to pad start angle, drum_theta1 — Angle

0 (default) | scalar

Shoe pin to pad start angle, in deg.

Dependencies

To enable the drum brake parameters, select Drum for the **Brake Type** parameter.

Shoe pin to pad end angle, drum_theta2 — Angle

126 (default) | scalar

Shoe pin to pad end angle, in deg.

Dependencies

To enable the drum brake parameters, select Drum for the **Brake Type** parameter.

Mapped

Brake actuator pressure breakpoints, brake_p_bpt — Breakpoints vector

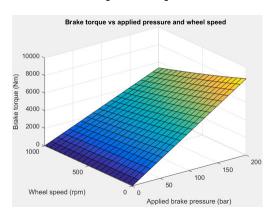
Brake actuator pressure breakpoints, in bar.

Dependencies

To enable the mapped brake parameters, select Mapped for the **Brake Type** parameter.

Wheel speed breakpoints, brake n bpt — Breakpoints vector

Wheel speed breakpoints, in rpm.


Dependencies

To enable the mapped brake parameters, select Mapped for the **Brake Type** parameter.

Brake torque map, f_brake_t — Lookup table array

The lookup table for the brake torque, $f_{brake}(P, N)$, is a function of applied brake pressure and wheel speed, where:

- T is brake torque, in N·m.
- P is applied brake pressure, in bar.
- *N* is wheel speed, in rpm.

Dependencies

To enable the mapped brake parameters, select Mapped for the **Brake Type** parameter.

Vertical

Nominal normal force, FNOMIN — Force

2000 (default) | scalar

Nominal rated wheel load along wheel-fixed *z*-axis, in N.

Dependencies

To enable this parameter, set either:

- Longitudinal Force to Magic Formula pure longitudinal slip.
- Rolling Resistance to Magic Formula.

Nominal rated load scaling factor, lam_Fzo — Factor

1 (default) | scalar

Nominal rated load scaling factor, dimensionless. Used to scale the normal for specific applications and load conditions.

Dependencies

To enable this parameter, set **Longitudinal Force** to Magic Formula pure longitudinal slip.

Wheel and unsprung mass, m — Mass

10 (default) | scalar

Wheel and unsprung mass, in kg. Used in the vertical motion calculations.

Dependencies

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

Initial deflection, zo — Deflection

0 (default) | scalar

Initial axle displacement along wheel-fixed *z*-axis, in m.

Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

Initial velocity, zdoto — Velocity

0 (default) | scalar

Initial axle velocity along wheel-fixed *z*-axis, in m.

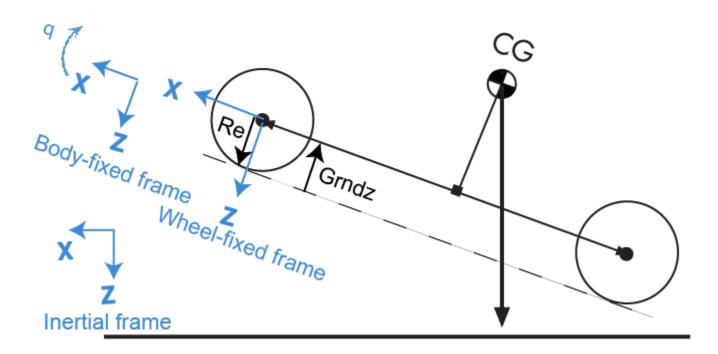
Dependencies

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

Gravitational acceleration, g — Gravity

9.81 (default) | scalar

Gravitational acceleration, in m/s^2.


Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

Ground displacement, Gndz — Displacement

0 (default) | scalar

Ground displacement, Grndz, along negative wheel-fixed z-axis, in m.

Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

Mapped Stiffness and Damping

Vertical deflection breakpoints, zFz — Breakpoints [0 .01 .1] (default) | vector

Vector of sidewall deflection breakpoints corresponding to the force table, in m.

Dependencies

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

Pressure breakpoints, pFz — Breakpoints

[10000 1000000] (default) | vector

Vector of pressure data points corresponding to the force table, in Pa.

Dependencies

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

Force due to deflection, Fzz — Force

[0 1e3 1e4; 0 1e4 1e5] (default) | vector

Force due to sidewall deflection and pressure along wheel-fixed z-axis, in N.

Dependencies

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

Vertical velocity breakpoints, zdotFz — Breakpoints

[-20 0 20] (default) | scalar

Vector of sidewall velocity breakpoints corresponding to the force due to velocity table, in m.

Dependencies

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

Force due to velocity, Fzzdot — Force

[500 0 -500;250 0 -250] (default) | array

Force due to sidewall velocity and pressure along wheel-fixed z-axis, in N.

Dependencies

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

Simulation Setup

Minimum normal force, FZMIN — Force

0 (default) | scalar

Minimum normal force, in N. Used with all vertical force calculations.

Maximum normal force, FZMAX — Force

10000 (default) | scalar

Maximum normal force, in N. Used with all vertical force calculations.

Max allowable slip ratio (absolute), kappamax — Ratio

1.5 (default) | scalar

Maximum allowable absolute slip ratio, dimensionless.

Velocity tolerance used to handle low velocity situations, VXLOW — Tolerance 1 (default) | scalar

Velocity tolerance used to handle low-velocity situations, in m/s.

Minimum ambient temperature, TMIN — Tmin

0 (default) | scalar

Minimum ambient temperature, T_{MIN} , in K.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter ISO 28580.

Maximum ambient temperature, TMAX — Tmax

400 (default) | scalar

Maximum ambient temperature, T_{MAX} , in K.

Dependencies

To create this parameter, select the **Rolling Resistance** parameter ISO 28580.

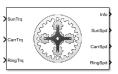
References

- [1] Highway Tire Committee. Stepwise Coastdown Methodology for Measuring Tire Rolling Resistance. Standard J2452 199906. Warrendale, PA: SAE International, June 1999.
- [2] Pacejka, H. B. *Tire and Vehicle Dynamics*. 3rd ed. Oxford, United Kingdom: SAE and Butterworth-Heinemann, 2012.
- [3] Schmid, Steven R., Bernard J. Hamrock, and Bo O. Jacobson. "Chapter 18: Brakes and Clutches." Fundamentals of Machine Elements, SI Version. 3rd ed. Boca Raton, FL: CRC Press, 2014.
- [4] Shigley, Joseph E., and Larry Mitchel. *Mechanical Engineering Design*. 4th ed. New York, NY: McGraw Hill, 1983.
- [5] ISO 28580:2018. Passenger car, truck and bus tyre rolling resistance measurement method -- Single point test and correlation of measurement results. ISO (International Organization for Standardization), 2018.

Extended Capabilities

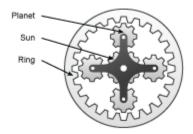
C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.


See Also

Drive Cycle Source | Longitudinal Driver

Introduced in R2017a


Planetary Gear

Ideal planetary gear with sun, ring, and carrier **Library:** Powertrain Blockset / Drivetrain / Couplings

Description

The Planetary Gear block implements an ideal planetary gear coupling consisting of a rigidly coupled sun, ring, and carrier gears. The block calculates the dynamic response to the sun, carrier, and ring input torques.

In fuel economy and powertrain studies, you can use the Planetary Gear block as a power-split device by coupling it to common driveline elements such as transmissions, engines, clutches, and differentials.

These equations of motion represent the dynamic response of the planetary gear.

$$\begin{split} \dot{\omega}_{s}J_{s} &= \dot{\omega}_{s}b_{s} + T_{s} + T_{ps} \\ \dot{\omega}_{c}J_{c} &= \dot{\omega}_{c}b_{c} + T_{c} + T_{pc} \\ \dot{\omega}_{s}J_{r} &= \dot{\omega}_{r}b_{r} + T_{r} + T_{pr} \\ \dot{\omega}_{p}J_{p} &= \omega_{p}b_{p} + T_{rp} + T_{sp} + T_{cp} \end{split}$$

To reduce the equations of motion, the block uses these kinematic and geometric constraints.

$$\omega_c r_c = r_s \omega_s + r_p \omega_p$$

$$\omega_r r_r = r_c \omega_c + r_p \omega_p$$

$$r_c = r_s + r_p$$

$$r_r = r_c + r_p$$

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Equations	
PwrInf o	PwrTrnsfrd — Power	PwrSun	Sun gear applied power	$\omega_{s}T_{s}$	
	transferred between blocks	PwrCarr	Carrier gear applied power	$\omega_c T_c$	
	Positive signals indicate flow into blockNegative	PwrRing	Ring gear applied power	$\omega_r T_r$	
	signals indicate flow out of block				
	PwrNotTrnsfr d — Power crossing the block boundary, but not transferred	PwrDampLoss	Mechanical damping loss	$-\left(b_s\omega_s^2 + b_c\omega_c^2 + b_r\omega_r^2 + b_p\omega_p^2\right)$	
	Positive signals indicate an input				
	Negative signals indicate a loss				
	PwrStored — Stored energy rate of change	PwrStoredPlntry	Rate change in rotational kinetic energy	$\begin{array}{ccc} \dot{\omega}_s \omega_s J_s + & \dot{\omega}_c \omega_c J_c + \dot{\omega}_r \omega_r J_r + \\ \dot{\omega}_p \omega_p J_p & \end{array}$	
	• Positive signals indicate an increase				
	Negative signals indicate a decrease				

The equations use these variables.

ω_c , ω_p , ω_r , ω_s	Carrier, planet, ring, and sun gear angular speed
r_c , r_p , r_r , r_s	Carrier, planet, ring, and sun gear angular radius
J_c , J_p , J_r , J_s	Carrier, planet, ring, and sun gear inertia
b_c , b_p , b_r , b_s	Carrier, planet, ring, and sun gear damping
T_c , T_p , T_r , T_s	Applied carrier, planet, ring, and sun gear torque

T_{ps}	Torque applied from planet gear on sun gear
T_{pc}	Torque applied from planet gear on carrier gear
T_{pr}	Torque applied from planet gear on ring gear
T_{rp}	Torque applied from ring gear on planet gear
T_{sp}	Torque applied from sun gear on planet gear
T_{cp}	Torque applied from carrier gear on planet gear

Ports

Input

SunTrq — Sun gear applied torque

scalar

Sun gear input torque, T_s , in N·m.

Dependencies

To create this port, for **Port Configuration**, select Simulink.

CarrTrq — Carrier gear applied torque

scalar

Carrier gear input torque, T_c , in N·m.

Dependencies

To create this port, for **Port Configuration**, select Simulink.

RingTrq — Ring gear applied torque

scalar

Ring gear applied torque, T_r , in N·m.

Dependencies

To create this port, for **Port Configuration**, select Simulink.

C — Carrier gear angular speed and torque

two-way connector port

Carrier gear angular speed, ω_c , in rad/s. Carrier gear applied torque, T_c , in N·m.

Dependencies

To create this port, for **Port Configuration**, select Two-way connection.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal			Description	Units
Sun	SunTrq		Sun gear applied torque	N·m
	SunSpd		Sun gear angular speed	rad/s
Carr	CarrTrq		Carrier gear applied torque	N·m
	CarrSpd		Carrier gear angular speed	rad/s
Ring	RingTrq		Ring gear applied torque	N·m
PwrInfo	PwrTrnsfrd	PwrSun	Sun gear applied power	W
		PwrCarr	Carrier gear applied power	W
		PwrRing	Ring gear applied power	W
	PwrNotTrns frd	PwrDampLoss	Mechanical damping loss	W
	PwrStored	PwrStoredPlntr y	Rate change in rotational kinetic energy	W

SunSpd — Sun gear angular speed

scalar

Sun gear angular speed, ω_s , in rad/s.

Dependencies

To create this port, for **Port Configuration**, select Simulink.

CarrSpd — Carrier gear angular speed

scalar

Carrier gear angular speed, ω_c , in rad/s.

Dependencies

To create this port, for **Port Configuration**, select Simulink.

RingSpd — Ring gear angular speed

scalar

Ring gear angular speed, ω_r , in rad/s.

Dependencies

To create this port, for **Port Configuration**, select Simulink.

S — Sun gear angular speed and torque

two-way connector port

Sun gear angular speed, ω_s , in rad/s. Sun gear applied torque, T_s , in N·m.

Dependencies

To create this port, for **Port Configuration**, select Two-way connection.

R — Ring gear angular speed and torque

two-way connector port

Ring gear angular speed, ω_r , in rad/s. Ring gear applied torque, T_r , in N·m.

Dependencies

To create this port, for **Port Configuration**, select Two-way connection.

Parameters

Block Options

Port Configuration — Specify configuration

Simulink (default) | Two-way connection

Specify the port configuration.

Dependencies

Specifying Simulink creates these ports:

- SunTrq
- CarrTrq
- RingTrq
- SunSpd
- CarrSpd
- RingSpd

Specifying Two-way connection creates these ports:

- C
- S
- R

Sun to planet ratio, Nsp — Ratio

30/23 (default) | scalar

Sun-to-planet gear ratio, dimensionless.

Sun to ring ratio, Nsr — Ratio

30/78 (default) | scalar

Sun-to-ring gear ratio, dimensionless.

Sun inertia, Js — Inertia

.003 (default) | scalar

Sun gear inertia, J_s , in kg·m².

Planet inertia, Jp — Inertia

.001 (default) | scalar

Planet gear inertia, J_p , in kg·m².

Ring inertia, Jr — Inertia

.01 (default) | scalar

Ring gear inertia, J_r , in kg·m².

Carrier inertia, Jc — Inertia

.002 (default) | scalar

Carrier gear inertia, J_c , in kg·m².

Sun viscous damping, bs — Damping

.001 (default) | scalar

Sun gear viscous damping, b_s , N·m· s/rad.

Ring viscous damping, br — Damping

.001 (default) | scalar

Ring gear viscous damping, b_r , N·m·s/rad.

Planet viscous damping, bp — Damping

.001 (default) | scalar

Planet gear viscous damping, b_p , N·m· s/rad.

Carrier viscous damping, bc — Damping

.001 (default) | scalar

Carrier gear viscous damping, b_c , N·m· s/rad.

Initial sun velocity, ws_o — Angular speed

0 (default) | scalar

Initial sun gear angular speed, in rad/s.

Initial carrier velocity, wc o — Angular speed

0 (default) | scalar

Initial carrier gear angular speed, in rad/s.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also

Disc Clutch | Gearbox | Rotational Inertia | Torque Converter | Torsional Compliance

Introduced in R2017a

Gearbox

Ideal rotational gearbox

Library: Powertrain Blockset / Drivetrain / Couplings

BSpd PFTrq FSpd

Description

The Gearbox block implements an ideal rotational gearbox. The block uses the gear inertias and damping to calculate the velocity response to the base and follower gear pair input torques.

In fuel economy and powertrain efficiency studies, you can use the Gearbox block to model ideal gear coupling and the power transfer between common driveline elements such as transmissions, engines, clutches, and differentials.

The Gearbox block uses these equations to approximate the transmission dynamics.

$$\dot{\omega}_B J_B = \omega_B b_B + \eta N T_F$$

$$\dot{\omega}_F J_F = \omega_F b_F + \eta T_F$$

This constraint equation reduces the system to a one DOF system.

$$\omega_B = N\omega_F$$

To express the ideal torque transfer, the block uses this relationship.

$$\eta NT_B + T_F = 0$$

Efficiency

To account for the block efficiency, use the **Efficiency factors** parameter. This table summarizes the block implementation for each setting.

Setting	Implementation
Constant	Constant efficiency that you can set with the Constant efficiency factor ,
	eta parameter.

Setting	Implementation	
Driveshaft torque, temperature and speed	Efficiency as a function of base gear input torque, air temperature, and driveshaft speed. Use these parameters to specify the lookup table and breakpoints:	
	Efficiency lookup table, eta_tbl	
	Efficiency torque breakpoints, Trq_bpts	
	Efficiency speed breakpoints, omega_bpts	
	Efficiency temperature breakpoints, Temp_bpts	
	For the air temperature, you can either:	
	Select Input temperature to create an input port.	
	Set a Ambient temperature, Tamb parameter value.	
	To select the interpolation method, use the Interpolation method parameter. For more information, see "Interpolation Methods" (Simulink).	

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Variable	Equatio ns	
PwrInf o	PwrTrnsfrd — Power transferred between blocks	PwrBase	Mechanical power from base shaft	P_{Base}	$P_{Base} = \eta T_B \omega_B$	
	 Positive signals indicate flow into block Negative signals indicate flow out of block 	PwrFlwr	Mechanical power from follower shaft	P_{Flwr}	$P_{Flwr} = \\ \eta T_F \omega_F$	
	block boundary, but not transferred	PwrMechLoss	Total power loss		$P_{ng} = -$ $P_t = \eta T_B \alpha$	$(P_t + P_d) + F$ $\rho_B + \eta T_F \omega_F$
	 Positive signals indicate an input Negative signals indicate a loss 	PwrDampLoss	Power loss due to damping	P_d	$P_{d} = - (b_{F} \omega_{F} ^{2} + b_{B} \omega_{B} ^{2})$	
	PwrStored — Stored energy rate of change • Positive signals indicate an increase • Negative signals indicate a decrease	PwrStoredSh ft	Rate change of stored internal kinetic energy	P_s	$P_{S} = (\omega_{B}\dot{\omega}_{B}J_{B} + \omega_{F}\dot{\omega}_{F}J_{F})$	

The equations use these variables.

T_B	Base gear input torque
T_F	Follower gear output torque
$\omega_{\scriptscriptstyle B}$	Base gear angular velocity
ω_F	Follower gear angular velocity
J_B	Base gear rotational inertia
J_F	Follower gear rotational inertia
b_B	Base gear rotational viscous damping
b_F	Follower gear rotational viscous damping
N	Torque transmission gear ratio
η	Gear efficiency
P_t	Total power
P_d	Power loss due to damping
P_{s}	Rate change of stored internal kinetic energy

Ports

Input

BTrq — Base gear input torque

scalar

Base gear input torque, T_B , in N·m.

Dependencies

To create this port, for **Port Configuration**, select Simulink.

FTrq — Follower gear output torque

scalar

Follower gear output torque, T_F , in N·m.

Dependencies

To create this port, for **Port Configuration**, select Simulink.

B — Base gear angular velocity and torque

two-way connector port

Base gear angular velocity, ω_B , in rad/s. Base gear torque, T_B , in N·m.

Dependencies

To create this port, for **Port Configuration**, select Two-way connection.

AirTemp — Ambient air temperature

scalar

Ambient air temperature, T_{air} , in K.

Dependencies

To enable this port:

- Set Efficiency factors to Driveshaft torque, speed and temperature.
- Select Input ambient temperature.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal			Description	Variable	Units
Base	BaseTrq	BaseTrq		T_B	N·m
	BaseSpd		Base gear angular velocity	ω_B	rad/s
Flwr	FlwrTrq	FlwrTrq		T_F	N·m
	FlwrSpd	FlwrSpd		ω_F	rad/s
PwrInfo	PwrTrnsfrd	PwrBase	Mechanical power from base shaft	P_{Base}	W
		PwrFlwr	Mechanical power from follower shaft	P_{Flwr}	W
	PwrNotTrnsf rd	PwrMechLos s	Total gear power loss	P_{ng}	W
		PwrDampLos s	Power loss due to damping	P_d	W
	PwrStored	PwrStored PwrStoredS hft		P_s	W

BSpd — **Input** gear angular velocity

scalar

Base gear angular velocity, ω_B , in rad/s.

Dependencies

To create this port, for **Port Configuration**, select Simulink.

FSpd — Output gear angular velocity

scalar

Follower gear angular velocity, ω_F , in rad/s.

Dependencies

To create this port, for **Port Configuration**, select Simulink.

F — Output gear angular velocity and torque

two-way connector port

Follower gear angular velocity, ω_F , in rad/s. Follower gear torque, T_F , in N·m.

Dependencies

To create this port, for **Port Configuration**, select Two-way connection.

Parameters

Block Options

Port Configuration — Specify configuration

Simulink (default) | Two-way connection

Specify the port configuration.

Dependencies

Specifying Simulink creates these ports:

- BSpd
- FSpd
- BTrq
- FTrq

Specifying Two-way connection creates these ports:

- B
- F

Efficiency factors — Specify configuration

Constant (default) | Driveshaft torque, speed and temperature

To account for the block efficiency, use the **Efficiency factors** parameter. This table summarizes the block implementation for each setting.

Setting	Implementation
Constant	Constant efficiency that you can set with the Constant efficiency factor , eta parameter.

Setting	Implementation	
Driveshaft torque, temperature and speed	Efficiency as a function of base gear input torque, air temperature, and driveshaft speed. Use these parameters to specify the lookup table and breakpoints:	
	Efficiency lookup table, eta_tbl	
	Efficiency torque breakpoints, Trq_bpts	
	Efficiency speed breakpoints, omega_bpts	
	Efficiency temperature breakpoints, Temp_bpts	
	For the air temperature, you can either:	
	Select Input temperature to create an input port.	
	Set a Ambient temperature, Tamb parameter value.	
	To select the interpolation method, use the Interpolation method parameter. For more information, see "Interpolation Methods" (Simulink).	

Interpolation method — Method

Flat | Nearest | Linear point-slope | Linear Lagrange | Cubic spline

For more information, see "Interpolation Methods" (Simulink).

Dependencies

To enable this parameter, set **Efficiency factors** to Driveshaft torque, speed and temperature.

Output shaft rotates in same direction as input — Rotation off $(default) \mid on$

Select to specify that the output shaft rotates in the same direction as the input.

Input ambient temperature — Create input port off (default) | on

Select to create input port AirTemp for the ambient air temperature.

Dependencies

To enable this parameter, set **Efficiency factors** to Driveshaft torque, speed and temperature.

Input to output gear ratio, N — Ratio

2 (default) | scalar

Base-to-follower gear ratio, dimensionless.

Input shaft inertia, J1 — Inertia .01 (default) | scalar

TOT (dolddit) | Scarar

Base shaft inertia, in kg·m^2.

Output shaft inertia, J2 — Inertia

.01 (default) | scalar

Follower shaft inertia, in kg·m².

Input shaft damping, b1 — Damping

.001 (default) | scalar

Base viscous shaft damping, in N·m· s/rad.

Output shaft damping, b2 — Damping

.001 (default) | scalar

Follower viscous shaft damping, in $N \cdot m \cdot s/rad$.

Input shaft initial velocity, w1_o — Initial velocity

0 (default) | scalar

Base shaft initial velocity, in rad/s.

Efficiency

Constant efficiency factor, eta — Efficiency

1 (default) | scalar

Constant efficiency, η .

Dependencies

To enable this parameter, set **Efficiency factors** to Constant.

Efficiency lookup table, eta tbl — Lookup table

M-by-N-by-L array

Dimensionless array of values for efficiency as a function of:

- M input torques
- N input speed
- L air temperatures

Each value specifies the efficiency for a specific combination of torque, speed, and temperature. The array size must match the dimensions defined by the torque, speed, and temperature breakpoint vectors.

Dependencies

To enable this parameter, set **Efficiency factors** to Driveshaft torque, speed and temperature.

Efficiency torque breakpoints, Trq bpts — Torque breakpoints

[25, 50, 75, 100, 150, 200, 250] (default) | 1-by-M vector

Vector of input torque, breakpoints for efficiency, in N·m.

Dependencies

To enable this parameter, set **Efficiency factors** to Driveshaft torque, speed and temperature.

Efficiency speed breakpoints, omega_bpts — Speed breakpoints

[52.4 78.5 105 131 157 183 209 262 314 419 524] (default) | 1-by-N vector

Vector of speed, breakpoints for efficiency, in rad/s.

Dependencies

To enable this parameter, set **Efficiency factors** to Driveshaft torque, speed and temperature.

Efficiency temperature breakpoints, Temp_bpts — Temperature breakpoints [290 358] (default) | 1-by-L vector

Vector of ambient temperature breakpoints for efficiency, in K.

Dependencies

To enable this parameter, set **Efficiency factors** to Driveshaft torque, speed and temperature.

Air temperature, Tair — Ambient air temperature

297.15 (default) | scalar

Ambient air temperature, T_{gir} , in K.

Dependencies

To enable this parameter:

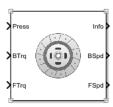
- Set **Efficiency factors** to Driveshaft torque, speed and temperature.
- Clear Input ambient temperature.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also


Disc Clutch | Planetary Gear | Rotational Inertia | Torque Converter | Torsional Compliance

Introduced in R2017a

Disc Clutch

Idealized disc clutch coupler

Library: Powertrain Blockset / Drivetrain / Couplings

Description

The Disc Clutch block implements an idealized disc clutch coupler. The block couples the rotary input and output shafts through an idealized friction model. To determine the output torque, the block uses friction parameters, relative slip velocity, and applied input pressure.

In fuel economy and powertrain efficiency studies, you can use the Disc Clutch block to model the mechanical power transfer between common driveline elements such as transmissions, engines, and differentials.

To approximate the torque response, the Disc Clutch block implements friction and dynamic models that depend on the clutch lockup condition. The block determines the locked or unlocked condition based on an idealized dry clutch friction model. This table summarizes the logic the block uses to determine the clutch condition.

Clutch Condition	When
Unlocked	$\omega_i \neq \omega_0$
	or
	$\left T_{fmax} < \left \frac{J_0 T_i - (J_0 b_i - J_i b_0) \omega_{i/o}}{J_0 + J_i} \right \right $
Locked	$\omega_i = \omega_0$
	and
	$\left T_{fmax} < \left T_i - \frac{J_i(b_i + b_o)\omega_i}{J_o + J_i} + b_o\omega_i \right \right $

This table summarizes the friction and dynamic models that the block uses for locked or unlocked clutch conditions.

Clutch Condition	Friction Model	Dynamic Model
Unlocked	$T_{fmax} = T_k$	$\dot{\omega}_i J_i = T_i - T_f - \omega_i b_i$
	where,	$\dot{\omega}_o J_o = T_f + T_o - \omega_o b_o$
	$T_k = N_{disc} P_c A_{eff} R_{eff} \mu_k \tanh[4(\omega_i - \omega_o)]$	
	$R_{eff} = \frac{2(R_0^3 - R_i^3)}{3(R_0^2 - R_i^2)}$	
	$and P_C = max(P_C - P_{eng}, 0)$	
Locked	$T_{fmax} = T_{s}$	$\dot{\omega}_i(J_o + J_i) = T_o - \omega_i(b_i + b_o) + T_i$
	where,	$\omega_i = \omega_o$
	$T_S = N_{disc} P_c A_{eff} R_{eff} \mu_S$	
	$R_{eff} = \frac{2(R_0^3 - R_i^3)}{3(R_0^2 - R_i^2)}$	

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Equations
PwrI nfo	PwrTrnsfrd — Power	PwrBase	Applied base power	$\omega_i T_i$
	 transferred between blocks Positive signals indicate flow into block Negative signals indicate flow out of block 	PwrFlwr	Applied follower output power	$\omega_o T_o$
	 PwrNotTrnsfrd — Power crossing the block boundary, but not transferred Positive signals indicate an input Negative signals indicate a 	PwrDampLoss PwrCltchSli pLoss	Damping power loss Clutch slip power loss	$-b_o\omega_o^2 - b_i\omega_i^2$ $-T_k(\omega_i - \omega_o)$
	loss PwrStored — Stored energy rate of change	PwrStoredBa se	Rate change in base rotational kinetic energy	$\dot{\omega}_i \omega_i J_i$
	 Positive signals indicate an increase Negative signals indicate a decrease 	PwrStoredFl wr	Rate change in follower rotational kinetic energy	$\dot{\omega}_o \omega_o J_o$

The equations use these variables.

 ω_i Input shaft angular speed

 ω_o Output shaft angular speed

b_i	Input shaft viscous damping		
b_o	Output shaft viscous damping		
J_i	Input shaft moment of inertia		
J_o	Output shaft moment of inertia		
T_f	Frictional torque		
T_i	Net input torque		
T_k	Kinetic frictional torque		
T_o	Net output torque		
T_s	Static frictional torque		
T_{fmax}	Maximum frictional torque before slipping		
P_c	Applied clutch pressure		
P_{eng}	Engagement pressure		
$A_{\it eff}$	Effective area		
N_{disc}	Number of frictional discs		
$R_{\it eff}$	Effective clutch radius		
R_o	Annular disk outer radius		
R_i	Annular disk inner radius		
R_e	Effective tire radius while under load and for a given pressure		
μ_s	Coefficient of static friction		
μ_k	Coefficient of kinetic friction		

Ports

Input

Press — Applied clutch pressure

scalar

Base gear input torque, P_c , in N·m².

BTrq — Applied input torque

scalar

Applied input torque, T_i , typically from the engine crankshaft or dual mass flywheel damper, in N·m.

Dependencies

To create this port, for **Port Configuration**, select **Simulink**.

FTrq — Applied load torque

scalar

Applied load torque, T_o , typically from the differential or drive shaft, in N·m.

Dependencies

To create this port, for **Port Configuration**, select Simulink.

B — Applied drive shaft angular speed and torque

two-way connector port

Applied drive shaft angular speed, ω_i , in rad/s. Applied drive shaft torque, T_i , in N·m.

Dependencies

To create this port, for **Port Configuration**, select Two-way connection.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal			Description	Units
Base	BTrq		Applied input torque, typically from the engine crankshaft or dual mass flywheel damper	N·m
	BSpd		Applied drive shaft angular speed input	rad/s
Flwr	FTrq		Applied load torque, typically from the differential	N·m
	FSpd		Drive shaft angular speed output	rad/s
Cltch	CltchForce		Applied clutch force	N
	CltchLocked		Clutch lock status	NA
	CltchSpdRatio		Clutch speed ratio	NA
			Clutch power transmission efficiency	NA
PwrInfo	PwrTrnsfrd	PwrBas e	Applied base power	W
		PwrFlw r	Applied follower output power	W
	PwrNotTrnsfrd	PwrDam pLoss	Damping power loss	W
		PwrClt chSlip Loss	Clutch slip power loss	W
	PwrStored	PwrSto redBas e	Rate change in base rotational kinetic energy	W
		PwrSto redFlw r	Rate change in follower rotational kinetic energy	W

BSpd — **Angular speed**

scalar

Applied drive shaft angular speed input, ω_i , in rad/s.

Dependencies

To create this port, for **Port Configuration**, select Simulink.

FSpd — Angular speed

scalar

Drive shaft angular speed output, ω_o , in rad/s.

Dependencies

To create this port, for **Port Configuration**, select Simulink.

F — Output velocity and torque

two-way connector port

Output drive shaft angular speed, ω_{oi} , in rad/s. Output drive shaft torque, T_o , in N·m.

Dependencies

To create this port, for **Port Configuration**, select Two-way connection.

Parameters

Block Options

Port Configuration — Specify configuration

Simulink (default) | Two-way connection

Specify the port configuration.

Dependencies

Specifying Simulink creates these ports:

- BSpd
- FSpd
- BTrq
- FTra

Specifying Two-way connection creates these ports:

- E
- F

Clutch force equivalent net radius, Reff — Radius

1 (default) | scalar

Clutch force equivalent net radius, in m.

Number of disks, Ndisk — Ratio

1 (default) | scalar

Number of disks, dimensionless.

Effective applied pressure area, Aeff — Pressure area

.01 (default) | scalar

Effective applied pressure area, in m².

Engagement pressure threshold, Peng — Pressure threshold 0 (default) | scalar

Pressure to engage clutch, in Pa.

Input shaft inertia, Jin — Inertia

.1 (default) | scalar

Input shaft inertia, in kg·m^2.

Output shaft inertia, Jout — Inertia

.1 (default) | scalar

Output shaft inertia, in kg·m^2.

Kinetic friction coefficient, muk — Coefficient

.3 (default) | scalar

Kinetic friction coefficient, dimensionless.

Static friction coefficient, mus — Coefficient

.5 (default) | scalar

Static friction coefficient, dimensionless.

Input shaft viscous damping, bin — Damping

.001 (default) | scalar

Input shaft viscous damping, in N·m· s/rad.

Output shaft viscous damping, bout — Damping

.001 (default) | scalar

Output shaft viscous damping, in $N \cdot m \cdot s/rad$.

Initial input shaft velocity, win o — Initial velocity

0 (default) | scalar

Input shaft initial velocity, in rad/s.

Initial output shaft velocity, wout_o — Initial velocity

0 (default) | scalar

Input shaft initial velocity, in rad/s.

Clutch actuation time constant, tauC — Constant

.01 (default) | scalar

Clutch actuation time constant, in s.

Clutch initially locked — Select to initially lock clutch

off (default) | on

Select to lock clutch initially.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder $^{\text{\tiny TM}}$.

See Also

Planetary Gear | Rotational Inertia | Torque Converter | Torsional Compliance

Introduced in R2017a

Vehicle Dynamics Blocks

Vehicle Body 1DOF Longitudinal

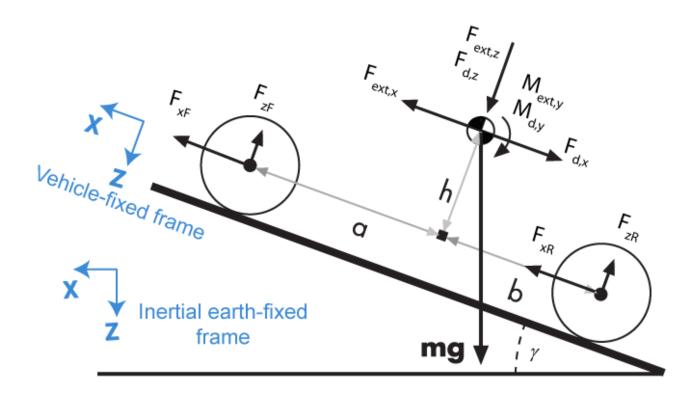
Two-axle vehicle in forward and reverse motion

Library: Powertrain Blockset / Vehicle Dynamics Vehicle Dynamics Blockset / Vehicle Body

Description

The Vehicle Body 1DOF Longitudinal block implements a one degree-of-freedom (1DOF) rigid vehicle body with constant mass undergoing longitudinal (that is, forward and reverse) motion. Use the block:

- In powertrain and fuel economy studies to represent the vehicle inertial and drag loads when weight transfer from vertical and pitch motions are negligible.
- To determine the engine torque and power required for the vehicle to follow a specified drive cycle.


You can select block options to create input ports for external forces, moments, air temperature, and wind speed.

Block Option Setting	External Input Ports	Description
External forces	FExt	External force applied to vehicle CG in the vehicle-fixed frame.
External moments	MExt	External moment about vehicle CG in the vehicle-fixed frame.
Air temperature	AirTemp	Ambient air temperature. Consider this option if you want to vary the temperature during run-time.
Wind X,Y,Z	WindXYZ	Wind speed along earth-fixed X -, Y -, and Z -axes. If you do not select this option, the block implements input port WindX — Longitudinal wind speed along the earth-fixed X -axis.

Vehicle Body Model

The vehicle axles are parallel and form a plane. The longitudinal direction lies in this plane and is perpendicular to the axles. If the vehicle is traveling on an inclined slope, the normal direction is not parallel to gravity but is always perpendicular to the axle-longitudinal plane.

The block uses the net effect of all the forces and torques acting on it to determine the vehicle motion. The longitudinal tire forces push the vehicle forward or backward. The weight of the vehicle acts through its center of gravity (CG). The grade angle changes the direction of the resolved gravitational force acting on the vehicle CG. Similarly, the block resolves the resistive aerodynamic drag force on the vehicle CG.

The Vehicle Body 1DOF Longitudinal block implements these equations.

$$F_b = m\ddot{x}$$

$$F_b = F_{xF} + F_{xR} - F_{d,x} + F_{ext,x} - mg\sin\gamma$$

Zero normal acceleration and zero pitch torque determine the normal force on each front and rear axles.

$$F_{zF} = \frac{-M_{ext,\,y} - M_{d,\,y} + b(F_{d,\,z} + F_{ext,\,z} + mg\cos\gamma) - h(-F_{ext,\,x} + F_{d,\,x} + mg\sin\gamma + m\ddot{x})}{N_F(a+b)}$$

$$F_{zR} = \frac{M_{ext,\,y} + M_{d,\,y} + a(F_{d,\,z} + F_{ext,\,z} + mg\cos\gamma) + h(-F_{ext,\,x} + F_{d,\,x} + mg\sin\gamma + m\ddot{x})}{N_R(a+b)}$$

The wheel normal forces satisfy this equation.

$$N_F F_{zF} + N_R F_{zR} - F_{ext,z} = mg \cos \gamma$$

Wind and Drag Forces

The block subtracts the wind speeds from the vehicle velocity components to obtain a net relative airspeed. To calculate the drag force and moments acting on the vehicle, the block uses the net relative airspeed.

$$\begin{split} F_{d,x} &= \frac{1}{2TR} C_d A_f P_{abs}(^{\dot{x}} \\ F_{d,z} &= \frac{1}{2TR} C_l A_f P_{abs}(^{\dot{x}} \\ M_{d,y} &= \frac{1}{2TR} C_{pm} A_f P_{abs}(^{\dot{x}} (a+b) \end{split}$$

By default, to calculate the wind speed along the vehicle-fixed x-axis, the block uses the longitudinal wind speed along the earth-fixed X-axis. If you select **WindX,Y,Z**, the block uses the wind speed along the earth-fixed X-, Y-, Z-axes.

Power Accounting

For the power accounting, the block implements these equations.

Bus Sign	nal		Description	Equations
PwrInf o	PwrTrnsfrd — Power transferred	PwrFxExt	Externally applied force power	$P_{F \times E \times t} = F_{\times E \times t} \dot{x}$
	Positive signals indicate flow	PwrFwFx	Longitudinal force power applied at the front axle	$P_{FwFx} = F_{wF}\dot{x}$
	into blockNegative signals indicate flow out of block	PwrFwRx	Longitudinal force power applied at the rear axle	$P_{FwRx} = F_{wR}\dot{x}$
	PwrNotTrnsfrd — Power crossing the block boundary, but not transferred	PwrFxDrag	Drag force power	$P_d = -\frac{0.5C_d A_f P_{abs} (\dot{x}^2 - w_X)^2}{287.058T} \dot{x}$
	Positive signals indicate an input			
	Negative signals indicate a loss			
	PwrStored — Stored energy rate of change	wrStoredGrvty	Rate change in gravitational potential energy	$P_g = -mg\dot{Z}$
	Positive signals indicate an increase	PwrStoredxdot	Rate in change of longitudinal kinetic energy	$P_{\dot{x}} = m\ddot{x}\dot{x}$
	Negative signals indicate a decrease			

The equations use these variables.

 F_{xr} , F_{xr} Longitudinal forces on each wheel at the front and rear ground contact points, respectively

 F_{zf} , F_{zr} Normal load forces on each wheel at the front and rear ground contact points,

respectively

 F_{wF} , F_{wR} Longitudinal force on front and rear axles along vehicle-fixed x-axis

 F_{xExt} , F_{wR} External force along the vehicle-fixed x-axis

 F_{dx} , F_{dz} Longitudinal and normal drag force on vehicle CG

 $M_{d,v}$ Torque due to drag on vehicle about the vehicle-fixed y-axis

 F_d Aerodynamic drag force

 V_x Velocity of the vehicle. When $V_x > 0$, the vehicle moves forward. When $V_x < 0$, the

vehicle moves backward.

 N_f , N_r Number of wheels on front and rear axle, respectively

 γ Angle of road grade m Vehicle body mass

a,b Distance of front and rear axles, respectively, from the normal projection point of

vehicle CG onto the common axle plane

h Height of vehicle CG above the axle plane

 C_d Frontal air drag coefficient

 $egin{array}{ll} A_f & & ext{Frontal area} \ P_{abs} & & ext{Absolute pressure} \
ho & & ext{Mass density of air} \ \end{array}$

x, \dot{x} , \ddot{x} Vehicle longitudinal position, velocity, and acceleration along the vehicle-fixed x-

axis

 w_x Wind speed along the vehicle-fixed x-axis

 \dot{z} Vehicle vertical velocity along the vehicle-fixed z-axis

Limitations

The Vehicle Body 1DOF Longitudinal block lets you model only longitudinal dynamics, parallel to the ground and oriented along the direction of motion. The vehicle is assumed to be in pitch and normal equilibrium. The block does not model pitch or vertical movement. To model a vehicle with three degrees-of-freedom (DOF), use the Vehicle Body 3DOF Longitudinal.

Ports

Input

FExt — External force on vehicle CG

array

External forces applied to vehicle CG, F_{xext} , F_{yext} , F_{zext} , in vehicle-fixed frame, in N. Signal vector dimensions are [1x3] or [3x1].

Dependencies

To enable this port, select **External forces**.

MExt — External moment about vehicle CG

array

External moment about vehicle CG, M_x , M_y , M_z , in the vehicle-fixed frame, in N·m. Signal vector dimensions are [1x3] or [3x1].

Dependencies

To enable this port, select **External moments**.

FwF — **Total longitudinal force on front axle**

scalar

Longitudinal force on the front axle, F_{xf} , along vehicle-fixed x-axis, in N.

FwR — Total longitudinal force on rear axle

scalar

Longitudinal force on the rear axle, Fw_R , along vehicle-fixed x-axis, in N.

Grade — Road grade angle

scalar

Road grade angle, γ , in deg.

WindX — Longitudinal wind speed

scalar

Longitudinal wind speed, W_w , along earth-fixed X-axis, in m/s.

Dependencies

To enable this port, clear **Wind X,Y,Z components**.

WindXYZ — Wind speed

array

Wind speed, W_w , W_{wY} , W_{wZ} along inertial X-, Y-, and Z-axes, in m/s. Signal vector dimensions are [1x3] or [3x1].

Dependencies

To enable this port, select **Wind X,Y,Z components**.

AirTemp — Ambient air temperature

scalar

Ambient air temperature, T_{air} , in K. Considering this option if you want to vary the temperature during run-time.

Dependencies

To enable this port, select **Air temperature**.

Output

Info — Bus signal

bus

Bus signal containing these block values.

Signal				Description	Value	Units
InertFrm	Cg	Disp	X	Vehicle CG displacement along earth-fixed X-axis	Computed	m
			Υ	Vehicle CG displacement along earth-fixed Y-axis	Θ	m
			Z	Vehicle CG displacement along earth-fixed Z-axis	Computed	m
		Vel	Xdot	Vehicle CG velocity along earth-fixed X-axis	Computed	m/s
			Ydot	Vehicle CG velocity along earth-fixed Y-axis	Θ	m/s
			Zdot	Vehicle CG velocity along earth-fixed Z-axis	Computed	m/s
		Ang	phi	Rotation of vehicle-fixed frame about the earth-fixed X-axis (roll)	0	rad
	FrntAxl Disp		theta	Rotation of vehicle-fixed frame about the earth-fixed Y-axis (pitch)	Computed (input - grade angle)	rad
			psi	Rotation of vehicle-fixed frame about the earth-fixed Z-axis (yaw)	0	rad
		Disp	X	Front axle displacement along the earth-fixed X-axis	Computed	m
			Υ	Front axle displacement along the earth-fixed Y-axis	0	m
			Z	Front axle displacement along the earth-fixed Z-axis	Computed	m
		Vel	Xdot	Front axle velocity along the earth-fixed X-axis	Computed	m/s
			Ydot	Front axle velocity along the earth-fixed Y-axis	0	m/s
	RearAxl Disp		Zdot	Front axle velocity along the earth-fixed Z-axis	Computed	m/s
		Disp	X	Rear axle displacement along the earth-fixed X-axis	Computed	m
			Υ	Rear axle displacement along the earth-fixed Y-axis	Θ	m
			Z	Rear axle displacement along the earth-fixed Z-axis	Computed	m

Signal				Description	Value	Units
		Vel	Xdot	Rear axle velocity along the earth-fixed X-axis	Computed	m/s
			Ydot	Rear axle velocity along the earth-fixed Y-axis	Θ	m/s
			Zdot	Rear axle velocity along the earth-fixed Z-axis	Computed	m/s
BdyFrm	Cg	Disp	х	Vehicle CG displacement along the vehicle-fixed x- axis	Computed	m
			У	Vehicle CG displacement along the vehicle-fixed y-axis	Θ	m
			Z	Vehicle CG displacement along the vehicle-fixed z- axis	Θ	m
		Vel	xdot	Vehicle CG velocity along the vehicle-fixed x-axis	Computed	m/s
		ydot	Vehicle CG velocity along the vehicle-fixed y-axis	Θ	m/s	
		zdot	Vehicle CG velocity along the vehicle-fixed z-axis	Θ	m/s	
	AngVel	p	Vehicle angular velocity about the vehicle-fixed x- axis (roll rate)	Θ	rad/s	
		q	Vehicle angular velocity about the vehicle-fixed y- axis (pitch rate)	0	rad/s	
			r	Vehicle angular velocity about the vehicle-fixed z- axis (yaw rate)	Θ	rad/s
		Accel	ax	Vehicle CG acceleration along the vehicle-fixed x- axis	Computed	gn
		ay	Vehicle CG acceleration along the vehicle-fixed yaxis	Θ	gn	
		az	Vehicle CG acceleration along the vehicle-fixed z- axis	0	gn	
	Forces	Body	Fx	Net force on vehicle CG along the vehicle-fixed x-axis	Θ	N

Signal			Description	Value	Units
	Fy		Net force on vehicle CG along the vehicle-fixed y-axis	0	N
	Fz		Net force on vehicle CG along the vehicle-fixed z-axis	0	N
Ext	Fx		External force on vehicle CG along the vehicle-fixed x-axis	Computed	N
	Fy		External force on vehicle CG along the vehicle-fixed y-axis	Computed	N
	Fz		External force on vehicle CG along the vehicle-fixed z-axis	Computed	N
FrntAxl	. Fx		Longitudinal force on front axle, along the vehicle-fixed x-axis	0	N
	Fy		Lateral force on front axle, along the vehicle-fixed y-axis	Θ	N
	Fz		Normal force on front axle, along the vehicle-fixed z-axis	Computed	N
RearAxl	. Fx		Longitudinal force on rear axle, along the vehicle-fixed x-axis	0	N
	Fy		Lateral force on rear axle, along the vehicle-fixed y-axis	0	N
	Fz		Normal force on rear axle, along the vehicle-fixed z-axis	Computed	N
Tires	FrntTir e	F x	Front tire force, along the vehicle-fixed x-axis	0	N
		F y	Front tire force, along the vehicle-fixed y-axis	0	N
		F	Front tire force, along the vehicle-fixed z-axis	Computed	N
	RearTir e	F	Rear tire force, along the vehicle-fixed x-axis	0	N
		F y	Rear tire force, along the vehicle-fixed y-axis	0	N

Signal					Description	Value	Units
				F z	Rear tire force, along the vehicle-fixed z-axis	Computed	N
		Drag	Fx		Drag force on vehicle CG along the vehicle-fixed x- axis	Computed	N
			Fy		Drag force on vehicle CG along the vehicle-fixed yaxis	Computed	N
			Fz		Drag force on vehicle CG along the vehicle-fixed z-axis	Computed	N
		Grvty	Fx		Gravity force on vehicle CG along the vehicle-fixed x-axis	Computed	N
			Fy		Gravity force on vehicle CG along the vehicle-fixed y-axis	0	N
			Fz		Gravity force on vehicle CG along the vehicle-fixed z-axis	Computed	N
		Body	Mx		Net moment on vehicle CG about the vehicle-fixed x-axis	0	N·m
			Му		Net moment on vehicle CG about the vehicle-fixed y-axis	Θ	N·m
			Mz		Net moment on vehicle CG about the vehicle-fixed z-axis	Θ	N·m
		Drag Mx My	Mx		Drag moment on vehicle CG about the vehicle-fixed x-axis	Computed	N·m
			Му		Drag moment on vehicle CG about the vehicle-fixed y-axis	Computed	N·m
	Mz	Mz		Drag moment on vehicle CG about the vehicle-fixed z-axis	Computed	N·m	
	Ext	Ext Fx	Fx		External moment on vehicle CG about the vehicle-fixed x-axis	Computed	N·m
		Fy		External moment on vehicle CG about the vehicle-fixed y-axis	Computed	N·m	

al				Description	Value	Units
			Fz	External moment on vehicle CG about the vehicle-fixed z-axis	Computed	N·m
	FrntAxl	Disp	X	Front axle displacement along the vehicle-fixed x-axis	Computed	m
			У	Front axle displacement along the vehicle-fixed yaxis	Θ	m
			Z	Front axle displacement along the vehicle-fixed z-axis	Computed	m
		Vel	xdot	Front axle velocity along the vehicle-fixed x-axis	Computed	m/s
			ydot	Front axle velocity along the vehicle-fixed y-axis	0	m/s
			zdot	Front axle velocity along the vehicle-fixed z-axis	Computed	m/s
	S	Steer	WhlAngFL	Front left wheel steering angle	Computed	rad
			WhlAngFR	Front right wheel steering angle	Computed	rad
	RearAxl	Axl Disp	X	Rear axle displacement along the vehicle-fixed x-axis	Computed	m
			У	Rear axle displacement along the vehicle-fixed yaxis	0	m
			Z	Rear axle displacement along the vehicle-fixed z-axis	Computed	m
		Vel	xdot	Rear axle velocity along the vehicle-fixed x-axis	Computed	m/s
			ydot	Rear axle velocity along the vehicle-fixed y-axis	0	m/s
			zdot	Rear axle velocity along the vehicle-fixed z-axis	Computed	m/s
		Steer	WhlAngRL	Rear left wheel steering angle	Computed	rad
			WhlAngRR	Rear right wheel steering angle	Computed	rad
	Pwr	PwrExt		Applied external power	Computed	W
		Drag		Power loss due to drag	Computed	W

Signal			Description	Value	Units
PwrInfo	PwrTrns frd	PwrFxExt	Externally applied force power	Computed	W
		PwrFwFx	Longitudinal force power applied at the front axle	Computed	W
		PwrFwRx	Longitudinal force power applied at the rear axle	Computed	W
	PwrNotT rnsfrd	PwrFxDrag	Drag force power	Computed	W
	PwrStor ed	wrStoredGrvty	Rate change in gravitational potential energy	Computed	W
		PwrStoredxdot	Rate in change of longitudinal kinetic energy	Computed	W

xdot — Vehicle body longitudinal velocity

scalar

Vehicle body longitudinal velocity along the earth-fixed reference frame X-axis, in m/s.

FzF — Front axle normal force

scalar

Normal load force on the front axle, F_{zf} , along vehicle-fixed z-axis, in N.

FzR — Rear axle normal force

scalar

Normal force on rear axle, F_{zr} , along the vehicle-fixed z-axis, in N.

Parameters

Options

External forces — FExt input port

off (default) | on

Specify to create input port FExt.

External moments — MExt input port

off (default) | on

Specify to create input port MExt.

Air temperature — AirTemp input port

off (default) | on

Specify to create input port AirTemp.

Wind X,Y,Z components — WindXYZ input port

off (default) | on

Specify to create input port WindXYZ.

Longitudinal

Number of wheels on front axle, NF — Front wheel count 2 (default) | scalar

· /1

Number of wheels on rear axle, NR — Rear wheel count

Number of wheels on front axle, N_E . The value is dimensionless.

2 (default) | scalar

Number of wheels on rear axle, N_R . The value is dimensionless.

Mass, m — Vehicle mass

1500 (default) | scalar

Vehicle mass, M, in kg.

Horizontal distance from CG to front axle, a — Front axle distance

1.4 (default) | scalar

Horizontal distance a from the vehicle CG to the front wheel axle, in m.

Horizontal distance from CG to rear axle, b — Rear axle distance

1.8 (default) | scalar

Horizontal distance *b* from the vehicle CG to the rear wheel axle, in m.

CG height above axles, h — Height

.35 (default) | scalar

Height of vehicle CG above the ground, *h*, in m.

Drag coefficient, Cd — Drag

.3 (default) | scalar

Air drag coefficient, C_d . The value is dimensionless.

Lift coefficient, Cl — Lift

0 (default) | scalar

Air lift coefficient, C_l . The value is dimensionless.

Pitch drag moment coefficient, Cpm — Pitch drag

0 (default) | scalar

Pitch drag moment coefficient, C_{nm} . The value is dimensionless.

Frontal area, Af — Area

4 (default) | scalar

Effective vehicle cross-sectional area, A, to calculate the aerodynamic drag force on the vehicle, in m^2 .

Initial position, x o — Position

0 (default) | scalar

Vehicle body longitudinal initial position along the vehicle-fixed x-axis, x_o , in m.

Initial velocity, xdot_o — Velocity

0 (default) | scalar

Vehicle body longitudinal initial velocity along the vehicle-fixed x-axis, \dot{x}_0 , in m/s.

Environment

Absolute air pressure, Pabs — Pressure

101325 (default) | scalar

Environmental air absolute pressure, P_{abs} , in Pa.

Air temperature, T — Ambient air temperature

273 (default) | scalar

Ambient air temperature, T_{air} , in K.

Dependencies

To enable this parameter, clear **Air temperature**.

Gravitational acceleration, g — Gravity

9.81 (default) | scalar

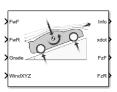
Gravitational acceleration, g, in m/s².

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also


Vehicle Body 3DOF Longitudinal | Vehicle Body Total Road Load

Introduced in R2017a

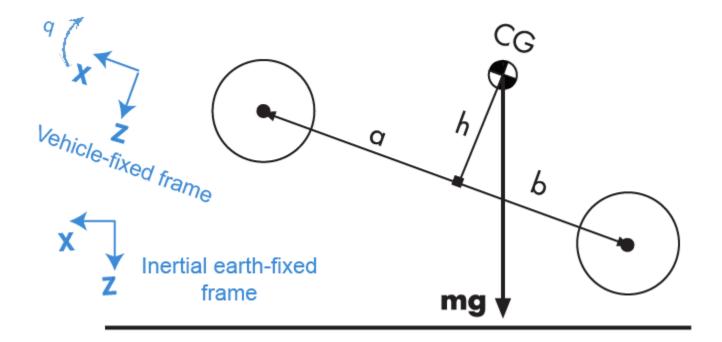
Vehicle Body 3DOF Longitudinal

3DOF rigid vehicle body to calculate longitudinal, vertical, and pitch motion **Library:** Powertrain Blockset / Vehicle Dynamics

Vehicle Dynamics Blockset / Vehicle Body

Description

The Vehicle Body 3DOF Longitudinal block implements a three degrees-of-freedom (3DOF) rigid vehicle body model with configurable axle stiffness to calculate longitudinal, vertical, and pitch motion. The block accounts for body mass, aerodynamic drag, road incline, and weight distribution between the axles due to acceleration and the road profile.


You can specify the type of axle attachment to the vehicle:

- Grade angle Vertical axle displacement from road surface to axles remains constant. The block
 uses tabular stiffness and damping parameters to model the suspension forces acting between the
 vehicle body and axles.
- Axle displacement Axles have input-provided vertical displacement and velocity with respect to the road grade. The block uses tabular stiffness and damping parameters to model the suspension forces acting between the vehicle body and axle.
- External suspension Axles have externally applied forces for coupling the vehicle body to custom suspension models.

If the weight transfer from vertical and pitch motions are not negligible, consider using this block to represent vehicle motion in powertrain and fuel economy studies. For example, in studies with heavy breaking or acceleration or road profiles that contain larger vertical changes.

The block uses rigid-body vehicle motion, suspension system forces, and wind and drag forces to calculate the normal forces on the front and rear axles. The block resolves the force components and moments on the rigid vehicle body frame:

$$\begin{split} F_{x} &= F_{wF} + F_{wR} - F_{d,x} - F_{sx,F} - F_{sx,R} + F_{g,x} \\ F_{z} &= F_{d,z} - F_{sz,F} - F_{sz,R} + F_{g,z} \\ M_{y} &= aF_{sz,F} - bF_{sz,R} + h(F_{wF} + F_{wR} + F_{sx,F} + F_{sx,R}) - M_{d,y} \end{split}$$

Rigid-Body Vehicle Motion

The vehicle axles are parallel and form a plane. The longitudinal direction lies in this plane and is perpendicular to the axles. If the vehicle is traveling on an inclined slope, the normal direction is not parallel to gravity but is always perpendicular to the axle-longitudinal plane.

The block uses the net effect of all the forces and torques acting on it to determine the vehicle motion. The longitudinal tire forces push the vehicle forward or backward. The weight of the vehicle acts through its center of gravity (CG). Depending on the inclined angle, the weight pulls the vehicle to the ground and either forward or backward. Whether the vehicle travels forward or backward, aerodynamic drag slows it down. For simplicity, the drag is assumed to act through the CG.

The Vehicle Body 3DOF Longitudinal implements these equations.

$$\ddot{x} = \frac{F_X}{m} - qz$$

$$\ddot{z} = \frac{F_Z}{m} - qx$$

$$\dot{q} = \frac{M_y}{I_{yy}}$$

$$\dot{\theta} = q$$

Suspension System Forces

If you configure the block with the **Ground interaction type** parameter **Grade angle** or **Axle displacement**, **velocity**, the block uses nonlinear stiffness and damping parameters to model the suspension system.

The front and rear axle suspension forces are given by:

$$Fs_F = N_F[Fk_F + Fb_F]$$

$$Fs_R = N_R[Fk_R + Fb_R]$$

The block uses lookup tables to implement the front and rear suspension stiffness. To account for kinematic and material nonlinearities, including collisions with end-stops, the tables are functions of the stroke.

$$Fk_F = f(dZ_F)$$

$$Fk_R = f(dZ_R)$$

The block uses lookup tables to implement the front and rear suspension damping. To account for nonlinearities, compression, and rebound, the tables are functions of the stroke rate.

$$Fb_F = f(d\dot{Z}_F)$$

$$Fb_R = f(d\dot{Z}_R)$$

The stroke is the difference in the vehicle vertical and axle positions. The stroke rate is the difference in the vertical and axle velocities.

$$dZ_F = Z_F - \bar{Z}_F$$

$$dZ_R = Z_R - \bar{Z}_R$$

$$d\dot{Z}_F = \dot{Z}_F - \dot{\bar{Z}}_F$$

$$d\dot{Z}_R = \dot{Z}_R - \dot{\bar{Z}}_R$$

When the **Ground interaction type** parameter is Grade angle, the axle vertical positions (\bar{Z}_F, \bar{Z}_R) and velocities $(\dot{\bar{Z}}_F, \dot{\bar{Z}}_R)$ are set to 0.

Wind and Drag Forces

The block subtracts the wind speeds from the vehicle velocity components to obtain a net relative airspeed. To calculate the drag force and moments acting on the vehicle, the block uses the net relative airspeed:

$$F_{d,x} = \frac{1}{2TR} C_d A_f P_{abs}(\dot{x})$$

$$F_{d,z} = \frac{1}{2TR}C_l A_f P_{abs}(^{\dot{x}}$$

$$M_{d,y} = \frac{1}{2TR} C_{pm} A_f P_{abs}(\dot{x}(a+b))$$

Power Accounting

For the power accounting, the block implements these equations.

Bus Sig	nal		Description	Equations
PwrInf o	PwrTrnsfrd — Power transferred between blocks	PwrFxExt	Externally applied longitudinal force power	$P_{F \times E \times t} = F_{\times E \times t} \dot{x}$
	Positive signals indicate flow into block	PwrFzExt	Externally applied longitudinal force power	$P_{FzExt} = F_{zExt}\dot{z}$
	Negative signals indicate flow out of	PwrMyExt	Externally applied pitch moment power	$P_{MzExt} = M_{zExt}\dot{\theta}$
	block	PwrFwFx	Longitudinal force applied at the front axle	$P_{FwFx} = F_{wF}\dot{x}$
		PwrFwRx	Longitudinal force applied at the rear axle	$P_{FwRx} = F_{wR}\dot{x}$
	PwrNotTrnsfrd — Power crossing the block boundary, but not transferred	PwrFsF	Internal power transferred between suspension and vehicle body at the front axle	$P_{Fs,F} = -P_{FwFx} + P_{FsbF} + P_{Fsk,F} + F_{xF}\dot{x}_F + F_{zF}\dot{z}_F$
	 Positive signals indicate an input Negative signals indicate a loss 	PwrFsR	Internal power transferred between suspension and vehicle body at the rear axle	$P_{Fs,R} = -P_{FwRx} + P_{Fsb,R} + P_{Fsk,R} + F_{xF}\dot{x}_F + F_{zF}\dot{z}_F$
		PwrFxDrag	Longitudinal drag force power	$P_{d,x} = F_{d,x}\dot{x}$
		PwrFzDrag	Vertical drag force power	$P_{d,z} = F_{d,z}\dot{z}$
		PwrMyDrag	Drag pitch moment power	$P_{d,My} = M_{d,y}\dot{\theta}$
		PwrFsb	Total suspension damping power	$P_{Fsb} = \sum_{i = F, R} F_{sb, i} \dot{z}_i$
	PwrStored — Stored energy rate of change	PwrStoredGrvty	Rate change in gravitational potential energy	$P_g = -mg\dot{Z}$
	Positive signals indicate an increase	PwrStoredxdot	Rate of change of longitudinal kinetic energy	$P_{\dot{x}} = m\ddot{x}\dot{x}$
	Negative signals indicate a decrease	PwrStoredzdot	Rate of change of longitudinal kinetic energy	$P_{\dot{z}} = m\ddot{z}\dot{z}$

Bus Signal		Description	Equations
	PwrStoredq	Rate of change of rotational pitch kinetic energy	$P_{\dot{ heta}} = I_{yy}\ddot{ heta}\dot{ heta}$
	PwrStoredFsFzSp rng	Stored spring energy from front suspension	$P_{FskF} = F_{sk, F} \dot{z}_F$
	PwrStoredFsRzSp rng	Stored spring energy from rear suspension	$P_{FskF} = F_{sk,R} \dot{z}_R$

The equations use these variables.

E	Longitudinal force on wahiele
F_{x}	Longitudinal force on vehicle
F_z	Normal force on vehicle
M_{y}	Torque on vehicle about the vehicle-fixed <i>y</i> -axis
F_{wF} , F_{wR}	Longitudinal force on front and rear axles along vehicle-fixed <i>x</i> -axis
$F_{d,x}$, $F_{d,z}$	Longitudinal and normal drag force on vehicle CG
$F_{sx,F}$, $F_{sx,R}$	Longitudinal suspension force on front and rear axles
$F_{sz,F}$, $F_{sz,R}$	Normal suspension force on front and rear axles
$F_{g,x}$, $F_{g,z}$	Longitudinal and normal gravitational force on vehicle along the vehicle-fixed frame
$M_{d,y}$	Torque due to drag on vehicle about the vehicle-fixed y-axis
a,b	Distance of front and rear axles, respectively, from the normal projection point of vehicle CG onto the common axle plane
h	Height of vehicle CG above the axle plane along vehicle-fixed z -axis
Fs_F , Fs_R	Front and rear axle suspension force along vehicle-fixed z -axis
Z_{wF} , Z_{wR}	Front and rear vehicle normal position along earth-fixed z-axis
Θ	Vehicle pitch angle about the vehicle-fixed y-axis
m	Vehicle body mass
N_F , N_R	Number of front and rear wheels
I_{yy}	Vehicle body moment of inertia about the vehicle-fixed y-axis
x, \dot{x}, \ddot{x}	Vehicle longitudinal position, velocity, and acceleration along the vehicle-fixed x -axis
z, ż, ÿ	Vehicle normal position, velocity, and acceleration along the vehicle-fixed z -axis
Fk_F , Fk_R	Front and rear wheel suspension stiffness force along vehicle-fixed z -axis
Fb_F , Fb_R	Front and rear wheel suspension damping force along vehicle-fixed z -axis
Z_F , Z_R	Front and rear vehicle vertical position along earth-fixed Z-axis
\dot{Z}_F, \dot{Z}_R	Front and rear vehicle vertical velocity along vehicle-fixed z -axis
$ar{Z}_F,ar{Z}_R$	Front and rear wheel axle vertical position along vehicle-fixed z -axis
$\dot{ar{Z}}_F,\dot{ar{Z}}_R$	Front and rear wheel axle vertical velocity along earth-fixed z-axis

dZ_F , dZ_R	Front and rear axle suspension deflection along vehicle-fixed z -axis
$d\dot{Z}_F, d\dot{Z}_R$	Front and rear axle suspension deflection rate along vehicle-fixed z -axis
C_d	Frontal air drag coefficient acting along the vehicle-fixed x -axis
C_l	Lateral air drag coefficient acting along the vehicle-fixed z -axis
C_{pm}	Air drag pitch moment acting about the vehicle-fixed y-axis
A_f	Frontal area
P_{abs}	Environmental absolute pressure
R	Atmospheric specific gas constant
T	Environmental air temperature
$W_{\scriptscriptstyle Y}$	Wind speed along the vehicle-fixed <i>x</i> -axis

Ports

Input

FExt — External force on vehicle CG

array

External forces applied to vehicle CG, F_{xext} , F_{yext} , F_{zext} , in vehicle-fixed frame, in N. Signal vector dimensions are [1x3] or [3x1].

Dependencies

To enable this port, select **External forces**.

MExt — External moment about vehicle CG

array

External moment about vehicle CG, M_x , M_y , M_z , in the vehicle-fixed frame, in N·m. Signal vector dimensions are [1x3] or [3x1].

Dependencies

To enable this port, select **External moments**.

FwF — Total longitudinal force on the front axle

scalar

Longitudinal force on the front axle, Fw_F , along vehicle-fixed x-axis, in N.

FwR — Total longitudinal force on the rear axle

scalar

Longitudinal force on the rear axle, Fw_R , along vehicle-fixed x-axis, in N.

Grade — Road grade angle

scalar

Road grade angle, γ , in deg.

FsF — Suspension force on front axle per wheel

vector

Suspension force on front axle, Fs_F , along the vehicle-fixed z-axis, in N.

Dependencies

To enable this port, for the **Ground interaction type** parameter, select External suspension.

FsR — Suspension force on rear axle per wheel

vector

Suspension force on rear axle, Fs_R , along the vehicle-fixed z-axis, in N.

Dependencies

To enable this port, for the **Ground interaction type** parameter, select External suspension.

WindXYZ — Wind speed

array

Wind speed, W_X , W_Y , W_Z along earth-fixed X-, Y-, and Z-axes, in m/s. Signal vector dimensions are [1x3] or [3x1].

AirTemp — Ambient air temperature

scalar

Ambient air temperature, T_{air} , in K. Considering this option if you want to vary the temperature during run-time.

Dependencies

To enable this port, select **Air temperature**.

zF,R — Forward and rear axle positions

vector

Forward and rear axle positions along the vehicle-fixed z-axis, \bar{Z}_F , \bar{Z}_R , in m.

Dependencies

To enable this port, for the **Ground interaction type** parameter, select Axle displacement, velocity.

zdotF,R — Forward and rear axle velocities

vector

Forward and rear axle velocities along the vehicle-fixed z-axis, $\dot{\bar{Z}}_F$, $\dot{\bar{Z}}_R$, in m/s.

Dependencies

To enable this port, for the **Ground interaction type** parameter, select Axle displacement, velocity.

Output

Info — Bus signal

bus

Bus signal containing these block values.

Signal				Description	Value	Units
InertFrm	Cg	Disp	X	Vehicle CG displacement along earth-fixed X-axis	Computed	m
			Y	Vehicle CG displacement along earth-fixed Y-axis	0	m
			Z	Vehicle CG displacement along earth-fixed Z-axis	Computed	m
		Vel	Xdot	Vehicle CG velocity along earth-fixed X-axis	Computed	m/s
			Ydot	Vehicle CG velocity along earth-fixed <i>Y</i> -axis	0	m/s
			Zdot	Vehicle CG velocity along earth-fixed Z-axis	Computed	m/s
		Ang	phi	Rotation of vehicle-fixed frame about the earth-fixed <i>X</i> -axis (roll)	0	rad
			theta	Rotation of vehicle-fixed frame about the earth-fixed <i>Y</i> -axis (pitch)	Computed	rad
			psi	Rotation of vehicle-fixed frame about the earth-fixed Z-axis (yaw)	0	rad
	FrntAxl	Disp	Х	Front axle displacement along the earth-fixed <i>X</i> -axis	Computed	m
			Y	Front axle displacement along the earth-fixed <i>Y</i> -axis	0	m
			Z	Front axle displacement along the earth-fixed Z-axis	Computed	m
		Vel	Xdot	Front axle velocity along the earth-fixed <i>X</i> -axis	Computed	m/s
			Ydot	Front axle velocity along the earth-fixed Y-axis	0	m/s
			Zdot	Front axle velocity along the earth-fixed Z-axis	Computed	m/s
	RearAxl	Disp	Х	Rear axle displacement along the earth-fixed <i>X</i> -axis	Computed	m
			Υ	Rear axle displacement along the earth-fixed <i>Y</i> -axis	0	m
			Z	Rear axle displacement along the earth-fixed Z-axis	Computed	m
		Vel	Xdot	Rear axle velocity along the earth-fixed X -axis	Computed	m/s
			Ydot	Rear axle velocity along the earth-fixed Y -axis	0	m/s

Signal				Description	Value	Units
			Zdot	Rear axle velocity along the earth-fixed Z-axis	Computed	m/s
BdyFrm	Cg	Disp	X	Vehicle CG displacement along the vehicle-fixed <i>x</i> -axis	Computed	m
			У	Vehicle CG displacement along the vehicle-fixed <i>y</i> -axis	0	m
			Z	Vehicle CG displacement along the vehicle-fixed z -axis	Computed	m
		Vel	xdot	Vehicle CG velocity along the vehicle-fixed x-axis	Computed	m/s
			ydot	Vehicle CG velocity along the vehicle-fixed <i>y</i> -axis	0	m/s
			zdot	Vehicle CG velocity along the vehicle-fixed <i>z</i> -axis	Computed	m/s
		AngVel	p	Vehicle angular velocity about the vehicle-fixed <i>x</i> -axis (roll rate)	0	rad/s
			q	Vehicle angular velocity about the vehicle-fixed y- axis (pitch rate)	Computed	rad/s
			r	Vehicle angular velocity about the vehicle-fixed <i>z</i> -axis (yaw rate)	0	rad/s
		Accel	ax	Vehicle CG acceleration along the vehicle-fixed <i>x</i> -axis	Computed	gn
			ay	Vehicle CG acceleration along the vehicle-fixed <i>y</i> -axis	0	gn
			az	Vehicle CG acceleration along the vehicle-fixed <i>z</i> -axis	Computed	gn
	Forces	s Body	Fx	Net force on vehicle CG along the vehicle-fixed <i>x</i> -axis	Computed	N
			Fy	Net force on vehicle CG along the vehicle-fixed <i>y</i> -axis	0	N
			Fz	Net force on vehicle CG along the vehicle-fixed <i>z</i> -axis	Computed	N

Signal				Description	Value	Units
	Ext	Fx		External force on vehicle CG along the vehicle-fixed x-axis	Computed	N
		Fy		External force on vehicle CG along the vehicle-fixed y-axis	Computed	N
		Fz		External force on vehicle CG along the vehicle-fixed z-axis	Computed	N
	FrntAxl	Fx		Longitudinal force on front axle, along the vehicle-fixed x-axis	Computed	N
		Fy		Lateral force on front axle, along the vehicle-fixed <i>y</i> -axis	0	N
		Fz		Normal force on front axle, along the vehicle-fixed <i>z</i> -axis	Computed	N
	RearAxl Fx			Longitudinal force on rear axle, along the vehicle-fixed x-axis	Computed	N
		Fy		Lateral force on rear axle, along the vehicle-fixed yaxis	0	N
		Fz		Normal force on rear axle, along the vehicle-fixed z-axis	Computed	N
	Tires	FrntTir e	F x	Front tire force, along the vehicle-fixed x-axis	0	N
			F y	Front tire force, along the vehicle-fixed <i>y</i> -axis	0	N
			F z	Front tire force, along the vehicle-fixed <i>z</i> -axis	Computed	N
	RearTir		F x	Rear tire force, along the vehicle-fixed x-axis	Θ	N
			F y	Rear tire force, along the vehicle-fixed <i>y</i> -axis	0	N
			F z	Rear tire force, along the vehicle-fixed z -axis	Computed	N
	Drag	Fx	•	Drag force on vehicle CG along the vehicle-fixed <i>x</i> -axis	Computed	N

Signal				Description	Value	Units
			Fy	Drag force on vehicle CG along the vehicle-fixed <i>y</i> -axis	Computed	N
			Fz	Drag force on vehicle CG along the vehicle-fixed <i>z</i> -axis	Computed	N
		Grvty	Fx	Gravity force on vehicle CG along the vehicle-fixed <i>x</i> -axis	Computed	N
			Fy	Gravity force on vehicle CG along the vehicle-fixed <i>y</i> -axis	Θ	N
			Fz	Gravity force on vehicle CG along the vehicle-fixed <i>z</i> -axis	Computed	N
	Moments	Body	Mx	Body moment on vehicle CG about the vehicle-fixed x-axis	0	N·m
			Му	Body moment on vehicle CG about the vehicle-fixed y-axis	Computed	N·m
			Mz	Body moment on vehicle CG about the vehicle-fixed z-axis	Θ	N·m
		Drag	Mx	Drag moment on vehicle CG about the vehicle-fixed x-axis	Θ	N·m
			Му	Drag moment on vehicle CG about the vehicle-fixed y-axis	Computed	N·m
			Mz	Drag moment on vehicle CG about the vehicle-fixed z-axis	Θ	N·m
		Ext	Fx	External moment on vehicle CG about the vehicle-fixed <i>x</i> -axis	Computed	N·m
			Fy	External moment on vehicle CG about the vehicle-fixed y-axis	Computed	N·m
			Fz	External moment on vehicle CG about the vehicle-fixed <i>z</i> -axis	Computed	N·m
	FrntAxl	Disp	x	Front axle displacement along the vehicle-fixed x -axis	Computed	m

Signal				Description	Value	Units
			У	Front axle displacement along the vehicle-fixed <i>y</i> -axis	0	m
			Z	Front axle displacement along the vehicle-fixed z -axis	Computed	m
		Vel	xdot	Front axle velocity along the vehicle-fixed <i>x</i> -axis	Computed	m/s
			ydot	Front axle velocity along the vehicle-fixed <i>y</i> -axis	0	m/s
			zdot	Front axle velocity along the vehicle-fixed z -axis	Computed	m/s
		Steer	WhlAngFL	Front left wheel steering angle	Computed	rad
			WhlAngFR	Front right wheel steering angle	Computed	rad
	RearAxl	xl Disp	х	Rear axle displacement along the vehicle-fixed x -axis	Computed	m
			У	Rear axle displacement along the vehicle-fixed <i>y</i> -axis	Θ	m
			Z	Rear axle displacement along the vehicle-fixed z -axis	Computed	m
		Vel	xdot	Rear axle velocity along the vehicle-fixed x-axis	Computed	m/s
			ydot	Rear axle velocity along the vehicle-fixed <i>y</i> -axis	0	m/s
			zdot	Rear axle velocity along the vehicle-fixed z -axis	Computed	m/s
		Steer	WhlAngRL	Rear left wheel steering angle	Computed	rad
			WhlAngRR	Rear right wheel steering angle	Computed	rad
	Pwr	PwrExt		Applied external power	Computed	W
		Drag		Power loss due to drag	Computed	W
PwrInfo	PwrTrns frd	PwrFxExt		Externally applied longitudinal force power	Computed	W
		PwrFzExt		Externally applied longitudinal force power	Computed	W
		PwrMyExt		Externally applied pitch moment power	Computed	W

Signal			Description	Value	Units	
		PwrFwFx	Longitudinal force applied at the front axle	Computed	W	
		PwrFwRx	Longitudinal force applied at the rear axle	Computed	W	
	PwrNotT rnsfrd	PwrFsF	Internal power transferred between suspension and vehicle body at the front axle	Computed	W	
		PwrFsR	Internal power transferred between suspension and vehicle body at the rear axle	Computed	W	
		PwrFxDrag	Longitudinal drag force power	Computed	W	
		PwrFzDrag	Vertical drag force power	Computed	W	
		PwrMyDrag	Drag pitch moment power	Computed	W	
		PwrFsb	Total suspension damping power	Computed	W	
	PwrStor ed	PwrStoredGrvty	Rate change in gravitational potential energy	Computed	W	
		PwrStoredxdot	Rate of change of longitudinal kinetic energy	Computed	W	
		PwrStoredzdot	Rate of change of longitudinal kinetic energy	Computed	W	
		PwrStoredq	Rate of change of rotational pitch kinetic energy	Computed	W	
		PwrStoredFsFzSprng	Stored spring energy from front suspension	Computed	W	
		PwrStoredFsRzSprng	Stored spring energy from rear suspension	Computed	W	

xdot — Vehicle longitudinal velocity

scalar

Vehicle CG velocity along the vehicle-fixed *x*-axis, in m/s.

FzF — Front axle normal force

scalar

Normal force on front axle, Fz_F , along the vehicle-fixed z-axis, in N.

FzR — Rear axle normal force

scalar

Normal force on rear axle, Fz_R , along the vehicle-fixed z-axis, in N.

Parameters

Options

External forces — FExt input port

off (default) | on

Specify to create input port FExt.

External moments — MExt input port

off (default) | on

Specify to create input port MExt.

Air temperature — AirTemp input port

off (default) | on

Specify to create input port AirTemp.

Longitudinal

Number of wheels on front axle, NF - Front wheel count

2 (default) | scalar

Number of wheels on front axle, N_F . The value is dimensionless.

Number of wheels on rear axle, NR — Rear wheel count

2 (default) | scalar

Number of wheels on rear axle, N_R . The value is dimensionless.

Mass, m — Vehicle mass

1200 (default) | scalar

Vehicle mass, m, in kg.

Horizontal distance from CG to front axle, a — Front axle distance

1.4 (default) | scalar

Horizontal distance *a* from the vehicle CG to the front wheel axle, in m.

Horizontal distance from CG to rear axle, b-Rear axle distance

1.8 (default) | scalar

Horizontal distance *b* from the vehicle CG to the rear wheel axle, in m.

CG height above axles, h — Height

0.35 (default) | scalar

Height of vehicle CG above the axles, *h*, in m.

Drag coefficient, Cd — Drag

.3 (default) | scalar

Air drag coefficient, C_d . The value is dimensionless.

Frontal area, Af — Area

2 (default) | scalar

Effective vehicle cross-sectional area, A_f to calculate the aerodynamic drag force on the vehicle, in m².

Initial position, x_o — Position

0 (default) | scalar

Vehicle body longitudinal initial position along earth-fixed x-axis, x_0 , in m.

Initial velocity, xdot_o — Velocity

0 (default) | scalar

Vehicle body longitudinal initial velocity along earth-fixed *x*-axis, \dot{x}_0 , in m/s.

Vertical

Lift coefficient, Cl — Lift

.1 (default) | scalar

Lift coefficient, C_l . The value is dimensionless.

Initial vertical position, z_o — Position

-.35 (default) | scalar

Initial vertical CG position, z_o , along the vehicle-fixed z-axis, in m.

Initial vertical velocity, zdot o — Velocity

0 (default) | scalar

Initial vertical CG velocity, $zdot_o$, along the vehicle-fixed z-axis, in m.

Pitch

Inertia, Iyy — About body y-axis

3500 (default) | scalar

Vehicle body moment of inertia about body *z*-axis.

Pitch drag moment coefficient, Cpm — Drag coefficient

.1 (default) | scalar

Pitch drag moment coefficient. The value is dimensionless.

Initial pitch angle, theta_o — Pitch

0 (default) | scalar

Initial pitch angle about body *z*-axis, in rad.

Initial angular velocity, q o — Pitch velocity

0 (default) | scalar

Initial vehicle body angular velocity about body *z*-axis, in rad/s.

Suspension

Front axle stiffness force data, FskF — Force

[-50, -1, 0, 2, 3, 52].*1.5e4 (default) | vector

Front axle stiffness force data, Fk_F , in N.

Dependencies

To enable this parameter, for the **Ground interaction type** parameter, select **Grade angle** or **Axle** displacement, velocity.

Front axle displacement data, dzsF — Displacement

```
[-5e-3, -1e-4, 0, .2, .2001, .2051] (default) | vector
```

Front axle displacement data, in m.

Dependencies

To enable this parameter, for the **Ground interaction type** parameter, select **Grade** angle or Axle displacement, velocity.

Front axle damping force data, FsbF — Damping force

[-10000 -100 -10 0 10 100 10000] (default) | vector

Front axle damping force, in N.

Dependencies

To enable this parameter, for the **Ground interaction type** parameter, select **Grade** angle or Axle displacement, velocity.

Front axle velocity data, dzdotsF — Velocity

```
[-10 -1 -.1 0 .1 1 10] (default) | vector
```

Front axle velocity data, in m/s.

Dependencies

To enable this parameter, for the **Ground interaction type** parameter, select **Grade angle** or **Axle displacement**, **velocity**.

Rear axle stiffness force data, FskR — Force

```
[-50, -1, 0, 2, 3, 52].*1e4 (default) | vector
```

Rear axle stiffness force data, in N.

Dependencies

To enable this parameter, for the **Ground interaction type** parameter, select **Grade** angle or Axle displacement, velocity.

Rear axle displacement data, dzsR — Displacement

```
[-5e-3, -1e-4, 0, .2, .2001, .2051] (default) | vector
```

Rear axle displacement data, in m.

Dependencies

To enable this parameter, for the **Ground interaction type** parameter, select **Grade** angle or Axle displacement, velocity.

Rear axle damping force data, FsbR — Damping force

```
[-10000 -100 -10 0 10 100 10000] (default) | vector
```

Rear axle damping force, in N.

Dependencies

To enable this parameter, for the **Ground interaction type** parameter, select **Grade** angle or Axle displacement, velocity.

Rear axle velocity data, dzdotsR — Velocity

```
[-10 -1 -.1 0 .1 1 10] (default) | vector
```

Rear axle velocity data, in m/s.

Dependencies

To enable this parameter, for the **Ground interaction type** parameter, select **Grade** angle or Axle displacement, velocity.

Environment

Absolute air pressure, Pabs — Pressure

101325 (default) | scalar

Environmental air absolute pressure, P_{abs} , in Pa.

Air temperature, Tair — Ambient air temperature

273 (default) | scalar

Ambient air temperature, T_{air} , in K.

Dependencies

To enable this parameter, clear **Air temperature**.

Gravitational acceleration, g — Gravity

9.81 (default)

Gravitational acceleration, g, in m/s².

References

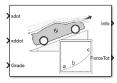
- [1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.
- [2] Vehicle Dynamics Standards Committee. *Vehicle Dynamics Terminology*. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.
- [3] Technical Committee. Road vehicles Vehicle dynamics and road-holding ability Vocabulary. ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder $^{\text{\tiny TM}}$.

See Also


Vehicle Body 1DOF Longitudinal | Vehicle Body Total Road Load

Introduced in R2017a

Vehicle Body Total Road Load

Vehicle motion using coast-down testing coefficients **Library:** Powertrain Blockset / Vehicle Dynamics

Vehicle Dynamics Blockset / Vehicle Body

Description

The Vehicle Body Total Road Load block implements a one degree-of-freedom (1DOF) rigid vehicle model using coast-down testing coefficients. You can use this block in a vehicle model to represent the load that the driveline and chassis applies to a transmission or engine. It is suitable for system-level performance, component sizing, fuel economy, or drive cycle tracking studies. The block calculates the dynamic powertrain load with minimal parameterization or computational cost.

You can configure the block for kinematic, force, or total power input.

- Kinematic Block uses the vehicle longitudinal velocity and acceleration to calculate the tractive force and power.
- Force Block uses the tractive force to calculate the vehicle longitudinal displacement and velocity.
- Power Block uses the engine or transmission power to calculate the vehicle longitudinal displacement and velocity.

Dynamics

To calculate the total road load acting on the vehicle, the block implements this equation.

$$F_{road} = a + b\dot{x} + c\dot{x}^2 + mg\sin(\theta)$$

To determine the coefficients a, b, and c, you can use a test procedure similar to the one described in Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques. You can also use Simulink® Design Optimization $^{\text{m}}$ to fit the coefficients to measured data.

To calculate the vehicle motion, the block uses Newton's law for rigid bodies.

$$F_{total} = m\ddot{x} + F_{road}$$

Total power input is a product of the total force and longitudinal velocity. Power due to road and gravitational forces is a product of the road force and longitudinal velocity.

$$P_{total} = F_{total}\dot{x}$$
$$P_{road} = F_{road}\dot{x}$$

Power Accounting

For the power accounting, the block implements these equations.

Bus Sig	gnal		Description	Variable	Equations
PwrIn fo	 PwrTrnsfrd — Power transferred between blocks Positive signals indicate flow into block Negative signals indicate flow out of block 	PwrFxE xt	Externally applied force power	$P_{F \times E \times t}$	$P_{F \times E \times t} = F_{total} \dot{x}$
	PwrNotTrnsfrd — Power crossing the block boundary, but not transferred • Positive signals indicate an input • Negative signals indicate a loss	PwrFxD rag	Drag force power	P_D	$P_d = -(a + b\dot{x} + c\dot{x}^2)\dot{x}$
	PwrStored — Stored energy rate of change • Positive signals indicate an increase	wrStor edGrvt y	Rate change in gravitational potential energy	P_g	$P_g = -mg\dot{Z}$
	Negative signals indicate a decrease	PwrSto redxdo t		P_{xdot}	$P_{\dot{X}} = m\ddot{x}\dot{x}$

The equations use these variables.

a	Steady-state rolling resistance coefficient
b	Viscous driveline and rolling resistance coefficient
\boldsymbol{c}	Aerodynamic drag coefficient
g	Gravitational acceleration
X	Vehicle longitudinal displacement with respect to ground, in the vehicle-fixed frame
$\dot{\chi}$	Vehicle longitudinal velocity with respect to ground, in the vehicle-fixed frame
χ̈	Vehicle longitudinal acceleration with respect to ground, vehicle-fixed frame
m	Vehicle body mass
Θ	Road grade angle
F_{total}	Total force acting on vehicle
F_{road}	Resistive road load due to losses and gravitational load
P_{total}	Total tractive input power
P_{road}	Total power due to losses and gravitational load
\dot{Z}	Vehicle vertical velocity along the vehicle-fixed z-axis

Ports

Input

xdot — Vehicle longitudinal velocity

scalar

Vehicle total longitudinal velocity, \dot{x} , in m/s.

Dependencies

To enable this port, for the **Input Mode** parameter, select **Kinematic**.

xddot — Vehicle longitudinal acceleration

scalar

Vehicle total longitudinal acceleration, \ddot{x} , in m/s².

Dependencies

To enable this port, for the **Input Mode** parameter, select **Kinematic**.

PwrTot — Tractive input power

scalar

Tractive input power, P_{total} , in W.

Dependencies

To enable this port, for the **Input Mode** parameter, select Power.

ForceTot — Tractive input force

scalar

Tractive input force, F_{total} , in N.

Dependencies

To enable this port, for the **Input Mode** parameter, select Force.

Grade — Road grade angle

scalar

Road grade angle, Θ , in deg.

Output

Info - Bus signal

bus

Bus signal containing these block calculations.

Signal			Description	Value	Units
In er	Cg	Disp	Vehicle CG displacement along earth- fixed X-axis	Computed	m

Sig	Signal			Description	Value	Units
tF rm			Υ	Vehicle CG displacement along earth-fixed Y-axis	Θ	m
			Z	Vehicle CG displacement along earth-fixed Z-axis	Computed	m
		Vel	Xdot	Vehicle CG velocity along earth-fixed X-axis	Computed	m/s
			Ydot	Vehicle CG velocity along earth-fixed Y-axis	Θ	m/s
			Zdot	Vehicle CG velocity along earth-fixed Z-axis	Computed	m/s
		Ang	phi	Rotation of vehicle-fixed frame about the earth-fixed X-axis (roll)	Θ	rad
			theta	Rotation of vehicle-fixed frame about the earth-fixed Y-axis (pitch)	Computed	rad
			psi	Rotation of vehicle-fixed frame about the earth-fixed Z-axis (yaw)	Θ	rad
Bd yF	Cg	Disp	х	Vehicle CG displacement along the vehicle-fixed x-axis	Computed	m
rm			У	Vehicle CG displacement along the vehicle-fixed y-axis	Θ	m
			Z	Vehicle CG displacement along the vehicle-fixed z-axis	Θ	m
		Vel	xdot	Vehicle CG velocity along the vehicle-fixed x-axis	Computed	m/s
			ydot	Vehicle CG velocity along the vehicle-fixed y-axis	Θ	m/s
			zdot	Vehicle CG velocity along the vehicle-fixed z-axis	Θ	m/s
		Acc	ax	Vehicle CG acceleration along the vehicle-fixed x-axis	Computed	gn
			ay	Vehicle CG acceleration along the vehicle-fixed y-axis	Θ	gn
			az	Vehicle CG acceleration along the vehicle-fixed z-axis	Θ	gn
	Forc es	Body	Fx	Net force on vehicle CG along the vehicle-fixed x-axis	Computed	N
			Fy	Net force on vehicle CG along the vehicle-fixed y-axis	Θ	N
			Fz	Net force on vehicle CG along the vehicle-fixed z-axis	0	N
		Ext	Fx	External force on vehicle CG along the vehicle-fixed x-axis	Computed	N

Sig	nal			Description	Value	Units
	Fy		Fy	External force on vehicle CG along the vehicle-fixed y-axis	0	N
			Fz	External force on vehicle CG along the vehicle-fixed z-axis	0	N
		Drag	Fx	Drag force on vehicle CG along the vehicle-fixed x-axis	Computed	N
			Fy	Drag force on vehicle CG along the vehicle-fixed y-axis	0	N
			Fz	Drag force on vehicle CG along the vehicle-fixed z-axis	0	N
		Grvty	Fx	Gravity force on vehicle CG along the vehicle-fixed x-axis	Computed	N
			Fy	Gravity force on vehicle CG along the vehicle-fixed y-axis	0	N
			Fz	Gravity force on vehicle CG along the vehicle-fixed z-axis	Computed	N
	Pwr	PwrExt		Applied external power	Computed	W
		Drag		Power loss due to drag	Computed	W
Pw rI nf	PwrT rnsf rd	PwrFxE	xt	Externally applied force power	$P_{F \times E \times t}$	W
0	PwrN otTr nsfr d	PwrFxDrag		Drag force power	P_D	W
	tore		redGrv	Rate change in gravitational potential energy	P_g	W
	d	PwrSto ot	redxd	Rate in change of longitudinal kinetic energy	P_{xdot}	W

xdot — **Vehicle longitudinal velocity**

scalar

Vehicle total longitudinal velocity, \dot{x} , in m/s.

Dependencies

To enable this port, for the **Input Mode** parameter, select Power or Force.

ForceTot — Tractive input force

scalar

Tractive input force, F_{total} , in N.

Dependencies

To enable this port, for the **Input Mode** parameter, select **Kinematic**.

Parameters

Input Mode — Specify input mode

Kinematic (default) | Force | Power

Specify the input type.

- Kinematic Block uses the vehicle longitudinal velocity and acceleration to calculate the tractive force and power. Use this configuration for powertrain, driveline, and braking system design, or component sizing.
- Force Block uses the tractive force to calculate the vehicle longitudinal displacement and velocity. Use this configuration for system-level performance, fuel economy, or drive cycle tracking studies.
- Power Block uses the engine or transmission power to calculate the vehicle longitudinal displacement and velocity. Use this configuration for system-level performance, fuel economy, or drive cycle tracking studies.

Dependencies

This table summarizes the port and input mode configurations.

Input Mode	Creates Ports
Kinematic	xdot
	xddot
Force	Force
Power	Power

Mass — Vehicle body mass

1200 (default) | scalar

Vehicle body mass, m, in kg.

Rolling resistance coefficient, a — Rolling

196 (default) | scalar

Steady-state rolling resistance coefficient, *a*, in N.

Rolling and driveline resistance coefficient, b — Rolling and driveline 2.232 (default) | scalar

Viscous driveline and rolling resistance coefficient, *b*, in N*s/m.

Aerodynamic drag coefficient, c — Drag

0.389 (default) | scalar

Aerodynamic drag coefficient, *c*, in N·s^2/m.

Gravitational acceleration, g — Gravity

9.81 (default) | scalar

Gravitational acceleration, g, in m/s 2 .

Initial position, x_o — Position

0 (default) | scalar

Vehicle longitudinal initial position, in m.

Initial velocity, xdot o — Velocity

0 (default) | scalar

Vehicle longitudinal initial velocity with respect to ground, in m/s.

References

- [1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers (SAE), 1992.
- [2] Light Duty Vehicle Performance And Economy Measure Committee. Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques. Standard J1263_201003. SAE International, March 2010.

Extended Capabilities

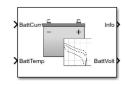
C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also

Drive Cycle Source | Vehicle Body 1DOF Longitudinal | Vehicle Body 3DOF Longitudinal

Introduced in R2017a


Energy Storage Blocks

Datasheet Battery

Lithium-ion, lithium-polymer, or lead-acid battery

Library: Powertrain Blockset / Energy Storage and Auxiliary Drive /

Datasheet Battery

Description

The Datasheet Battery block implements a lithium-ion, lithium-polymer, or lead-acid battery that you can parameterize using manufacturer data. To create the open-circuit voltage and internal resistance parameters that you need for the block, use the manufacturer discharge characteristics by temperature data. For an example, see "Generate Parameter Data for Datasheet Battery Block".

To determine the battery output voltage, the block uses lookup tables for the battery open-circuit voltage and the internal resistance. The lookup tables are functions of the state-of charge (SOC) and battery temperature, characterizing the battery performance at various operating points:

$$E_m = f(SOC)$$

 $R_{int} = f(T, SOC)$

To calculate the voltage, the block implements these equations.

$$\begin{split} V_T &= E_m + I_{batt} R_{int} \\ I_{batt} &= \frac{I_{in}}{N_p} \\ V_{out} &= \begin{cases} N_s V_T & \text{unfiltered} \\ \frac{V_{out}}{\tau s + 1} & \text{filtered} \end{cases} \\ SOC &= \frac{1}{Cap_{batt}} \int_0^t I_{batt} dt \\ Ld_{AmpHr} &= \int_0^t I_{batt} dt \end{split}$$

Positive current indicates battery discharge. Negative current indicates battery charge.

Power Accounting

For the power accounting, the block implements these equations.

Bus Sign	al		Description	Equations	
PwrInfo	PwrTrnsfrd — Power transferred between blocks • Positive signals indicate flow into block • Negative signals indicate flow out of block	PwrLdBatt	Battery network power	$V_{batt} = V_{out}$ C $P_{batt} = -V_{batt}$ $P_{LdBatt} = -1$	I_{batt}
	PwrNotTrnsfrd — Power crossing the block boundary, but not transferred • Positive signals indicate an input • Negative signals indicate a loss	PwrLossBatt	Battery network power loss	$P_{LossBatt} = -N_p N_s I_{batt}^2 R_{ii}$	nt
	PwrStored — Stored energy rate of change • Positive signals indicate an increase • Negative signals indicate a decrease	PwrStoredBatt	Battery network power stored	$P_{StoredBatt} = P_{Batt} + P_{LossBatt}$	

The equations use these variables.

SOC State-of-charge

 $\begin{array}{ll} E_m & \text{Battery open-circuit voltage} \\ I_{batt} & \text{Per module battery current} \\ P_{LdBatt} & \text{Battery network power} \end{array}$

 P_{batt} Battery power

 $P_{LossBatt}$ Battery network power loss $P_{StoredBatt}$ Battery network power stored

 I_{in} Combined current flowing from the battery network

 R_{int} Battery internal resistance N_s Number of cells in series N_p Number of cells in parallel

 V_{out}, V_{batt} Combined voltage of the battery network

 V_T Per module battery voltage

 Cap_{batt} Battery capacity Ld_{AmpHr} Battery energy

Ports

Inputs

CapInit — Battery capacity

scalar

Rated battery capacity at the nominal temperature, Cap_{batt} , in Ah.

To create this port, select External Input for the Initial battery capacity parameter.

BattCurr — **Battery load current**

scalar

Combined current flowing from the battery network, I_{in} , in A.

BattTemp — **Battery temperature**

scalar

Temperature measured at the battery housing, *T*, in K.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal			Description	Variable	Units
			Combined current flowing from the battery network	I_{batt}	A
BattAmpl	Hr		Battery energy	Ld_{AmpHr}	A*h
BattSoc			State-of-charge capacity	SOC	NA
			Combined voltage of the battery network	V_{out}	V
BattPwr			Battery network power	P_{batt}	W
PwrInfo	PwrTrnsfrd	PwrLdBatt	Battery network power	P_{LdBatt}	W
	PwrNotTrnsf PwrLossBatt rd		Battery network power loss	$P_{LossBatt}$	W
	PwrStored	PwrStoredBatt	Battery network power stored	$P_{StoredBatt}$	W

BattVolt — **Battery output voltage**

scalar

Combined voltage of the battery network, V_{out} , in V.

Parameters

Block Options

Initial battery capacity — Input or parameter

Parameter (default) | External Input

Initial battery capacity, Cap_{batt} , in Ah.

Block Parameter Initial battery capacity Option	Creates
External Input	Input port CapInit
	Parameter Initial battery capacity, BattCapInit

Output battery voltage — Unfiltered or Filter

Unfiltered (default) | Filtered

Select Filtered to apply a first-order filter to the output batter voltage.

Dependencies

Setting **Output battery voltage** parameter to Filtered creates these parameters:

- Output battery voltage time constant, Tc
- Output battery voltage initial value, Vinit

Rated capacity at nominal temperature, BattChargeMax — Constant 100 (default) | scalar

Rated battery capacity at the nominal temperature, in Ah.

Open circuit voltage table data, $\operatorname{Em} - \operatorname{1-D} \operatorname{lookup} \operatorname{table}$ 1-by-P matrix

Open-circuit voltage data curve, E_m , as a function of the discharged capacity for P operating points, in V.

Open circuit voltage breakpoints 1, CapLUTBp — Breakpoints 1-by-P matrix

Discharge capacity breakpoints for P operating points, dimensionless.

Although this parameter is the same as the **Battery capacity breakpoints 2, CapSOCBp** parameter, the block uses unique parameters for calibration flexibility.

Internal resistance table data, RInt — 2-D lookup table N-by-M matrix

Internal resistance map, R_{int} , as a function of N temperatures and M SOCs, in ohms.

Battery temperature breakpoints 1, BattTempBp — Breakpoints [243.1 253.1 263.1 273.1 283.1 298.1 313.1] (default) | 1-by-N matrix

Battery temperature breakpoints for N temperatures, in K.

Battery capacity breakpoints 2, CapSOCBp — Breakpoints [0 0.2 0.4 0.6 0.8 1] (default) | 1-by-M matrix

Battery capacity breakpoints for M SOCs, dimensionless.

Although this parameter is the same as the **Open circuit voltage breakpoints 1, CapLUTBp** parameter, the block uses unique parameters for calibration flexibility.

Number of cells in series, Ns — Integer

1 (default) | scalar

Number of cells in series, dimensionless, N_s .

Number of cells in parallel, Np — Integer

1 (default) | scalar

Number of cells in parallel, dimensionless, N_p .

Initial battery capacity, BattCapInit — Capacity

100 (default) | scalar

Initial battery capacity, Cap_{batt} , in Ah.

Dependencies

Block Parameter Initial battery capacity Option	Creates
External Input	Input port CapInit
	Parameter Initial battery capacity, BattCapInit

Output battery voltage time constant, Tc — Filter time constant

1/1000 (default) | scalar

Output battery voltage time constant, T_c , in s. Used in a first-order voltage filter.

Dependencies

Setting **Output battery voltage** parameter to Filtered creates these parameters:

- Output battery voltage time constant, Tc
- Output battery voltage initial value, Vinit

Output battery voltage initial value — Filter initial voltage

4.221 (default) | scalar

Output battery voltage initial value, V_{init} , in V. Used in a first-order voltage filter.

Dependencies

Setting **Output battery voltage** parameter to Filtered creates these parameters:

- Output battery voltage time constant, Tc
- · Output battery voltage initial value, Vinit

References

[1] Arrhenius, S.A. "Über die Dissociationswärme und den Einflusß der Temperatur auf den Dissociationsgrad der Elektrolyte." *Journal of Physical Chemistry*. 4 (1889): 96–116.

- [2] Connors, K. Chemical Kinetics. New York: VCH Publishers, 1990.
- [3] Ji, Yan, Yancheng Zhang, and Chao-Yang Wang. *Journal of the Electrochemical Society*. Volume 160, Issue 4 (2013), A636-A649.

Extended Capabilities

C/C++ Code Generation

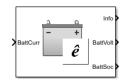
Generate C and C++ code using Simulink® Coder™.

See Also

Equivalent Circuit Battery | Estimation Equivalent Circuit Battery

Topics

"Generate Parameter Data for Datasheet Battery Block" Battery Modeling


Introduced in R2017a

Estimation Equivalent Circuit Battery

Resistor-capacitor (RC) circuit battery that creates lookup tables

Library: Powertrain Blockset / Energy Storage and Auxiliary Drive /

Network Battery

Description

The Estimation Equivalent Circuit Battery block implements a resistor-capacitor (RC) circuit battery model that you can use to create lookup tables for the Equivalent Circuit Battery block. The lookup tables are functions of the state-of-charge (SOC).

The Estimation Equivalent Circuit Battery block calculates the combined voltage of the network battery using parameter lookup tables. The tables are functions of the SOC. To acquire the SOC, the block integrates the charge and discharge currents.

Specifically, the block implements these parameters as lookup tables that are functions of the SOC:

- Series resistance, $R_0 = f(SOC)$
- Battery open-circuit voltage, $E_m = f(SOC)$
- Network resistance, $R_n = f(SOC)$
- Network capacitance, $C_n = f(SOC)$

To calculate the combined voltage of the battery network, the block uses these equations.

$$V_{T} = E_{m} - I_{batt}R_{o} - \sum_{1}^{n} V_{n}$$

$$V_{n} = \int_{0}^{t} \left[\frac{I_{batt}}{C_{n}} - \frac{V_{n}}{R_{n}C_{n}} \right] dt$$

$$SOC = \frac{-1}{C_{batt}} \int_{0}^{t} I_{batt} dt$$

$$I_{batt} = I_{in}$$

$$V_{out} = V_{T}$$

Positive current indicates battery discharge. Negative current indicates battery charge.

The equations use these variables.

SOC State-of-charge E_m Battery open-circuit voltage I_{batt} Per module battery current I_{in} Combined current flowing from the battery network

 R_o Series resistance

n Number of RC pairs in series

 V_{out} , V_T Combined voltage of the battery network

 V_n Voltage for n-th RC pair R_n Resistance for n-th RC pair C_n Capacitance for n-th RC pair

 C_{batt} Battery capacity

Ports

Inputs

BattCurr — Battery network current

scalar

Combined current flowing from the battery network, I_{in} , in A.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Variable	Units
CapVolt	Voltage for <i>n</i> -th RC pair	V_n	V

BattVolt — **Battery output voltage**

scalar

Combined voltage of the battery network, V_{out} , in V.

BattSoc — Battery SOC

scalar

Battery state-of-charge, SOC.

Parameters

Core Battery

Number of series RC pairs — RC pairs

1 (default) | 2 | 3 | 4 | 5

Number of series RC pairs. For lithium, typically 1 or 2.

Open circuit voltage Em table data, Em — Voltage table

[3.8 3.8 3.8 3.8 3.8] (default) | array

Open-circuit voltage table, E_m , in V. Function of SOC.

Series resistance table data, R0 — Resistance

[0.01 0.01 0.01 0.01 0.01] (default) | array

Series resistance table, R_{o} , in ohms. Function of SOC.

State of charge breakpoints, SOC_BP — SOC breakpoints

[0 .2 .4 .6 .8 1] (default) | vector

State-of-charge (SOC) breakpoints, dimensionless.

Battery capacity, BattCap — Capacity

27.6250 (default) | scalar

Battery capacity, C_{batt} , in Ah.

Initial battery capacity, BattCapInit — Capacity

27.6250 (default) | scalar

Initial battery capacity, C_{batto} , in Ah.

Initial capacitor voltage, InitialCapVoltage — Voltage

0 (default) | vector

Initial capacitor voltage, in V. Dimension of vector must equal the **Number of series RC pairs**.

R and C Table Data

Network resistance table data, Rn - Lookup table

[0.005 0.005 0.005 0.005 0.005 0.005] (default) | array

Network resistance table data for *n*-th RC pair, as a function of SOC, in ohms.

Network capacitance table data, Cn - Lookup table

[10000 10000 10000 10000 10000 10000] (default) | array

Network capacitance table data for n-th RC pair, as a function of SOC, in F.

Cell Limits

Upper Integrator Voltage Limit, Vu — Maximum

Inf (default) | scalar

Upper voltage limit, in V.

Lower Integrator Voltage Limit, Vl — Minimum

Inf (default) | scalar

Lower voltage limit, in V.

References

[1] Ahmed, R., J. Gazzarri, R. Jackey, S. Onori, S. Habibi, et al. "Model-Based Parameter Identification of Healthy and Aged Li-ion Batteries for Electric Vehicle Applications." *SAE International Journal of Alternative Powertrains*. doi:10.4271/2015-01-0252, 4(2):2015.

- [2] Gazzarri, J., N. Shrivastava, R. Jackey, and C. Borghesani. "Battery Pack Modeling, Simulation, and Deployment on a Multicore Real Time Target." *SAE International Journal of Aerospace*. doi:10.4271/2014-01-2217, 7(2):2014.
- [3] Huria, T., M. Ceraolo, J. Gazzarri, and R. Jackey. "High fidelity electrical model with thermal dependence for characterization and simulation of high power lithium battery cells." *IEEE*[®] *International Electric Vehicle Conference*. March 2012, pp. 1–8.
- [4] Huria, T., M. Ceraolo, J. Gazzarri, and R. Jackey. "Simplified Extended Kalman Filter Observer for SOC Estimation of Commercial Power-Oriented LFP Lithium Battery Cells." *SAE Technical Paper 2013-01-1544*. doi:10.4271/2013-01-1544, 2013.
- [5] Jackey, R. "A Simple, Effective Lead-Acid Battery Modeling Process for Electrical System Component Selection." SAE Technical Paper 2007-01-0778. doi:10.4271/2007-01-0778, 2007.
- [6] Jackey, R., G. Plett, and M. Klein. "Parameterization of a Battery Simulation Model Using Numerical Optimization Methods." SAE Technical Paper 2009-01-1381. doi:10.4271/2009-01-1381, 2009.
- [7] Jackey, R., M. Saginaw, T. Huria, M. Ceraolo, P. Sanghvi, and J. Gazzarri. "Battery Model Parameter Estimation Using a Layered Technique: An Example Using a Lithium Iron Phosphate Cell." SAE Technical Paper 2013-01-1547. Warrendale, PA: SAE International, 2013.

Extended Capabilities

C/C++ Code Generation

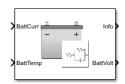
Generate C and C++ code using Simulink® Coder™.

See Also

Datasheet Battery | Equivalent Circuit Battery

Topics

"Generate Parameter Data for Equivalent Circuit Battery Block" Battery Modeling


Introduced in R2017a

Equivalent Circuit Battery

Resistor-capacitor (RC) circuit battery

Library: Powertrain Blockset / Energy Storage and Auxiliary Drive /

Network Battery

Description

The Equivalent Circuit Battery block implements a resistor-capacitor (RC) circuit battery that you can parameterize using equivalent circuit modeling (ECM). To simulate the state-of-charge (SOC) and terminal voltage, the block uses load current and internal core temperature.

The Equivalent Circuit Battery block calculates the combined voltage of the network battery using parameter lookup tables. The tables are functions of the SOC and battery temperature. You can use the Estimation Equivalent Circuit Battery block to help create the lookup tables.

Specifically, the Equivalent Circuit Battery block implements these parameters as lookup tables that are functions of the SOC and battery temperature:

- Series resistance, $R_o = f(SOC, T)$
- Battery open-circuit voltage, $E_m = f(SOC,T)$
- Battery capacity, $C_{batt} = f(T)$
- Network resistance, $R_n = f(SOC, T)$
- Network capacitance, $C_n = f(SOC, T)$

To calculate the combined voltage of the battery network, the block uses these equations.

$$V_{T} = E_{m} - I_{batt}R_{o} - \sum_{1}^{n} V_{n}$$

$$V_{n} = \int_{0}^{t} \left[\frac{I_{batt}}{C_{n}} - \frac{V_{n}}{R_{n}C_{n}} \right] dt$$

$$SOC = \frac{-1}{C_{batt}} \int_{0}^{t} I_{batt} dt$$

$$I_{batt} = \frac{I_{in}}{N_{p}}$$

$$V_{out} = N_{s}V_{T}$$

$$P_{BattLoss} = I_{batt}^{2}R_{0} + \sum_{1}^{n} \frac{V_{n}^{2}}{R_{n}}$$

$$Ld_{AmpHr} = \int_{0}^{t} I_{batt} dt$$

Positive current indicates battery discharge. Negative current indicates battery charge.

Power Accounting

For the power accounting, the block implements these equations.

Bus Sig	gnal		Description	Equations
PwrIn fo	PwrTrnsfrd — Power transferred between blocks	PwrLdBatt	Battery network power	$V_{batt} = V_{out}$ OR $\frac{V_{out}}{\tau s + 1}$
	Positive signals indicate flow into block			$\begin{vmatrix} P_{batt} = -V_{batt}I_{batt} \\ P_{LdBatt} = -P_{batt} \end{vmatrix}$
	Negative signals indicate flow out of block			
	PwrNotTrnsfrd — Power crossing the block boundary, but not transferred • Positive signals indicate an input • Negative signals indicate a loss	PwrLossBa tt	Battery network power loss	$P_{LossBatt} = -\left(I_{batt}^{2}R_{0} + \sum_{1}^{n} \frac{V_{n}^{2}}{R_{n}}\right)$
	PwrStored — Stored energy rate of change • Positive signals indicate an increase • Negative signals indicate a decrease	PwrStored Batt	Battery network power stored	$\begin{aligned} P_{StoredBatt} &= P_{Batt} \\ &+ P_{LossBatt} \end{aligned}$

The equations use these variables.

SOC	State-of-charge
E_m	Battery open-circuit voltage
I_{batt}	Per module battery current
I_{in}	Combined current flowing from the battery network
R_o	Series resistance
N_p	Number parallel branches
N_p	Number of RC pairs in series
V_{out} , V_T	Combined voltage of the battery network
V_n	Voltage for <i>n</i> -th RC pair
R_n	Resistance for <i>n</i> -th RC pair
C_n	Capacitance for <i>n</i> -th RC pair
C_{batt}	Battery capacity
P_{batt}	Battery power
$P_{LossBatt}$	Negative of battery network power loss
$P_{BattLoss}$	Battery network power loss
$P_{StoredBatt}$	Battery network power stored

 P_{LdBatt} Battery network power T Battery temperature

Ports

Inputs

CapInit — Battery capacity

scalar

Rated battery capacity at the nominal temperature, Cap_{batt} , in Ah.

Dependencies

To create this port, select External Input for the Initial battery capacity parameter.

BattCurr — Battery network current

scalar

Combined current flowing from the battery network, I_{in} , in A.

BattTemp — **Battery temperature**

scalar

Battery temperature, *T*, in K.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal			Description	Variable	Units
BattCur	r		Combined current flowing from the battery network	I_{batt}	A
BattAmpl	Hr		Battery energy	Ld_{AmpHr}	A*h
BattSoc			State-of-charge capacity	SOC	NA
			Combined voltage of the battery network	V_{out}	V
BattPwr			Battery power	P_{batt}	W
PwrInfo	PwrTrnsfrd	PwrLdBatt	Battery network power	P_{LdBatt}	W
	PwrNotTrnsfr d	PwrLossBatt	Battery network power loss	$P_{LossBatt}$	W
	PwrStored	PwrStoredBa tt	Battery network power stored	$P_{StoredBatt}$	W

BattVolt — **Battery output voltage**

scalar

Combined voltage of the battery network, V_{out} , in V.

Parameters

Block Options

Initial battery capacity — Input or parameter

Parameter (default) | External Input

Initial battery capacity, Cap_{batt} , in Ah.

Dependencies

Block Parameter Initial battery capacity Option	Creates
External Input	Input port CapInit
	Parameter Initial battery capacity, BattCapInit

Output battery voltage — Unfiltered or Filter

Unfiltered (default) | Filtered

Select Filtered to apply a first-order filter to the output batter voltage.

Dependencies

Setting **Output battery voltage** parameter to Filtered creates these parameters:

- Output battery voltage time constant, Tc
- Output battery voltage initial value, Vinit

Core Battery

Number of series RC pairs — RC pairs

1 (default) | 2 | 3 | 4 | 5

Number of series RC pairs. For lithium, typically 1 or 2.

Open circuit voltage Em table data, Em — Voltage table

```
[3.5042 3.5136; 3.5573 3.5646; 3.6009 3.6153; 3.6393 3.6565; 3.6742 3.6889; 3.7121 3.7214; 3.7937 3.8078; 3.8753 3.8945; 3.97 3.9859; 4.0764 4.0821; 4.1924 4.193] (default) | array
```

Open circuit voltage table, E_m , in V. Function of SOC and battery temperature.

Series resistance table data, R0 — Resistance

array

Series resistance table, R_o , in ohms. Function of SOC and battery temperature.

State of charge breakpoints, SOC_BP — SOC breakpoints

```
[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1] (default) | vector
```

State-of-charge (SOC) breakpoints, dimensionless.

Temperature breakpoints, Temperature_BP — Battery

[293.15 313.15] (default) | vector

Battery temperature breakpoints, K.

Battery capacity table, BattCap — Capacity

[28 28] (default) | array

Battery capacity, C_{batt} , in Ah. Function of battery temperature.

Initial battery capacity, BattCapInit — Capacity

28 (default) | scalar

Initial battery capacity, Cap_{batt} , in Ah.

Dependencies

Block Parameter Initial battery capacity Option	Creates
External Input	Input port CapInit
	Parameter Initial battery capacity, BattCapInit

Initial capacitor voltage, InitialCapVoltage — Voltage

0 (default) | array

Initial capacitor voltage, in V. Dimension of vector must equal the **Number of series RC pairs**.

Output battery voltage time constant, Tc — Filter time constant

1/1000 (default) | scalar

Output battery voltage time constant, T_c, in s. Used in a first-order voltage filter.

Dependencies

Setting **Output battery voltage** parameter to Filtered creates these parameters:

- · Output battery voltage time constant, Tc
- · Output battery voltage initial value, Vinit

Output battery voltage initial value, Vinit — Filter initial voltage

4.193 (default) | scalar

Output battery voltage initial value, V_{init} , in V. Used in a first-order voltage filter.

Dependencies

Setting **Output battery voltage** parameter to Filtered creates these parameters:

- Output battery voltage time constant, Tc
- Output battery voltage initial value, Vinit

R and C Table Data

Network resistance table data, Rn - Lookup table

```
[0.010342 0.0012244; 0.0067316 0.0011396; 0.0051156 0.0012661; 0.0043447 0.0012265; 0.0038826 0.0011163; 0.0034226 0.0009968; 0.003346 0.0011458; 0.0033222 0.001345; 0.0033201 0.0013091; 0.0032886 0.0010986; 0.0028114 0.0010309] (default) | array
```

Network resistance table data for n-th RC pair, in ohms, as a function of SOC and battery temperature.

Network capacitance table data, Cn — Lookup table

[2287.7 11897; 6122 24515; 18460 42098; 20975 44453; 15254 33098; 10440 24492; 13903 32975; 16694 40007; 15784 35937; 12165 26430; 9118 24795] (default) | array

Network capacitance table data for *n*-th RC pair, in F, as a function of SOC and battery temperature.

Cell Limits

Upper integrator voltage limit, Vu — Maximum

-Inf (default) | scalar

Upper voltage limit, in V.

Lower integrator voltage limit, Vl — Minimum

-Inf (default) | scalar

Lower voltage limit, in V.

References

- [1] Ahmed, R., J. Gazzarri, R. Jackey, S. Onori, S. Habibi, et al. "Model-Based Parameter Identification of Healthy and Aged Li-ion Batteries for Electric Vehicle Applications." *SAE International Journal of Alternative Powertrains*. doi:10.4271/2015-01-0252, 4(2):2015.
- [2] Gazzarri, J., N. Shrivastava, R. Jackey, and C. Borghesani. "Battery Pack Modeling, Simulation, and Deployment on a Multicore Real Time Target." *SAE International Journal of Aerospace*. doi:10.4271/2014-01-2217, 7(2):2014.
- [3] Huria, T., M. Ceraolo, J. Gazzarri, and R. Jackey. "High fidelity electrical model with thermal dependence for characterization and simulation of high power lithium battery cells." *IEEE International Electric Vehicle Conference*. March 2012, pp. 1–8.
- [4] Huria, T., M. Ceraolo, J. Gazzarri, and R. Jackey. "Simplified Extended Kalman Filter Observer for SOC Estimation of Commercial Power-Oriented LFP Lithium Battery Cells." *SAE Technical Paper 2013-01-1544*. doi:10.4271/2013-01-1544, 2013.
- [5] Jackey, R. "A Simple, Effective Lead-Acid Battery Modeling Process for Electrical System Component Selection." SAE Technical Paper 2007-01-0778. doi:10.4271/2007-01-0778, 2007.
- [6] Jackey, R., G. Plett, and M. Klein. "Parameterization of a Battery Simulation Model Using Numerical Optimization Methods." SAE Technical Paper 2009-01-1381. doi:10.4271/2009-01-1381, 2009.
- [7] Jackey, R., M. Saginaw, T. Huria, M. Ceraolo, P. Sanghvi, and J. Gazzarri. "Battery Model Parameter Estimation Using a Layered Technique: An Example Using a Lithium Iron Phosphate Cell." SAE Technical Paper 2013-01-1547. Warrendale, PA: SAE International, 2013.

Extended Capabilities

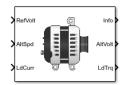
C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also

Datasheet Battery | Estimation Equivalent Circuit Battery

Topics


"Generate Parameter Data for Equivalent Circuit Battery Block" Battery Modeling

Introduced in R2017a

Reduced Lundell Alternator

Reduced Lundell (claw-pole) alternator with an external voltage regulator **Library:** Powertrain Blockset / Energy Storage and Auxiliary Drive /

Alternator

Description

The Reduced Lundell Alternator block implements a reduced Lundell (claw-pole) alternator with an external voltage regulator. The back-electromotive force (EMF) voltage is proportional to the input velocity and field current. The motor operates as a source torque to the internal combustion engine.

Use the Reduced Lundell Alternator block:

- · To model an automotive electrical system
- In an engine model with a front-end accessory drive (FEAD)

The calculated motor shaft torque is in the opposite direction of the engine speed. You can:

- Tune the external voltage regulator to a desired bandwidth. The stator current and two diode drops reduce the stator voltage.
- Filter the load current to desired bandwidth. The load current has a lower saturation of 0 A.

The Reduced Lundell Alternator block implements equations for the electrical, control, and mechanical systems that use these variables.

Electrical

To calculate voltages, the block uses these equations.

Calculation	Equations
Alternator output voltage	$v_s = K_v i_f \omega - R_s i_s - 2V_d$
Field winding voltage	$v_f = R_f i_f + L_f \frac{di_f}{dt}$

Control

The controller assumes no resistance or voltage drop.

Calculation	Equations
Field winding voltage transform	$V_f(s) = R_f I_f(s) + s L_f I_f(s)$
Field winding current transform	$I_f(s) = \frac{V_f(s)}{(R_f + sL_f)}$
Open loop electrical transfer function	$G(s) = \frac{V_S(s)}{V_f(s)} = \frac{K_V \omega}{(R_f + sL_f)}$

Calculation	Equations
Open loop voltage regulator transfer function	$G_C(s) = \frac{V_f(s)}{Vref(s)}$
Closed loop transfer function	$T(s) = \frac{G(s)Gc(s)}{1 + G(s)Gc(s)}$
Closed loop controller design	$T(s) = \frac{1}{\tau s + 1} \rightarrow G(s)Gc(s) = \frac{1}{\tau s}$
	$G_C(s) = K_g (K_p + \frac{K_i}{s})$
	$G(s)G_C(s) = \frac{K_v \omega}{(R_f + sL_f)} K_g (K_p + \frac{K_i}{s})$
	$K_p = L_f$, $K_i = R_f$, and $K_g = \frac{2\pi f}{K_V \omega}$

Mechanical

To calculate torques, the block uses these equations.

Calculation	Equations
Electrical torque	$\tau_{elec} = (K_{\nu}i_f\omega)i_{load}$
Frictional torque	$\tau_{friction} = K_b \omega$
Windage torque	$\tau_{windage} = K_w \omega^2$
Torque at start	$\tau_{start} = K_C \text{ when } \omega = 0$
Motor shaft torque	$\tau_{mech} = \tau_{elec} + \tau_{friction} + \tau_{windage} + \tau_{start}$

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal		Description	Variable	Equations	
	PwrTrnsfrd — Power	PwrMtr	Mechanical power	P_{mot}	$P_{mot} = \omega \tau_{mech}$
fo	transferred between blocks	PwrBus	Electrical power	P_{bus}	$P_{bus} = - v_s i_{load}$
	Positive signals indicate flow into block				
	Negative signals indicate flow out of block				
	PwrNotTrnsfrd — Power crossing the block boundary, but not transferred	PwrLoss	Motor power loss	P_{loss}	$P_{loss} = -(P_{mot} + P_{bus} - P_{ind})$
	Positive signals indicate an input				
	Negative signals indicate a loss				

Bus Signal		Description	Variable	Equations
PwrStored — Stored energy rate of change • Positive signals indicate an increase • Negative signals indicate a decrease	PwrInd	Electrical winding loss	P_{ind}	$P_{ind} = L_f i_f \frac{di_f}{dt}$

The equations use these variables.

v_{ref}	Alternator output voltage command
v_f	Field winding voltage
i_f	Field winding current
i_s	Stator winding current
V_d	Diode voltage drop
R_f	Field winding resistance
R_s	Stator winding resistance
L_f	Field winding inductance
$K_{ u}$	Voltage constant
F_{v}	Voltage regulator bandwidth
F_c	Input current filter bandwidth
$V_{\it fmax}$	Field control voltage upper saturation limit
V_{fmin}	Field control voltage lower saturation limit
K_c	Coulomb friction coefficient
K_b	Viscous friction coefficient
K_w	Windage coefficient
ω	Motor shaft angular speed
i_{load}	Alternator load current
V_S	Alternator output voltage
$ au_{mech}$, T_{mech}	Motor shaft torque

Ports

Inputs

RefVolt — Alternator output voltage command

scalar

Alternator output voltage command, in V.

AltSpd — Angular speed

scalar

Motor shaft input angular speed, in rad/s.

LdCurr — Alternator load current

scalar

Alternator load current, in A.

Do not connect the port to the alternator rated current, which is a constant value. The block uses the alternator load current as the stator winding current, i_s , to determine the alternator voltage and motor torque. If you connect the port to the rated alternator current, the block does not model the dynamic effect of load current changes on the voltage and motor torque.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal			Description	Units
FldVolt	FldVolt		Field winding voltage	A
FldFlux			Field flux	Wb
PwrInfo	PwrTrnsfrd	PwrMtr	Mechanical power	W
		PwrBus	Electrical power	W
	PwrNotTrnsf rd	PwrLoss	Motor power loss	W
	PwrStored	PwrInd	Electrical winding loss	W

AltVolt — **Alternator output voltage**

scalar

Alternator output voltage, in V.

LdTrq — Motor shaft torque

scalar

Motor shaft torque, in N·m.

Parameters

Machine Configuration

Voltage constant, Kv — Constant

.1 (default) | scalar

Voltage constant, in V/rad/s.

Field winding resistance, Rf — Resistance

0.2 (default) | scalar

Field winding resistance, in ohm.

Field winding inductance, Lf — Inductance

0.002 (default) | scalar

Field winding inductance, in H.

Stator winding resistance, Rs — Resistance

0.01 (default) | scalar

Stator winding resistance, in ohm.

Diode voltage drop, Vd — Voltage

0.7 (default) | scalar

Diode voltage drop, in V.

Voltage Regulator

Regulator bandwidth, Fv — Bandwidth

2000 (default) | scalar

The regulator bandwidth, in Hz.

Current filter bandwidth, Fc — Bandwidth

1000 (default) | scalar

The current filter bandwidth, in Hz.

Field voltage max, Vfmax — Maximum field voltage

100 (default) | scalar

The maximum field voltage, in V.

Field voltage min, Vfmin — Minimum field voltage

-100 (default) | scalar

The minimum field voltage, in V.

Mechanical Losses

Coulomb friction, Kc — Friction

0 (default) | scalar

Coulomb friction, in N·m.

Viscous friction, Kb — Friction

0 (default) | scalar

Viscous friction, in N·m/rad/s.

Windage, Kw — Windage

0 (default) | scalar

Windage, in $N \cdot m/rad^2/s^2$.

References

[1] Krause, P. C. Analysis of Electric Machinery. New York: McGraw-Hill, 1994.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder $^{\text{\tiny TM}}$.

See Also

Starter

Introduced in R2017a

Starter

Starter as a DC motor

Library:

Powertrain Blockset / Energy Storage and Auxiliary Drive / Starter

Description

The Starter block implements a starter assembly as a separately excited DC motor, permanent magnet DC motor, or series connection DC motor. The motor operates as a torque source to an internal combustion engine.

Use the Starter block:

- In an engine model with a front-end accessory drive (FEAD)
- To model engine start and stop scenarios

The Starter block supports only an angular speed input to the DC motor. A load torque input requires engine dynamics.

Separately Excited DC Motor

In a separately excited DC motor, the field winding is connected to a separate source of DC power.

The relationship between the field winding voltage, field resistance, and field inductance is given by:

$$V_f = L_f \frac{di_f}{dt} + R_f i_f$$

The counter-electromotive force is a product of the field resistance, mutual inductance, and motor shaft angular speed:

$$EMF = L_a i_f L_{af} \omega$$

The armature voltage is given by:

$$V_a = L_a \frac{di_a}{dt} + R_a i_a + EMF$$

The starter motor current load is the sum of the field winding current and armature winding current:

$$i_{load} = i_f + i_a$$

The starter motor shaft torque is the product of the armature current, field current, and mutual inductance:

$$T_{mech} = i_a i_f L_{af}$$

Permanent Magnet DC Motor

In a permanent magnet DC motor, the magnets establish the excitation flux, so there is no field current.

The counter-electromotive force is proportional to the motor shaft angular speed:

$$EMF = K_t \omega$$

The armature voltage is given by:

$$V_a = L_a \frac{di_a}{dt} + R_a i_a + EMF$$

The starter motor current load is equal to the armature winding current:

$$i_{load} = i_a$$

The starter motor shaft torque is proportional to the armature winding current:

$$T_{mech} = K_t i_a$$

Series Excited DC Motor

A series excited DC motor connects the armature and field windings in series with a common DC power source.

The counter-electromotive force is a product of the field and armature initial series current, field, and armature mutual inductance and motor shaft angular speed:

$$EMF = i_{af}L_{af}\omega$$

The field and armature winding voltage is given by:

$$V_{af} = L_{ser} \frac{di_{af}}{dt} + R_{ser} i_{af} + EMF$$

The starter motor current load is equal to the field and armature series current:

$$i_{load} = i_{af}$$

The starter motor shaft torque is the product of the squared field and armature series current and the field and armature mutual inductance:

$$T_{mech} = i_{af}^2 L_{af}$$

For motor stability, the motor shaft angular speed must be greater than the ratio of the series connected field and armature resistance to the mutual inductance:

$$\omega > -\frac{R_{ser}}{L_{af}}$$

Power Accounting

For the power accounting, the block implements these equations.

Bus Sig	ynal		Description	Variabl e	Equations
	PwrTrnsfrd — Power transferred between blocks	PwrMt r	Mechanical power	P_{mot}	$P_{mot} = -\omega T_{mech}$

Bus Sign	nal		Description	Variabl e	Equations
•	Positive signals indicate flow into block Negative signals indicate flow out of block	PwrBu s	Electrical power	P_{bus}	Separately excited DC motor $P_{bus} = v_a i_a + v_f i_f$ PM excited DC motor $P_{bus} = v_a i_a$ Series excited DC motor $P_{bus} = v_a i_a$
tl		PwrLo ss	Motor losses	P_{loss}	$P_{loss} = -(P_{mot} + P_{bus} - P_{ind})$
	increase	PwrIn d	Electrical inductance	P_{ind}	Separately excited DC motor $P_{ind} = L_f i_f \frac{di_f}{dt} + L_a i_a \frac{di_a}{dt}$ PM excited DC motor $P_{ind} = L_a i_a \frac{di_a}{dt}$ Series excited DC motor $P_{ind} = L_{ser} i_{af} \frac{di_{af}}{dt}$

The equations use these variables.

R_a	Armature winding resistance
L_a	Armature winding inductance
EMF	Counter-electromotive force
R_f	Field winding resistance
L_f	Field winding inductance
L_{af}	Field and armature mutual inductance
i_a	Armature winding current
i_f	Field winding current

 K_t Motor torque constant Motor shaft angular speed ω V_a Armature winding voltage Field winding voltage V_f Field and armature winding voltage V_{af} Field and armature series current i_{af} Series connected field and armature resistance R_{ser} Series connected field and armature inductance L_{ser} Starter motor current load i_{load} T_{mech} Starter motor shaft torque

Ports

Inputs

MtrSpd — Angular speed

scalar

Motor shaft angular speed, in rad/s.

StartVolt — Armature and field voltage

scalar

- Armature winding voltage V_a and field winding voltage V_f in V.
- In series excited DC motor, armature and field winding voltage V_{af} .

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal			Description	Units
ArmCurr			Armature winding current	A
FldCurr			Field winding current	A
		PwrMtr	Mechanical power	W
		PwrBus	Electrical power	W
	PwrNotTrnsf rd	PwrLoss	Motor power loss	W
	PwrStored	PwrInd	Electrical inductance	W

LdCurr — Starter motor load current

scalar

Starter motor load current, in A.

MtrTrq — Starter motor shaft torque

scalar

Starter motor shaft torque, in $N \cdot m$.

Parameters

Configuration

Motor Type — Select motor type

Separately Excited DC Motor (default) | Permanent Magnet Excited DC Motor | Series Connection DC Motor

Select one of the three motor types.

Dependencies

The table summarizes the motor parameter dependencies.

Motor Type	Enables Motor Parameter
Separately Excited DC Motor	Armature winding resistance, Ra
	Armature winding inductance, La
	Field winding resistance Rf
	Field winding inductance, Lf
	Mutual inductance, Laf
	Initial armature and field current, Iaf
Permanent Magnet Excited DC	Armature winding resistance, Rapm
Motor	Armature winding inductance, Lapm
	Torque constant, Kt
	Initial armature current, Ia
Series Connection DC Motor	Total resistance, Rser
	Total inductance, Lser
	Initial current, Iafser
	Mutual inductance, Lafser

Separately Excited DC Motor

Armature winding resistance, Ra — Resistance

1 (default) | scalar

Armature winding resistance, in ohm.

Dependencies

To enable this parameter, select Separately Excited DC Motor for the Motor Type parameter.

Armature winding inductance, La — Inductance

.1 (default) | scalar

Armature winding inductance, in H.

To enable this parameter, select Separately Excited DC Motor for the Motor Type parameter.

Field winding resistance, Rf — Resistance

```
.3 (default) | scalar
```

Field winding resistance, in ohm.

Dependencies

To enable this parameter, select Separately Excited DC Motor for the Motor Type parameter.

Field winding inductance, Lf — Inductance

```
.2 (default) | scalar
```

Field winding inductance, in H.

Dependencies

To enable this parameter, select Separately Excited DC Motor for the Motor Type parameter.

Mutual inductance, Laf — Inductance

```
.3 (default) | scalar
```

Mutual inductance, in H.

Dependencies

To enable this parameter, select Separately Excited DC Motor for the Motor Type parameter.

Initial armature current and field current, Iaf — Current

```
[0 0] (default) | vector
```

Initial armature and field current, in A.

Dependencies

To enable this parameter, select Separately Excited DC Motor for the Motor Type parameter.

Permanent Magnet Excited DC Motor

Armature winding resistance, Rapm — Resistance

```
.5 (default) | scalar
```

Armature winding resistance, in ohm.

Dependencies

To enable this parameter, select Permanent Magnet Excited DC Motor for the **Motor Type** parameter.

Armature winding inductance, Lapm — Inductance

```
.1 (default) | scalar
```

Armature winding inductance, in H.

To enable this parameter, select Permanent Magnet Excited DC Motor for the **Motor Type** parameter.

Torque constant, Kt — Motor torque constant

```
.1 (default) | scalar
```

Motor torque constant, in $N \cdot m/A$.

Dependencies

To enable this parameter, select Permanent Magnet Excited DC Motor for the **Motor Type** parameter.

Initial armature current, Ia — Current

```
.1 (default) | scalar
```

Initial armature current, in A.

Dependencies

To enable this parameter, select Permanent Magnet Excited DC Motor for the **Motor Type** parameter.

Series Connection DC Motor

Total resistance, Rser — Resistance

```
.1 (default) | scalar
```

Series connected field and armature resistance, in ohm.

Dependencies

To enable this parameter, select Series Excited DC Motor for the Motor Type parameter.

Total inductance, Lser — Inductance

```
.1 (default) | scalar
```

Series connected field and armature inductance, in H.

Dependencies

To enable this parameter, select Series Excited DC Motor for the Motor Type parameter.

Initial current, Iafser — Current

0 (default) | scalar

Initial series current, in A.

Dependencies

To enable this parameter, select Series Excited DC Motor for the Motor Type parameter.

Mutual inductance, Lafser — Inductance

```
.3 (default) | scalar
```

Field and armature mutual inductance, in H.

To enable this parameter, select Series Excited DC Motor for the **Motor Type** parameter.

References

[1] Krause, P. C. Analysis of Electric Machinery. New York: McGraw-Hill, 1994.

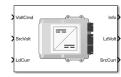
Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also

Reduced Lundell Alternator


Introduced in R2017a

Bidirectional DC-DC

DC-to-DC converter that supports bidirectional boost and buck

Library: Powertrain Blockset / Energy Storage and Auxiliary Drive /

DC-DC

Description

The Bidirectional DC-DC block implements a DC-to-DC converter that supports bidirectional boost and buck (lower) operation. Unless the DC-to-DC conversion limits the power, the output voltage tracks the voltage command. You can specify electrical losses or measured efficiency.

Depending on your battery system configuration, the voltage might not be at a potential that is required by electrical system components such has inverters and motors. You can use the block to boost or buck the voltage. Connect the block to the battery and one of these blocks:

- Mapped Motor
- IM Controller
- Interior PM Controller
- · Surface Mount PM Controller

To calculate the electrical loss during the DC-to-DC conversion, use **Parameterize losses by**.

Parameter Option	Description
Single efficiency measurement	Electrical loss calculated using a constant value for conversion efficiency.
Tabulated loss data	Electrical loss calculated as a function of load current and voltage. DC-to-DC converter data sheets typically provide loss data in this format. When you use this option, provide data for all the operating quadrants in which the simulation will run. If you provide partial data, the block assumes the same loss pattern for other quadrants. The block does not extrapolate loss that is outside the range voltage and current that you provide. The block allows you to account for fixed losses that are still present for zero voltage or current.
Tabulated efficiency data	Electrical loss calculated using conversion efficiency that is a function of load current and voltage. When you use this option, provide data for all the operating quadrants in which the simulation will run. If you provide partial data, the block assumes the same efficiency pattern for other quadrants. The block: • Assumes zero loss when either the voltage or current is zero. • Uses linear interpolation to determine the loss. At lower power conditions, for calculation accuracy, provide efficiency at low voltage and low current.

Note The block does not support inversion. The polarity of the input voltage matches the polarity of the output voltage.

Theory

The Bidirectional DC-DC block uses the commanded voltage and the actual voltage to determine whether to boost or buck (lower) the voltage. You can specify a time constant for the voltage response.

If	Then
$Volt_{cmd} > Src_{Volt}$	Boost
$Volt_{cmd} < Src_{Volt}$	Buck

The Bidirectional DC-DC block uses a time constant-based regulator to provide a fixed output voltage that is independent of load current. Using the output voltage and current, the block determines the losses of the DC-to-DC conversion. The block uses the conversion losses to calculate the input current. The block accounts for:

- Bidirectional current flow
 - Source to load Battery discharge
 - Load to source Battery charge
- · Rated power limits

The block provides voltage control that is power limited based on these equations. The voltage is fixed. The block does not implement a voltage drop because the load current approximates DC-to-DC conversion with a bandwidth that is greater than the load current draw.

DC-to-DC converter load voltage	$LdVolt_{Cmd} = \min(Volt_{Cmd}, \frac{P_{limit}}{Ld_{Amp}}, 0)$
	$LdVolt = LdVolt_{Cmd} \cdot \frac{1}{\tau s + 1}$
Power loss for single efficiency source to load	$Pwr_{Loss} = \frac{100 - Eff}{Eff} \cdot Ld_{Volt} \cdot Ld_{Amp}$
Power loss for single efficiency load to source	$Pwr_{Loss} = \frac{100 - Eff}{Eff} \cdot Ld_{Volt} \cdot Ld_{Amp} $
Power loss for tabulated efficiency	$Prw_{Loss} = f(Ld_{Volt}, Ld_{Amp})$
Source current draw from DC-to-DC converter	$Src_{Amp} = \frac{Ld_{Pwr} + Prw_{Loss}}{Src_{Volt}}$
Source power from DC-to-DC converter	$Src_{Pwr} = Src_{Amp} \cdot Src_{Volt}$

Power Accounting

For the power accounting, the block implements these equations.

Bus Sign	Bus Signal			Variable	Equation s
PwrInfo	PwrTrnsfrd — Power transferred between blocks • Positive signals indicate flow into block	PwrBusSrc	Source power to DC-to-DC converter	P_{src}	$P_{src} = SrcPwr$
	Negative signals indicate flow out of block	PwrBusLd	Load power from DC-to- DC converter	P_{bus}	$P_{bus} = -LdVolt$
	PwrNotTrnsfrd — Power crossing the block boundary, but not transferred • Positive signals indicate an input • Negative signals indicate a loss	PwrLoss	Converter power loss	P_{loss}	$P_{loss} = PwrLoss$
	PwrStored — Stored energy rate of change • Positive signals indicate an increase • Negative signals indicate a decrease		Not used		

The equations use these variables.

 $Volt_{Cmd}$ DC-to-DC converter commanded output voltage Src_{Volt} Source input voltage to DC-to-DC converter

 Ld_{Amp} Load current of DC-to-DC converter Ld_{Volt} Load voltage of DC-to-DC converter

 Src_{Amp} Source current draw from DC-to-DC converter

au Conversion time constant

 V_{init} Initial load voltage of the DC-to-DC converter P_{limit} Output power limit for DC-to-DC converter

Eff Input to output efficiency

 Src_{Pwr} Source power to DC-to-DC converter Ld_{Pwr} Load power from DC-to-DC converter

 Pwr_{Loss} Power loss

 $LdVolt_{Cmd}$ Commanded load voltage of DC-to-DC converter before application of time constant

Ports

Inputs

VoltCmd — **Commanded voltage**

scalar

DC-to-DC converter commanded output voltage, $Volt_{Cmd}$, in V.

SrcVolt — Input voltage

scalar

Source input voltage to DC-to-DC converter, Src_{Volt} , in V.

LdCurr — Load current

scalar

Load current of DC-to-DC converter, Ld_{Amp} , in A.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal			Description	Variable	Units
SrcPwr		Source power to DC-to-DC converter	Src_{Pwr}	W	
LdPwr		Load power from DC-to-DC converter	Ld_{Pwr}	W	
PwrLoss			Power loss	Pwr_{Loss}	W
LdVoltCm	ıd		Commanded load voltage of DC-to- DC converter before application of time constant	$LdVolt_{Cmd}$	V
PwrInfo PwrTrnsfrd PwrBusSr		PwrBusSrc	Source power to DC-to-DC converter	P_{src}	W
		PwrBusLd	Load power from DC-to-DC converter	P_{bus}	W
	PwrNotTrnsfrd	PwrLoss	Converter power loss	P_{loss}	W
	PwrStored	Not used		1	•

LdVolt — Load voltage

scalar

Load voltage of DC-to-DC converter, Ld_{Volt} , in V.

SrcCurr — **Source current**

scalar

Source current draw from DC-to-DC converter, Src_{Amp} , in A.

Parameters

Electrical Control

Converter response time constant — Constant

1/1000 (default) | scalar

Converter response time, τ , in s.

Converter response initial voltage, Vinit — Voltage

0 (default) | scalar

Initial load voltage of the DC-to-DC converter, V_{init} , in V.

Converter power limit, Plimit — Power

100000 (default) | scalar

Initial load voltage of the DC-to-DC converter, P_{limit} in W.

Electrical Losses

Parameterize losses by — Loss calculation

Single efficiency measurement (default) | Tabulated loss data | Tabulated efficiency data

This table summarizes the loss options used to calculate electrical options.

Parameter Option	Description
Single efficiency measurement	Electrical loss calculated using a constant value for conversion efficiency.
Tabulated loss data	Electrical loss calculated as a function of load current and voltage. DC-to-DC converter data sheets typically provide loss data in this format. When you use this option, provide data for all the operating quadrants in which the simulation will run. If you provide partial data, the block assumes the same loss pattern for other quadrants. The block does not extrapolate loss that is outside the range voltage and current that you provide. The block allows you to account for fixed losses that are still present for zero voltage or current.
Tabulated efficiency data	Electrical loss calculated using conversion efficiency that is a function of load current and voltage. When you use this option, provide data for all the operating quadrants in which the simulation will run. If you provide partial data, the block assumes the same efficiency pattern for other quadrants. The block: • Assumes zero loss when either the voltage or current is zero. • Uses linear interpolation to determine the loss. At lower power conditions, for calculation accuracy, provide efficiency at low voltage and low current.

Overall DC to DC converter efficiency, eff — Constant

98 (default) | scalar

Overall conversion efficiency, Eff, in %.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Single efficiency measurement.

Vector of voltages (v) for tabulated loss, v_loss_bp — Breakpoints [0 200 400 600 800 1000] (default) | 1-by-M vector

Tabulated loss breakpoints for M load voltages, in V.

Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated loss data**.

Vector of currents (i) for tabulated loss, i_loss_bp — Breakpoints [0 25 50 75 100] (default) | 1-by-N vector

Tabulated loss breakpoints for N load currents, in A.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

Corresponding losses, losses_table — 2-D lookup table N-by-M matrix

Electrical loss map, as a function of N load currents and M load voltages, in W.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

Vector of voltages (v) for tabulated efficiency, v_eff_bp — Breakpoints [200 400 600 800 1000] (default) | 1-by-M vector

Tabulated efficiency breakpoints for M load voltages, in V.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated efficiency data.

Vector of currents (i) for tabulated efficiency, i_eff_bp — Breakpoints [25 50 75 100] (default) | 1-by-N vector

Tabulated efficiency breakpoints for N load currents, in A.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated efficiency data.

Corresponding efficiency, efficiency_table — 2-D lookup table N-by-M matrix

Electrical efficiency map, as a function of N load currents and M load voltages, in %.

Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated efficiency data**.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also

Equivalent Circuit Battery | Estimation Equivalent Circuit Battery

Topics

Battery Modeling

Introduced in R2017b

Power Accounting Bus Creator

Create power information bus

Library: Powertrain Blockset / Utilities / Power Accounting

Description

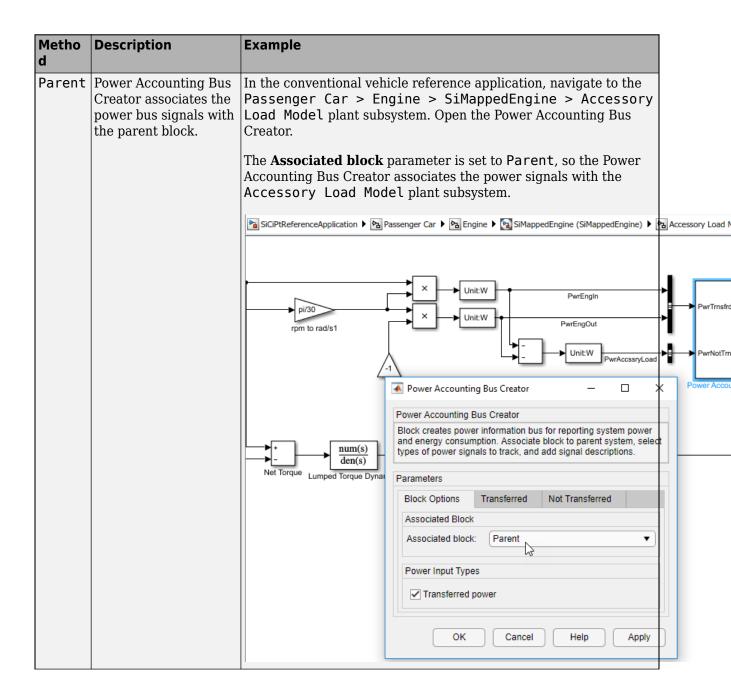
Creates a power information bus for reporting system power and energy consumption. You can associate the block to a parent system, select types of power signals to track, and add signal descriptions. If you want to generate a power and energy report, you must use this block to log the power signals in your plant model blocks. The Powertrain Blockset plant blocks use the Power Accounting Bus Creator to log the power signals. The documentation for each block includes information about the logged power bus signals.

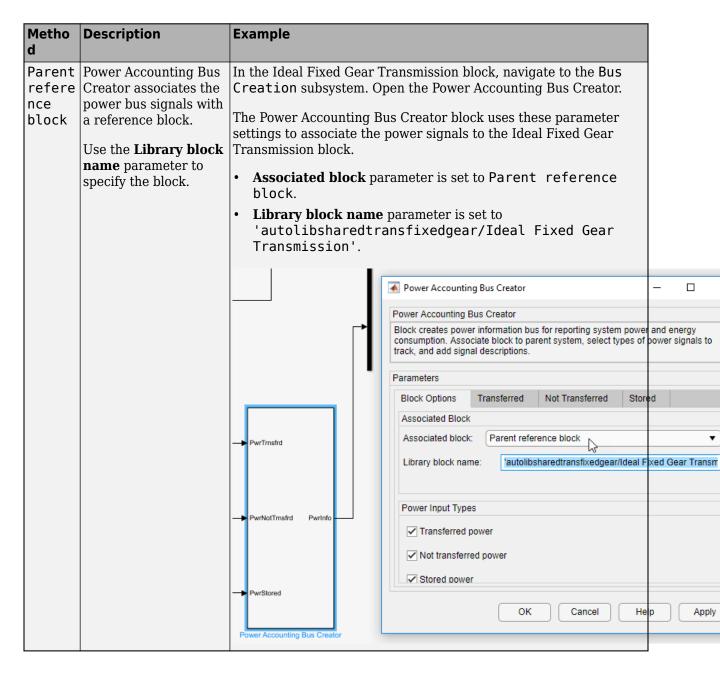
The system-level power and energy accounting satisfies the conservation of energy.

$$\sum P_{trans} + \sum P_{nottrans} = \sum P_{store}$$

To add the Power Accounting Bus Creator to your plant block, follow these steps:

- **1** Add the Power Accounting Bus Creator block to your block.
- 2 Select the types of power signals that you want to log. See "Power Signals" on page 3-40.
- **3** Associate the Power Accounting Bus Creator with a parent subsystem. See "Block Association" on page 3-41.
- **4** Connect the power signals to the Power Accounting Bus Creator.
 - Follow the sign convention.
 - To ensure that your plant block conserves energy, include all power associated with the block.
- 5 In the Power Accounting Bus Creator:
 - On the **Transferred** power tab, specify these parameters:
 - Associated Port.
 - Description
 - On the **Not Transferred** power tab, specify the **Description** parameter:
- In the plant block, connect the transferred power signals to the Power Accounting Bus Creator ports that are specified with the **Associated Port** parameter.


Power Signals


The Power Accounting Bus Creator sorts the signals into three power types.

Power Ty	pe	Description	Ex	amples
P_{trans}	Transferred	Power transferred between blocks:	•	Crankshaft power transferred from mapped engine to transmission.
		Positive signals indicate flow into block	•	Road load power transferred from wheel to vehicle.
		Negative signals indicate flow out of block	•	Rate of heat flow transferred from throttle to manifold volume.
$P_{nottrans}$	Not transferred	Power crossing the block boundary, but not transferred:	•	Rate of heat transfer with the environment.
		Positive signals indicate an input		 From environment is an input (positive signal)
		Negative signals indicate a loss		• To environment is a loss (negative signal)
			•	Flow boundary with the environment.
				 From environment is an input (positive signal)
				• To environment is a loss (negative signal)
			•	Mapped engine fuel flow.
P_{store}	Stored	Stored energy rate of change:	En	ergy rate of change:
		Positive signals indicate an	•	Battery storage
		increaseNegative signals indicate a	•	Kinetic energy in drivetrain components
		decrease	•	Vehicle potential energy
			•	Vehicle velocity

Block Association

When you add the Power Accounting Bus Creator to your plant block, you associate the signals to a parent block. There are two association methods.

Ports

Input

PwrTrnsfrd — **Power transferred between blocks** bus

PwrTrnsfrd — Power transferred between blocks

- Positive signals indicate flow into block
- · Negative signals indicate flow out of block

Dependencies

To create this input port, select **Transferred power**.

PwrNotTrnsfrd — **Power crossing block boundary, not transferred** bus

PwrNotTrnsfrd — Power crossing the block boundary, but not transferred

- Positive signals indicate an input
- Negative signals indicate a loss

Dependencies

To create this input port, select **Not transferred power**.

PwrStored — Stored energy rate of change

bus

PwrStored — Stored energy rate of change

- · Positive signals indicate an increase
- · Negative signals indicate a decrease

Dependencies

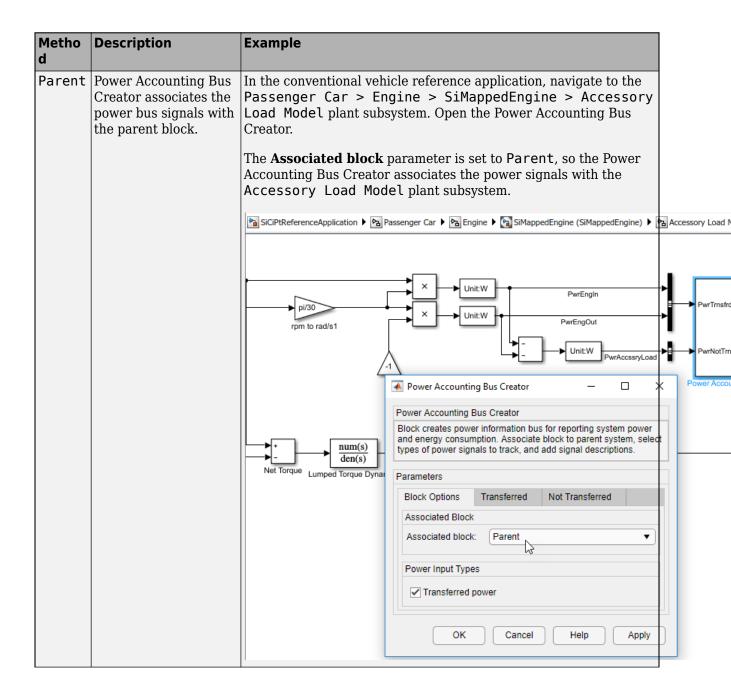
To create this input port, select **Stored power**.

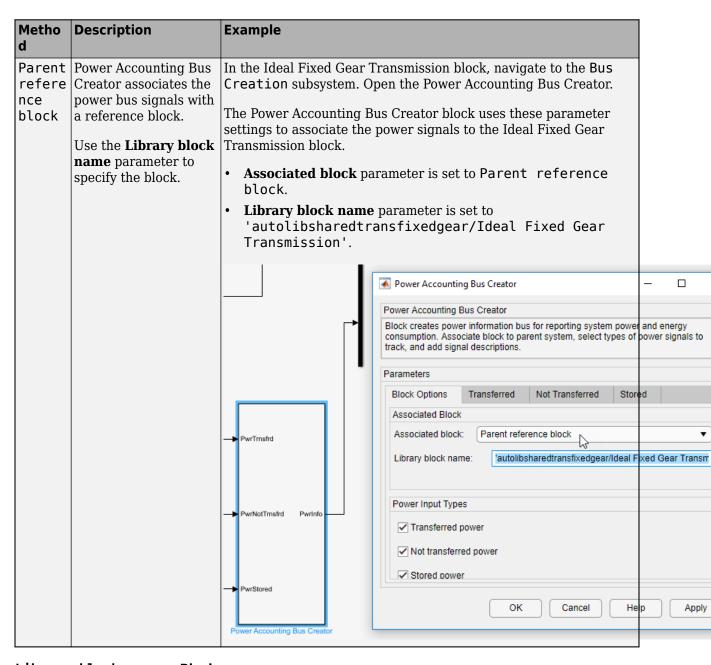
Output

PwrInfo — Power information bus

bus

Power information bus


Parameters


Block Options

Associated block — Associated block

Parent (default) | Parent reference block

When you add the Power Accounting Bus Creator to your plant block, you associate the signals to a parent block. There are two association methods.

Library block name — Block name

Block name

Dependencies

To create this parameter, set **Associated block** to Parent reference block.

Power Input Types

Transferred power — Power transferred between blocks

on (default) | off

Power transferred between blocks.

Dependencies

Selecting this parameter creates the:

- PwrTrnsfrd input port
- Transferred parameters

Not transferred power — Power crossing block boundary

on (default) | off

Power crossing block boundary, but not transferred.

Dependencies

Selecting this parameter creates the:

- PwrNotTrnsfrd input port
- Not Transferred parameters

Stored power — Stored energy rate of change

on (default) | off

Stored energy rate of change.

Dependencies

Selecting this parameter creates the:

- PwrStored input port
- **Stored** parameters

Transferred

Signal name — Name of signal

char

Signal name.

For example, this table summarizes the Power Accounting Bus Creator parameter **Transferred** parameter values for the listed blocks.

Block	Power Accounting Bus Creator Parameter Values			
	Signal Name	Associated Port	Description	
	PwrTrnsfrd.PwrDiffrntl	{'DiffTrq','DiffSpd'}	Differential	
Fixed Gear Trans missi on	PwrTrnsfrd.PwrEng	{'EngTrq','EngSpd'}	Engine	
Gearb	PwrTrnsfrd.PwrBase	{{'BTrq','BSpd'}'B'}	Base input	
OX	PwrTrnsfrd.PwrFlwr	{{'FTrq','FSpd'}'F'}	Follower output	

Block	Power Accounting Bus Creator Parameter Values				
	Signal Name	Associated Port	Description		
Drive Shaft	PwrTrnsfrd.PwrCmpsr	'Cmpsr'	Compressor		
	PwrTrnsfrd.PwrExt	'ExtTrq'	External		
	PwrTrnsfrd.Turb	'Turb'	Turbine		

Associated Port — Name of ports that transfer power

{'PortA','PortB','PortC'}

Name of ports that transfer power.

For example, this table summarizes the Power Accounting Bus Creator parameter **Transferred** parameter values for the listed blocks.

Block	ck Power Accounting Bus Creator Parameter Values			
	Signal Name	Associated Port	Description	
	PwrTrnsfrd.PwrDiffrntl	{'DiffTrq','DiffSpd'}	Differential	
Fixed Gear Trans missi on	PwrTrnsfrd.PwrEng	{'EngTrq','EngSpd'}	Engine	
Gearb	PwrTrnsfrd.PwrBase	{{'BTrq','BSpd'}'B'}	Base input	
OX	PwrTrnsfrd.PwrFlwr	{{'FTrq','FSpd'}'F'}	Follower output	
	PwrTrnsfrd.PwrCmpsr	'Cmpsr'	Compressor	
Drive Shaft	PwrTrnsfrd.PwrExt	'ExtTrq'	External	
Jilait	PwrTrnsfrd.Turb	'Turb'	Turbine	

Description — **Signal description**

char

Signal description.

For example, this table summarizes the Power Accounting Bus Creator parameter **Transferred** parameter values for the listed blocks.

Block	Power Accounting Bus Creator Parameter Values			
	Signal Name	Associated Port	Description	
Ideal	PwrTrnsfrd.PwrDiffrntl	{'DiffTrq','DiffSpd'}	Differential	
Fixed Gear Trans missi on	PwrTrnsfrd.PwrEng	{'EngTrq','EngSpd'}	Engine	
Gearb	PwrTrnsfrd.PwrBase	{{'BTrq','BSpd'}'B'}	Base input	
OX	PwrTrnsfrd.PwrFlwr	{{'FTrq','FSpd'}'F'}	Follower output	

Block	Power Accounting Bus Creator Parameter Values			
	Signal Name	Associated Port	Description	
	PwrTrnsfrd.PwrCmpsr	'Cmpsr'	Compressor	
Drive Shaft	PwrTrnsfrd.PwrExt	'ExtTrq'	External	
	PwrTrnsfrd.Turb	'Turb'	Turbine	

Not Transferred

Signal name — Name of signal

char

Signal name.

For example, this table summarizes the Power Accounting Bus Creator parameter **Not Transferred** parameter values for the listed blocks.

Block	Power Accounting Bus Creator Parameter Values		
	Signal Name	Description	
Ideal Fixed	PwrNotTrnsfrd.PwrDampLoss	Damping loss	
Gear Transmissi on	PwrNotTrnsfrd.PwrEffLoss	Efficiency loss	
Gearbox	PwrNotTrnsfrd.PwrDampLoss	Damping loss	
	PwrNotTrnsfrd.PwrMechLoss	Mechanical loss	
Boost Drive Shaft	PwrNotTrnsfrd.PwrMechLoss	Mechanical loss	

Description — Signal description

char

Signal description.

For example, this table summarizes the Power Accounting Bus Creator parameter $\bf Not$ $\bf Transferred$ parameter values for the listed blocks.

Block	Power Accounting Bus Creator Parameter Values		
	Signal Name	Description	
Ideal Fixed	PwrNotTrnsfrd.PwrDampLoss	Damping loss	
Gear Transmissi on	PwrNotTrnsfrd.PwrEffLoss	Efficiency loss	
Gearbox	PwrNotTrnsfrd.PwrDampLoss	Damping loss	
	PwrNotTrnsfrd.PwrMechLoss	Mechanical loss	
Boost Drive Shaft	PwrNotTrnsfrd.PwrMechLoss	Mechanical loss	

Stored

Signal name — Name of signal

char

Signal name.

For example, this table summarizes the Power Accounting Bus Creator parameter **Stored** parameter values for the listed blocks.

Block	Power Accounting Bus Creator Parameter Values		
	Signal Name	Description	
Ideal Fixed Gear Transmissi on	PwrStored.PwrStoredTrans	Rotational	
Control Volume System	PwrStored.PwrHeatStored	Stored heat	
Datasheet Battery	PwrStored.PwrStoredBatt	Battery stored	

Description — Signal description

char

Signal description.

For example, this table summarizes the Power Accounting Bus Creator parameter **Stored** parameter values for the listed blocks.

Block	Power Accounting Bus Creator Parameter Values	unting Bus Creator Parameter Values		
	Signal Name	Description		
Ideal Fixed Gear Transmissi on	PwrStored.PwrStoredTrans	Rotational		
Control Volume System	PwrStored.PwrHeatStored	Stored heat		
Datasheet Battery	PwrStored.PwrStoredBatt	Battery stored		

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder $^{\text{\tiny TM}}$.

See Also

autoblks.pwr.PlantInfo

Topics"Conventional Vehicle Powertrain Efficiency"
"Analyze Power and Energy"

Introduced in R2019a

Propulsion Blocks

Boost Drive Shaft

Boost drive shaft speed

Library: Powertrain Blockset / Propulsion / Combustion Engine

Components / Boost

Description

The Boost Drive Shaft block uses the compressor, turbine, and external torques to calculate the drive shaft speed. Use the block to model turbochargers and superchargers in an engine model.

You can specify these configurations:

- Turbocharger Connect the compressor to the turbine
 - Two-way ports for turbine and compressor connections
 - Option to add an externally applied input torque
- Compressor only Connect the drive shaft to the compressor
 - Two-way port for compressor connection
 - · Externally applied input torque
- Turbine only Connect the drive shaft to the turbine
 - Two-way port for turbine connection
 - · Externally applied load torque

For the Turbine only and Turbocharger configurations, the block modifies the turbine torque with a mechanical efficiency.

Equations

The Boost Drive Shaft block applies Newton's Second Law for Rotation. Positive torques cause the drive shaft to accelerate. Negative torques impose a load and decelerate the drive shaft.

The block also calculates the power loss due to mechanical inefficiency.

Calculation	Equations
Shaft dynamics	$\frac{d\omega}{dt} = \frac{1}{J_{shaft}} (\eta_{mech} \tau_{turb} + \tau_{comp} + \tau_{ext}) \text{ with initial speed } \omega_0$
Speed constraint	$\omega_{min} \le \omega \le \omega_{max}$
Power loss	$\dot{W}_{loss} = \omega \tau_{turb} (1 - \eta_{mech})$

Power Accounting

For the power accounting, the block implements these equations.

Bus Sig	nal		Description	Equations
PwrInf o	PwrTrnsfrd — Power transferred between blocks	PwrCmpsr	Shaft power from compressor	$ au_{comp}\omega$
	Positive signals indicate flow into blockNegative signals indicate flow	PwrTurb	Shaft power from turbine	$ au_{turb}\omega$
	out of block	PwrExt	Externally applied power	$ au_{ext}\omega$
	PwrNotTrnsfrd — Power crossing the block boundary, but not transferred	PwrMechLoss	Mechanical power loss	$-\dot{W}_{turb}$
	Positive signals indicate an input			
	Negative signals indicate a loss			
	PwrStored — Stored energy rate of change • Positive signals indicate an increase	PwrStoredDriveshf t	Rate change in rotational kinetic energy	$ \begin{array}{l} (\eta_{mech}\tau_{turb} \\ + \tau_{comp} \\ + \tau_{ext})\omega \end{array} $
	Negative signals indicate a decrease			

The equations use these variables.

ω	Shaft speed
ω_0	Initial drive shaft speed
ω_{min}	Minimum drive shaft speed
ω_{max}	Maximum drive shaft speed
J_{shaft}	Shaft inertia
η_{max}	Mechanical efficiency of turbine
$ au_{comp}$	Compressor torque
$ au_{turb}$	Turbine torque
$ au_{ext}$	Externally applied torque.
\dot{W}_{loss}	Power loss due to mechanical inefficiency

Ports

Input

Cmprs — **Compressor torque**

two-way connector port

Compressor torque, τ_{comp} , in N·m.

Dependencies

To create this port, for the **Configuration** parameter, select Turbocharger or Compressor only.

Turb — Turbine torque

two-way connector port

Turbine torque, τ_{turb} , in N·m.

Dependencies

To create this port, for the **Configuration** parameter, select Turbocharger or Turbine only.

ExtTrq — Externally applied torque

scalar

Externally applied torque, τ_{ext} , in N·m.

Dependencies

For turbocharger configurations, to create this port, set **Additional torque input** to External torque input.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal			Description	Units
DriveshftSpd			Shaft speed	rad/s
MechPwrLo	SS		Mechanical power loss	W
ExtTrq			Applied external torque	N·m
PwrInfo	PwrTrnsfrd	PwrCmpsr	Shaft power from compressor	W
		PwrTurb	Shaft power from turbine	W
		PwrExt	Externally applied power	W
	PwrNotTrns frd	PwrMechLoss	Mechanical power loss	W
	PwrStored	PwrStoredDriv eshft	Rate change in rotational kinetic energy	W

Cmprs — Compressor speed

two-way connector port

Compressor speed, ω , in rad/s.

Dependencies

To create this port, for the **Configuration** parameter, select Turbocharger or Compressor only.

Turb — Turbine speed

two-way connector port

Turbine speed, ω , in N·m.

Dependencies

To create this port, for the **Configuration** parameter, select Turbocharger or Turbine only.

Parameters

Block Options

Configuration — Specify configuration

Turbocharger (default) | Turbine only | Compressor only

Dependencies

- Selecting Turbocharger or Compressor only creates the Cmprs port.
- Selecting Turbocharger or Turbine only creates the Turb port.

Additional torque input — Specify external torque input

External torque input (default) | No external torque

Dependencies

- To enable this parameter, select a Turbocharger configuration.
- To create the Trq port, select External torque input.

Shaft inertia, J_shaft — Inertia

1.55e-5 (default) | scalar

Shaft inertia, J_{shaft} , in kg·m^2.

Initial shaft speed, w_0 - Speed

1000 (default) | scalar

Initial drive shaft speed, ω_0 , in rad/s.

Min shaft speed, w_min — Speed

100 (default) | scalar

Minimum drive shaft speed, ω_{min} , in rad/s.

Max shaft speed, w max — Speed

20000 (default) | scalar

Maximum drive shaft speed, ω_{max} , in rad/s.

Turbine mechanical efficiency, eta mech — Efficiency

0.95 (default) | scalar

Mechanical efficiency of turbine η_{max} .

Dependencies

To enable this parameter, select the Turbocharger or Turbine only configuration.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder $^{\text{\tiny TM}}$.

See Also

Compressor | Turbine

Introduced in R2017a

CI Controller

Compression-ignition controller that includes air mass flow, torque, and EGR estimation

Library: Powertrain Blockset / Propulsion / Combustion Engine

Controllers

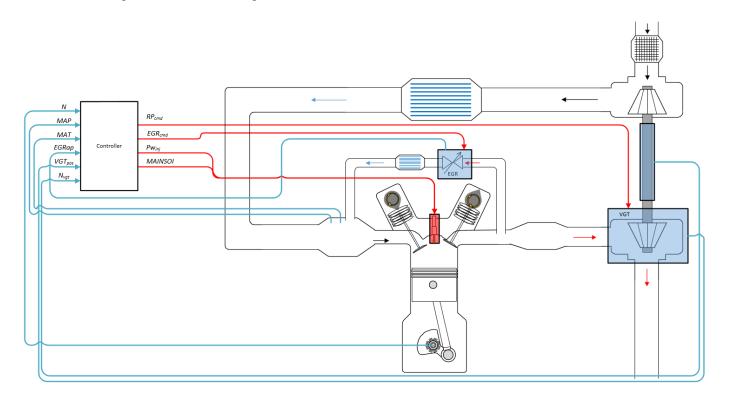
Description

The CI Controller block implements a compression-ignition (CI) controller with air mass flow, torque, exhaust gas recirculation (EGR) flow, exhaust back-pressure, and exhaust gas temperature estimation. You can use the CI Controller block in engine control design or performance, fuel economy, and emission tradeoff studies. The core engine block requires the commands that are output from the CI Controller block.

The block uses the commanded torque and measured engine speed to determine these open-loop actuator commands:

- Injector pulse-width
- · Fuel injection timing
- Variable geometry turbocharger (VGT) rack position
- EGR valve area percent

The CI Controller block has two subsystems:


• The Controller subsystem — Determines the commands based on tables that are functions of commanded torque and measured engine speed.

Based On	Determines Commands for
Commanded torque	Injector pulse-width
Measured engine speed	Fuel injection timing
	VGT rack position
	EGR valve area percent

The Estimator subsystem — Determines estimates based on these engine attributes.

Based On	Estimates
Measured engine speed	Air mass flow
Fuel injection timing	Torque
Cycle average intake manifold pressure and	Exhaust gas temperature
temperature	Exhaust gas back-pressure
Fuel injector pulse-width	EGR valve gas mass flow
Absolute ambient pressure	
EGR valve area percent	
VGT rack position	
VGT speed	

The figure illustrates the signal flow.

The figure uses these variables.

N Engine speed

MAP Cycle average intake manifold absolute pressure

MAT Cycle average intake manifold gas absolute temperature

EGRap, EGR_{cmd} EGR valve area percent and EGR valve area percent command, respectively

 VGT_{pos} VGT rack position

 N_{vgt} Corrected turbocharger speed RP_{cmd} VGT rack position command Pw_{inj} Fuel injector pulse-width

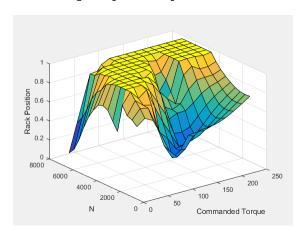
MAINSOI Start of injection timing for main fuel injection pulse

The Model-Based Calibration Toolbox[™] was used to develop the tables that are available with the Powertrain Blockset.

Controller

The controller governs the combustion process by commanding VGT rack position, EGR valve area percent, fuel injection timing, and injector pulse-width. Feedforward lookup tables, which are functions of measured engine speed and commanded torque, determine the control commands.

Air

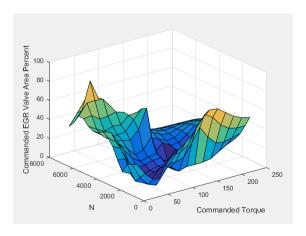

The controller commands the EGR valve area percent and VGT rack position. Changing the VGT rack position modifies the turbine flow characteristics. At low-requested torques, the rack position can reduce the exhaust back pressure, resulting in a low turbocharger speed and boost pressure. When the commanded fuel requires additional air mass flow, the rack position is set to close the turbocharger vanes, increasing the turbocharger speed and intake manifold boost pressure.

The variable geometry turbocharger (VGT) rack position lookup table is a function of commanded torque and engine speed

$$RP_{cmd} = f_{RPcmd}(Trq_{cmd}, N)$$

where:

- *RP_{cmd}* is VGT rack position command, in percent.
- Trq_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.



The commanded exhaust gas recirculation (EGR) valve area percent lookup table is a function of commanded torque and engine speed

$$EGR_{cmd} = f_{EGRcmd}(Trq_{cmd}, N)$$

where:

- *EGR*_{cmd} is commanded EGR valve area percent, in percent.
- Trq_{cmd} is commanded engine torque, in N·m.
- N is engine speed, in rpm.

Fuel

To initiate combustion, a CI engine injects fuel directly into the combustion chamber. After the injection, the fuel spontaneously ignites, increasing cylinder pressure. The total mass of the injected fuel and main injection timing determines the torque production.

Assuming constant fuel rail pressure, the CI controller commands the injector pulse-width based on the total requested fuel mass:

$$Pw_{inj} = \frac{F_{cmd, tot}}{S_{inj}}$$

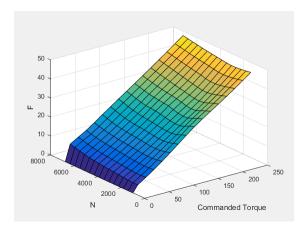
The equation uses these variables.

 Pw_{ini} Fuel injector pulse-width

 S_{inj} Fuel injector slope

 $F_{cmd.tot}$ Commanded total fuel mass per injection

MAINSOI Main start-of-injection timing

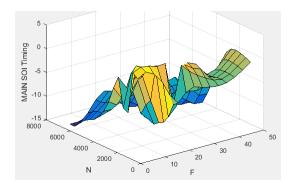

N Engine speed

The commanded total fuel mass per injection table is a function of the torque command and engine speed

$$F_{cmd, tot} = f_{Fcmd, tot}(Trq_{cmd}, N)$$

where

- $F_{cmd,tot} = F$ is commanded total fuel mass per injection, in mg per cylinder.
- Trq_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.



The main start-of-injection (SOI) timing lookup table is a function of commanded fuel mass and engine speed

$$MAINSOI = f(F_{cmd, tot}, N)$$

where:

- *MAINSOI* is the main start-of-injection timing, in degrees crank angle after top dead center (degATDC).
- $F_{cmd,tot} = F$ is commanded fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

Idle Speed

When the commanded torque is below a threshold value, the idle speed controller regulates the engine speed.

If	Idle Speed Controller
$Trq_{cmd,input} < Trq_{idlecmd,enable}$	Enabled
$Trq_{idlecmd,enable} \leq Trq_{cmd,input}$	Not enabled

The idle speed controller uses a discrete PI controller to regulate the target idle speed by commanding a torque.

The PI controller uses this transfer function:

$$C_{idle}(z) = K_{p,idle} + K_{i,idle} \frac{t_s}{z-1}$$

The idle speed commanded torque must be less than the maximum commanded torque:

 $0 \leq Trq_{idlecomd} \leq Trq_{idlecmd.max}$

Idle speed control is active under these conditions. If the commanded input torque drops below the threshold for enabling the idle speed controller ($Trq_{cmd,input} < Trq_{idlecmd,enable}$), the commanded engine torque is given by:

 $Trq_{cmd} = \max(Trq_{cmd,input}, Trq_{idlecmd}).$

The equations use these variables.

Trq_{cmd} Commanded engine torque

Trq_{cmd,input} Input commanded engine torque

 $Trq_{idlecmd,enable}$ Threshold for enabling idle speed controller $Trq_{idlecmd}$ Idle speed controller commanded torque

Trq_{idlecmd,max} Maximum commanded torque

 N_{idle} Base idle speed

 $K_{p,idle}$ Idle speed controller proportional gain $K_{i,idle}$ Idle speed controller integral gain

Speed Limiter

To prevent over revving the engine, the block implements an engine speed limit controller that limits the engine speed to the value specified by the **Rev-limiter speed threshold** parameter on the **Controls > Idle Speed** tab.

If the engine speed, N, exceeds the engine speed limit, N_{lim} , the block sets the commanded engine torque to 0.

To smoothly transition the torque command to 0 as the engine speed approaches the speed limit, the block implements a lookup table multiplier. The lookup table multiplies the torque command by a value that ranges from 0 (engine speed exceeds limit) to 1 (engine speed does not exceed the limit).

Estimator

Using the CI Core Engine block, the CI Controller block estimates the air mass flow rate, EGR valve mass flow, exhaust back-pressure, engine torque, AFR, and exhaust temperature from sensor feedback. The Info port provides the estimated values, but block does not use them to determine the open-loop engine actuator commands.

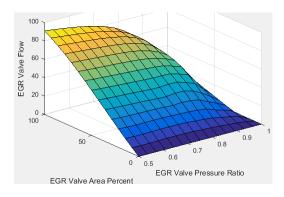
Air Mass Flow

To calculate the air mass flow, the compression-ignition (CI) engine uses the "CI Engine Speed-Density Air Mass Flow Model". The speed-density model uses the speed-density equation to calculate the engine air mass flow, relating the engine intake port mass flow to the intake manifold pressure, intake manifold temperature, and engine speed.

EGR Valve Mass Flow

To calculate the estimated exhaust gas recirculation (EGR) valve mass flow, the block calculates the EGR flow that would occur at standard temperature and pressure conditions, and then corrects the

flow to actual temperature and pressure conditions. The block EGR calculation uses estimated exhaust back-pressure, estimated exhaust temperature, standard temperature, and standard pressure.


$$\dot{m}_{egr,\,est} = \dot{m}_{egr,\,std} \frac{P_{exh,\,est}}{P_{std}} \sqrt{\frac{T_{std}}{T_{exh,\,est}}}$$

• The standard exhaust gas recirculation (EGR) mass flow is a lookup table that is a function of the standard flow pressure ratio and EGR valve flow area

$$\dot{m}_{egr,std} = f(\frac{MAP}{P_{exh.est}}, EGRap)$$

where:

- $\dot{m}_{ear,std}$ is the standard EGR valve mass flow, in g/s.
- $P_{exh,est}$ is the estimated exhaust back-pressure, in Pa.
- MAP is the cycle average intake manifold absolute pressure, in Pa.
- *EGRap* is the measured EGR valve area, in percent.

The equations use these variables.

 $\dot{m}_{egr,\,est}$ Estimated EGR valve mass flow $\dot{m}_{egr,\,std}$ Standard EGR valve mass flow

 P_{std} Standard pressure T_{std} Standard temperature

 $T_{exh,est}$ Estimated exhaust manifold gas temperature

MAP Measured cycle average intake manifold absolute pressure

 $P_{exh.est}$ Estimated exhaust back-pressure

 P_{Amb} Absolute ambient pressure

EGRap Measured EGR valve area percent

Exhaust Back-Pressure

To estimate the EGR valve mass flow, the block requires an estimate of the exhaust back-pressure. To estimate the exhaust back-pressure, the block uses the ambient pressure and the turbocharger pressure ratio.

$$P_{exh, est} = P_{Amb}Pr_{turbo}$$

For the turbocharger pressure ration calculation, the block uses two lookup tables. The first lookup table determines the approximate turbocharger pressure ratio as a function of turbocharger mass flow and corrected turbocharger speed. Using a second lookup table, the block corrects the approximate turbocharger pressure ratio for VGT rack position.

$$Pr_{turbo} = f(\dot{m}_{airstd}, N_{vgtcorr}) f(VGT_{pos})$$

where:

$$N_{vgtcorr} = \frac{N_{vgt}}{\sqrt{T_{exh,est}}}$$

The equations use these variables.

 $\dot{m}_{eqr,est}$ Estimated EGR valve mass flow

 $\dot{m}_{eqr,std}$ Standard EGR valve mass flow

 $\dot{m}_{port,\,est}$ Estimated intake port mass flow rate

 \dot{m}_{airstd} Standard air mass flow

EGRap Measured EGR valve area

MAP Measured cycle average intake manifold absolute pressure

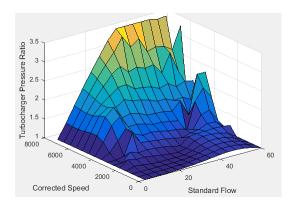
MAT Measured cycle average intake manifold gas absolute temperature

 P_{std} Standard pressure

 T_{std} Standard temperature

 $T_{exh.est}$ Estimated exhaust manifold gas temperature

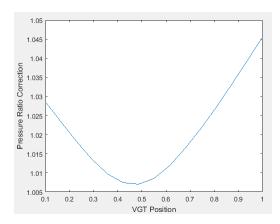
 $Pr_{vatcorr}$ Turbocharger pressure ratio correction for VGT rack position


 Pr_{turbo} Turbocharger pressure ratio

 $P_{\mathit{exh,est}}$ Estimated exhaust back-pressure

 P_{Amb} Absolute ambient pressure $N_{vgtcorr}$ Corrected turbocharger speed VGT_{nos} Measured VGT rack position

The exhaust-back pressure calculation uses these lookup tables:


- The turbocharger pressure ratio, corrected for variable geometry turbocharger (VGT) speed, is a lookup table that is a function of the standard air mass flow and corrected turbocharger speed, $Pr_{turbo} = f(\dot{m}_{airstd}, N_{vatcorr})$, where:
 - Pr_{turbo} is the turbocharger pressure ratio, corrected for VGT speed.
 - \dot{m}_{airstd} is the standard air mass flow, in g/s.
 - $N_{vatcorr}$ is the corrected turbocharger speed, in rpm/K^(1/2).

To calculate the standard air mass flow through the turbocharger, the block uses conservation of mass, the estimated intake port, and EGR mass flows (from the last estimated calculation). The calculation assumes negligible exhaust manifold filling dynamics.

$$\dot{m}_{airstd} = (\dot{m}_{port,\,est} - \dot{m}_{egr,\,est}) \frac{P_{std}}{MAP} \sqrt{\frac{MAT}{T_{std}}}$$

- The variable geometry turbocharger pressure ratio correction is a function of the rack position, $Pr_{vqtcorr} = f(VGT_{pos})$, where:
 - $Pr_{vatcorr}$ is the turbocharger pressure ratio correction.
 - $\bullet \quad \mathit{VGT}_{\mathit{pos}}$ is the variable geometry turbocharger (VGT) rack position.

Engine Torque

To calculate the engine torque, you can configure the block to use either of these torque models.

Brake Torque Model	Description
"CI Engine Torque Structure Model"	The CI core engine torque structure model determines the engine torque by reducing the maximum engine torque potential as these engine conditions vary from nominal:
	Start of injection (SOI) timing
	Exhaust back-pressure
	Burned fuel mass
	Intake manifold gas pressure, temperature, and oxygen percentage
	Fuel rail pressure
	To account for the effect of post-inject fuel on torque, the model uses a calibrated torque offset table.
"CI Engine Simple Torque Model"	For the simple engine torque calculation, the CI engine uses a torque lookup table map that is a function of engine speed and injected fuel mass.

Exhaust Temperature

The exhaust temperature calculation depends on the torque model. For both torque models, the block implements lookup tables.

Torque Model	Description	Equations	
Simple Torque Lookup	Exhaust temperature lookup table is a function of the injected fuel mass and engine speed.	$T_{exh} = f_{Texh}(F, N)$	
Torque Structure	The nominal exhaust temperature, $Texh_{nom}$, is a product of these exhaust temperature efficiencies:	$T_{exhnom} = SOI_{exhteff}MAP_{exhteff}MAT_{exhteff}OT$ $T_{exh} = T_{exhnom} + \Delta T_{post}$	2p _{exhteff} FUI
	 SOI timing Intake manifold gas pressure Intake manifold gas temperature Intake manifold gas oxygen percentage Fuel rail pressure Optimal temperature The exhaust temperature, Texh_{nom}, is offset by a post temperature effect, ΔT_{post}, that accounts for post and late injections during the expansion and exhaust strokes. 	$SOI_{exhteff} = f_{SOI_{exhteff}}(\Delta SOI, N)$ $MAP_{exhteff} = f_{MAP_{exhteff}}(MAP_{ratio}, \lambda)$ $MAT_{exhteff} = f_{MAT_{exhteff}}(\Delta MAT, N)$ $O2p_{exhteff} = f_{O2p_{exhteff}}(\Delta O2p, N)$ $Texh_{opt} = f_{Texh}(F, N)$	

The equations use these variables.

F Compression stroke injected fuel mass

N Engine speed

Texh Exhaust manifold gas temperature

Texh_{opt} Optimal exhaust manifold gas temperature

 ΔT_{post} Post injection temperature effect $Texh_{nom}$ Nominal exhaust temperature

SOI_{exhteff} Main SOI exhaust temperature efficiency multiplier

 ΔSOI Main SOI timing relative to optimal timing

 MAP_{exheff} Intake manifold gas pressure exhaust temperature efficiency multiplier MAP_{ratio} Intake manifold gas pressure ratio relative to optimal pressure ratio

λ Intake manifold gas lambda

MAT_{exheff} Intake manifold gas temperature exhaust temperature efficiency multiplier

 ΔMAT Intake manifold gas temperature relative to optimal temperature $O2P_{exheff}$ Intake manifold gas oxygen exhaust temperature efficiency multiplier

 $\Delta O2P$ Intake gas oxygen percent relative to optimal

FUELP_{exheff} Fuel rail pressure exhaust temperature efficiency multiplier

 $\Delta FUELP$ Fuel rail pressure relative to optimal

Air-Fuel Ratio

The measured engine speed and fuel injector pulse-width determine the commanded fuel mass flow rate:

$$\dot{m}_{fuel,\,cmd} = \frac{NS_{inj}Pw_{inj}N_{cyl}}{Cps\left(\frac{60s}{min}\right)\left(\frac{1000mg}{a}\right)}$$

The commanded total fuel mass flow and estimated port mass flow rates determine the estimated AFR:

$$AFR_{est} = \frac{\dot{m}_{port, est}}{\dot{m}_{fuel, cmd}}$$

The equations use these variables.

 Pw_{inj} Fuel injector pulse-width AFR_{est} Estimated air-fuel ratio

 $\dot{m}_{fuel, cmd}$ Commanded fuel mass flow rate

 S_{inj} Fuel injector slope

N Engine speed

 N_{cvl} Number of engine cylinders

Cps Crankshaft revolutions per power stroke, rev/stroke $\dot{m}_{port.est}$ Total estimated engine air mass flow at intake ports

Ports

Input

TrqCmd — Commanded engine torque

scalar

Commanded engine torque, $Trq_{cmd,input}$, in N·m.

EngSpd — Measured engine speed

scalar

Measured engine speed, *N*, in rpm.

Map — Measured intake manifold absolute pressure

scalar

Measured intake manifold absolute pressure, MAP, in Pa.

Mat — Measured intake manifold absolute temperature

scalar

Measured intake manifold absolute temperature, MAT, in K.

AmbPrs — Ambient pressure

scalar

Absolute ambient pressure, P_{Amb} , in Pa.

EgrVlvAreaPct — EGR valve area percent

scalar

Measured EGR valve area percent, *EGRap*, in %.

VgtPos — VGT speed

scalar

Measured VGT rack position, VGT_{pos} .

VgtSpd — VGT speed

scalar

Measured VGT speed, N_{vat} , in rpm.

Ect — Engine cooling temperature

scalar

Engine cooling temperature, $T_{coolant}$, in K.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Variable	Units
InjPw	Fuel injector pulse-width	Pw_{inj}	ms
EgrVlvAreaPctCmd	EGR valve area percent command	EGR_{cmd}	%
TurbRackPosCmd	VGT rack position command	RP_{cmd}	N/A
TrqCmd	Engine torque	Trq_{cmd}	N·m
FuelMassTotCmd	Commanded total fuel mass per injection	$F_{cmd,tot}$	mg
FuelMainSoi	Main start-of-injection timing	MAINSOI	degATDC
FuelMassFlwCmd	Commanded fuel mass flow rate	$\dot{m}_{fuel,cmd}$	kg/s
EstIntkPortMassFlw	Estimated port mass flow rate	m _{port, est}	kg/s
EstEngTrq	Estimated engine torque	Trq_{est}	N·m
EstExhManGasTemp	Estimated exhaust manifold gas temperature	$T_{exh,est}$	K
EstExhPrs	Estimated exhaust back-pressure	Pex	Pa
EstEGRFlow	EstEGRFlow	EstEGRFlow	EstEGRFlow
EstAfr	Estimated air-fuel ratio	AFR_{est}	N/A
EngRevLimAct	ngRevLimAct Flag that indicates if rev-limiter control is active		N/A

InjPw — Fuel injector pulse-width

scalar

Fuel injector pulse-width, Pw_{inj} , in ms.

FuelMainSoi — Fuel main injecting timing

scalar

Main start-of-injection timing, MAINSOI, in degrees crank angle after top dead center (degATDC).

TurbRackPosCmd — Rack position

scalar

VGT rack position command, RP_{cmd} .

EgrVlvAreaPctCmd — Intake cam phaser angle command

scalar

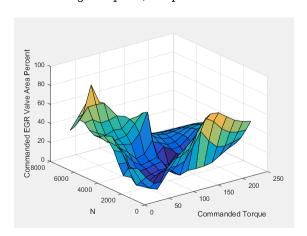
EGR valve area percent command, EGR_{cmd} .

Parameters

Controls

Air - EGR

EGR valve area percent, f_egrcmd — Lookup table


array

The commanded exhaust gas recirculation (EGR) valve area percent lookup table is a function of commanded torque and engine speed

$$EGR_{cmd} = f_{EGRcmd}(Trq_{cmd}, N)$$

where:

- EGR_{cmd} is commanded EGR valve area percent, in percent.
- Trq_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.

Commanded torque breakpoints, f_egr_tq_bpt — Breakpoints

[10 26.43 42.86 59.29 75.71 92.14 108.6 125 141.4 157.9 174.3 190.7 207.1 223.6 240] (default) | vector

Commanded torque breakpoints, in N·m.

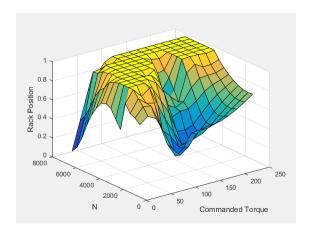
Speed breakpoints, f_egr_n_bpt — Breakpoints

[1000 1411 1821 2232 2643 3054 3464 3875 4286 4696 5107 5518 5929 6339 6750] (default) | vector

Speed breakpoints, in rpm.

Air - VGR

VGT rack position table, f_rpcmd — Lookup table


array

The variable geometry turbocharger (VGT) rack position lookup table is a function of commanded torque and engine speed $\[\]$

$$RP_{cmd} = f_{RPcmd}(Trq_{cmd}, N)$$

where:

- *RP_{cmd}* is VGT rack position command, in percent.
- Trq_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.

Commanded torque breakpoints, f rp tq bpt — Breakpoints

[10 26.43 42.86 59.29 75.71 92.14 108.6 125 141.4 157.9 174.3 190.7 207.1 223.6 240] (default) | vector

Breakpoints, in $N \cdot m$.

Speed breakpoints, f_rp_n_bpt — Breakpoints

[1000 1411 1821 2232 2643 3054 3464 3875 4286 4696 5107 5518 5929 6339 6750] (default) | vector

Breakpoints, in rpm.

Fuel

Injector slope, Sinj — Slope

6.452 (default) | scalar

Fuel injector slope, S_{ini} , in mg/ms.

Stoichiometric air-fuel ratio, afr stoich — Ratio

14.6 (default) | scalar

Stoichiometric air-fuel ratio, AFR_{stoich} .

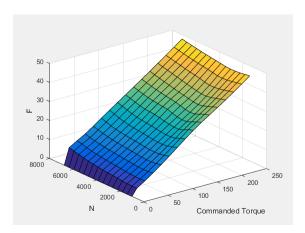
Fuel lower heating value, fuel_lhv — Heat

42e6 (default) | scalar

Fuel lower heating value, in J/kg.

Fuel mass per injection table, f_fcmd_tot — Lookup table

array

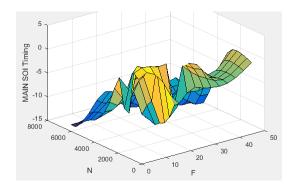

The commanded total fuel mass per injection table is a function of the torque command and engine speed

$$F_{cmd,tot} = f_{Fcmd,tot}(Trq_{cmd}, N)$$

where:

• $F_{cmd,tot} = F$ is commanded total fuel mass per injection, in mg per cylinder.

- Trq_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.


Fuel main injection timing table, f_main_soi — Lookup table
array

The main start-of-injection (SOI) timing lookup table is a function of commanded fuel mass and engine speed

$$MAINSOI = f(F_{cmd,tot}, N)$$

where:

- *MAINSOI* is the main start-of-injection timing, in degrees crank angle after top dead center (degATDC).
- $F_{cmd,tot} = F$ is commanded fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

Fuel main injection timing fuel breakpoints, f_main_soi_f_bpt — Breakpoints
vector

Fuel main injection timing fuel breakpoints, in mg per injection.

Fuel main injection timing speed breakpoints, f_main_soi_n_bpt — Breakpoints [1000,1410.71428571429,1821.42857142857,2232.14285714286,2642.85714285714,305 3.57142857143,3464.28571428571,3875,4285.71428571429,4696.42857142857,5107.14

285714286,5517.85714285714,5928.57142857143,6339.28571428572,6750] (default) | vector

Fuel main injection timing speed breakpoints, in rpm.

Commanded torque breakpoints, f_f_tot_tq_bpt — Breakpoints

[0 10 26.43 42.86 59.29 75.71 92.14 108.6 125 141.4 157.9 174.3 190.7 207.1 223.6 240] (default) | vector

Commanded torque breakpoints, in N·m.

Speed breakpoints, f_f_tot_n_bpt — Breakpoints

[1000 1411 1821 2232 2643 3054 3464 3875 4286 4696 5107 5518 5929 6339 6750] (default) | vector

Speed breakpoints, in rpm.

Idle Speed

Base idle speed, N idle — Speed

750 (default) | scalar

Base idle speed, N_{idle} , in rpm.

Enable torque command limit, Trq_idlecmd_enable — Torque

1 (default) | scalar

Torque to enable the idle speed controller, $Trq_{idlecmd.enable}$, in N·m.

Maximum torque command, Trq idlecmd max — Torque

50 (default) | scalar

Maximum idle controller commanded torque, $Trq_{idlecmd\ max}$ in N·m.

Proportional gain, Kp_idle — PI Controller

0.05 (default) | scalar

Proportional gain for idle speed control, $K_{p.idle}$, in N·m/rpm.

Integral gain, Ki idle — PI Controller

0.2 (default) | scalar

Integral gain for idle speed control, $K_{i,idle}$, in N·m/(rpm·s).

Rev-limiter speed threshold — Engine speed limit

scalar

Engine speed limit, N_{lim} , in rpm.

If the engine speed, N, exceeds the engine speed limit, N_{lim} , the block sets the commanded engine torque to 0.

To smoothly transition the torque command to 0 as the engine speed approaches the speed limit, the block implements a lookup table multiplier. The lookup table multiplies the torque command by a value that ranges from 0 (engine speed exceeds limit) to 1 (engine speed does not exceed the limit).

Estimation

Air

Number of cylinders, NCyl — Engine cylinders

4 (default) | scalar

Number of engine cylinders, N_{cyl} .

Crank revolutions per power stroke, Cps — Revolutions per stroke

2 (default) | scalar

Crankshaft revolutions per power stroke, Cps, in rev/stroke.

Total displaced volume, Vd — Volume

0.0015 (default) | scalar

Displaced volume, V_d , in m³.

Ideal gas constant air, Rair — Constant

287 (default) | scalar

Ideal gas constant, R_{air} , in J/(kg·K).

Air standard pressure, Pstd — Pressure

101325 (default) | scalar

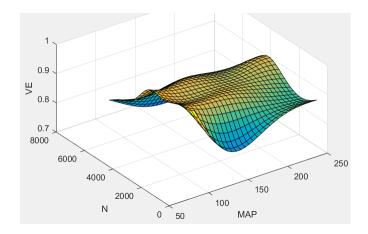
Standard air pressure, P_{std} , in Pa.

Air standard temperature, Tstd — Temperature

293.15 (default) | scalar

Standard air temperature, T_{std} , in K.

Speed density volumetric efficiency, f_nv — Lookup table


array

The volumetric efficiency lookup table is a function of the intake manifold absolute pressure at intake valve closing (IVC) and engine speed

$$\eta_{\mathcal{V}} = f_{\eta_{\mathcal{V}}}(MAP,N)$$

where:

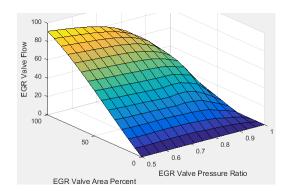
- η_{V} is engine volumetric efficiency, dimensionless.
- *MAP* is intake manifold absolute pressure, in KPa.
- *N* is engine speed, in rpm.

Speed density intake manifold pressure breakpoints, f_nv_prs_bpt — Breakpoints
[95 100.3 105.7 111 116.4 121.7 127.1 132.4 137.8 143.1 148.4 153.8 159.1
164.5 169.8 175.2 180.5 185.9 191.2 196.6 201.9 207.2 212.6 217.9 223.3 228.6
234 239.3 244.7 250] (default) | vector

Intake manifold pressure breakpoints for speed-density volumetric efficiency lookup table, in KPa.

Speed density engine speed breakpoints, f_nv_n_bpt — Breakpoints
[750 956.9 1164 1371 1578 1784 1991 2198 2405 2612 2819 3026 3233 3440 3647
3853 4060 4267 4474 4681 4888 5095 5302 5509 5716 5922 6129 6336 6543 6750]
(default) | vector

Engine speed breakpoints for speed-density volumetric efficiency lookup table, in rpm.


EGR valve standard flow calibration, f_egr_stdflow — Lookup table array

The standard exhaust gas recirculation (EGR) mass flow is a lookup table that is a function of the standard flow pressure ratio and EGR valve flow area

$$\dot{m}_{egr, std} = f(\frac{MAP}{P_{exh, est}}, EGRap)$$

where:

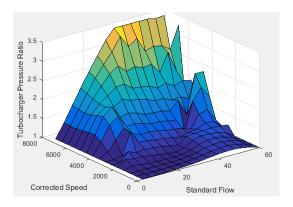
- $\dot{m}_{ear,std}$ is the standard EGR valve mass flow, in g/s.
- $P_{exh.est}$ is the estimated exhaust back-pressure, in Pa.
- *MAP* is the cycle average intake manifold absolute pressure, in Pa.
- *EGRap* is the measured EGR valve area, in percent.

EGR valve standard flow pressure ratio breakpoints, f_egr_stdflow_pr_bpt — Breakpoints

vector

EGR valve standard flow pressure ratio breakpoints, dimensionless.

EGR valve standard flow area percent breakpoints, f_egr_stdflow_egrap_bpt — Breakpoints


vector

EGR valve standard flow area percent breakpoints, in percent.

Turbocharger pressure ratio, f_turbo_pr — Lookup table array

The turbocharger pressure ratio, corrected for variable geometry turbocharger (VGT) speed, is a lookup table that is a function of the standard air mass flow and corrected turbocharger speed, $Pr_{turbo} = f(\dot{m}_{airstd}, N_{vatcorr})$, where:

- Pr_{turbo} is the turbocharger pressure ratio, corrected for VGT speed.
- \dot{m}_{airstd} is the standard air mass flow, in g/s.
- $N_{vatcorr}$ is the corrected turbocharger speed, in rpm/K^(1/2).

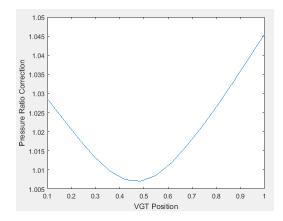
Turbocharger pressure ratio standard flow breakpoints, f_turbo_pr_stdflow_bpt — Breakpoints

vector

Turbocharger pressure ratio standard flow breakpoints, in g/s.

Turbocharger pressure ratio corrected speed breakpoints, f_turbo_pr_corrspd_bpt — Breakpoints

vector


Turbocharger pressure ratio corrected speed breakpoints, in $rpm/K^{(1/2)}$.

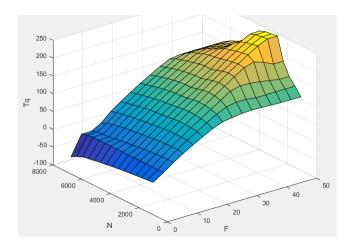
Turbocharger pressure ratio VGT position correction, f_turbo_pr_vgtposcorr — Lookup table

array

The variable geometry turbocharger pressure ratio correction is a function of the rack position, $Pr_{vqtcorr} = f(VGT_{pos})$, where:

- *Pr*_{vatcorr} is the turbocharger pressure ratio correction.
- VGT_{pos} is the variable geometry turbocharger (VGT) rack position.

Turbocharger pressure ratio VGT position correction breakpoints, f_turbo_pr_vgtposcorr_bpt — Breakpoints vector


Turbocharger pressure ratio VGT position correction breakpoints, dimensionless.

Torque - Simple Torque Lookup

Torque table, f_tq_nf — Lookup table array

For the simple torque lookup table model, the CI engine uses a lookup table is a function of engine speed and injected fuel mass, $T_{brake} = f_{Tnf}(F, N)$, where:

- $Tq = T_{brake}$ is engine brake torque after accounting for engine mechanical and pumping friction effects, in N·m.
- *F* is injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

To enable this parameter, for **Torque model**, select Simple Torque Lookup.

Torque table fuel mass per injection breakpoints, f_tq_nf_f_bpt — Breakpoints [0 3.5714 7.1429 10.7143 14.2857 17.8571 21.4286 25 28.5714 32.1429 35.7143 39.2857 42.8571 46.4286 50] (default) | vector

Torque table fuel mass per injection breakpoints, in mg per injection.

Dependencies

To enable this parameter, for **Torque model**, select Simple Torque Lookup.

Torque table speed breakpoints, f_tq_nf_n_bpt — Breakpoints
[1000 1410.7143 1821.4286 2232.1429 2642.8571 3053.5714 3464.2857 3875
4285.7143 4696.4286 5107.1429 5517.8571 5928.5714 6339.2857 6750] (default) |
vector

Engine speed breakpoints, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select Simple Torque Lookup.

Torque - Torque Structure

Fuel mass per injection breakpoints, f_tqs_f_bpt — Breakpoints
vector

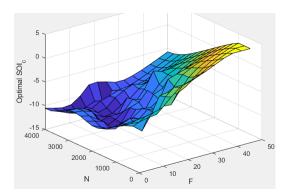
Fuel mass per injection breakpoints, in mg per injection.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Engine speed breakpoints, f_tqs_n_bpt — Breakpoints

[500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000] (default) | vector

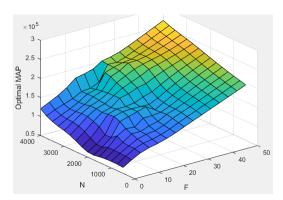

Engine speed breakpoints, in rpm.

To enable this parameter, for Torque model, select Torque Structure.

Optimal main start of injection timing, f_tqs_mainsoi — Optimal MAINSOI array

The optimal main start of injection (SOI) timing lookup table, f_{SOIc} , is a function of the engine speed and injected fuel mass, $SOI_c = f_{SOIc}(F,N)$, where:

- *SOI_c* is optimal SOI timing, in degATDC.
- *F* is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

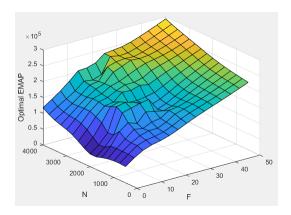

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Optimal intake manifold gas pressure, f_tqs_map — Optimal intake MAP array

The optimal intake manifold gas pressure lookup table, f_{MAP} , is a function of the engine speed and injected fuel mass, $MAP = f_{MAP}(F,N)$, where:

- *MAP* is optimal intake manifold gas pressure, in Pa.
- *F* is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

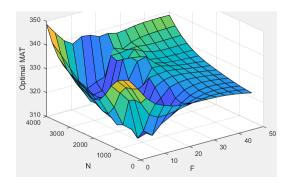


To enable this parameter, for **Torque model**, select **Torque Structure**.

Optimal exhaust manifold gas pressure, f_tqs_emap — Optimal exhaust MAP array

The optimal exhaust manifold gas pressure lookup table, f_{EMAP} , is a function of the engine speed and injected fuel mass, $EMAP = f_{EMAP}(F,N)$, where:

- *EMAP* is optimal exhaust manifold gas pressure, in Pa.
- *F* is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

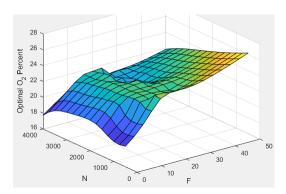

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Optimal intake manifold gas temperature, f_tqs_mat — Optimal intake MAT array

The optimal intake manifold gas temperature lookup table, f_{MAT} , is a function of the engine speed and injected fuel mass, $MAT = f_{MAT}(F,N)$, where:

- *MAT* is optimal intake manifold gas temperature, in K.
- *F* is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

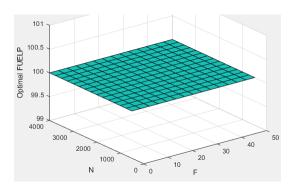


To enable this parameter, for Torque model, select Torque Structure.

Optimal intake gas oxygen percent, f_tqs_o2pct — Optimal intake gas oxygen array

The optimal intake gas oxygen percent lookup table, f_{O2} , is a function of the engine speed and injected fuel mass, $O2PCT = f_{O2}(F,N)$, where:

- *O2PCT* is optimal intake gas oxygen, in percent.
- *F* is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

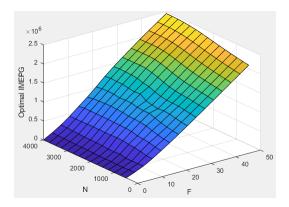

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Optimal fuel rail pressure, f_tqs_fuelpress — Optimal fuel rail pressure array

The optimal fuel rail pressure lookup table, f_{fuelp} , is a function of the engine speed and injected fuel mass, $FUELP = f_{fuelp}(F,N)$, where:

- FUELP is optimal fuel rail pressure, in MPa.
- *F* is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.


To enable this parameter, for **Torque model**, select **Torque Structure**.

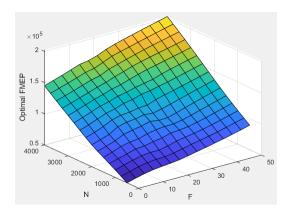
Optimal gross indicated mean effective pressure, f_tqs_imepg — Optimal mean effective pressure

array

The optimal gross indicated mean effective pressure lookup table, f_{imepg} , is a function of the engine speed and injected fuel mass, $IMEPG = f_{imeng}(F,N)$, where:

- *IMEPG* is optimal gross indicated mean effective pressure, in Pa.
- *F* is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

Dependencies

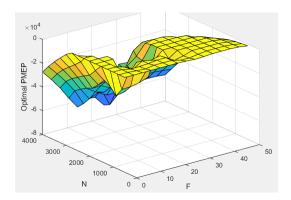

To enable this parameter, for **Torque model**, select **Torque Structure**.

Optimal friction mean effective pressure, f_tqs_fmep — Optimal friction mean effective pressure

array

The optimal friction mean effective pressure lookup table, f_{fmep} , is a function of the engine speed and injected fuel mass, $FMEP = f_{fmep}(F,N)$, where:

- *FMEP* is optimal friction mean effective pressure, in Pa.
- *F* is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.


To enable this parameter, for **Torque model**, select **Torque Structure**.

Optimal pumping mean effective pressure, f_tqs_pmep — Optimal pumping mean effective pressure

array

The optimal pumping mean effective pressure lookup table, f_{pmep} , is a function of the engine speed and injected fuel mass, $PMEP = f_{pmep}(F,N)$, where:

- PMEP is optimal pumping mean effective pressure, in Pa.
- *F* is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Friction multiplier as a function of temperature, f_tqs_fric_temp_mod — Friction multiplier

array

Friction multiplier as a function of temperature, dimensionless.

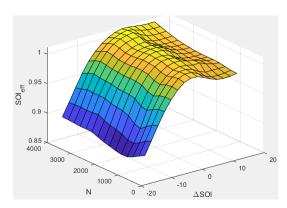
Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Friction multiplier temperature breakpoints, f_tqs_fric_temp_bpt — Breakpoints vector

Friction multiplier temperature breakpoints, in K.

Dependencies


To enable this parameter, for **Torque model**, select **Torque Structure**.

Main start of injection timing efficiency multiplier, f_tqs_mainsoi_eff — MAINSOI efficiency multiplier

array

The main start of injection (SOI) timing efficiency multiplier lookup table, f_{SOIeff} , is a function of the engine speed and main SOI timing relative to optimal timing, $SOI_{eff} = f_{SOIeff}(\Delta SOI, N)$, where:

- *SOI_{eff}* is main SOI timing efficiency multiplier, dimensionless.
- ΔSOI is main SOI timing relative to optimal timing, in degBTDC.
- *N* is engine speed, in rpm.

Dependencies

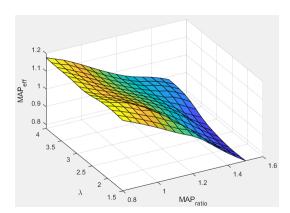
To enable this parameter, for **Torque model**, select **Torque Structure**.

Main start of injection timing relative to optimal timing breakpoints, f_tqs_mainsoi_delta_bpt — Breakpoints

vector

Main start of injection timing relative to optimal timing breakpoints, in degBTDC.

Dependencies


To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas pressure efficiency multiplier, f_tqs_map_eff — Intake pressure efficiency multiplier

array

The intake manifold gas pressure efficiency multiplier lookup table, f_{MAPeff} , is a function of the intake manifold gas pressure ratio relative to optimal pressure ratio and lambda, $MAP_{eff} = f_{MAPeff}(MAP_{ratio}, \lambda)$, where:

- MAP_{eff} is intake manifold gas pressure efficiency multiplier, dimensionless.
- *MAP*_{ratio} is intake manifold gas pressure ratio relative to optimal pressure ratio, dimensionless.
- λ is intake manifold gas lambda, dimensionless.

To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas pressure ratio relative to optimal pressure ratio
breakpoints, f_tqs_map_ratio_bpt — Breakpoints
[0.8;0.85;0.9;0.95;1;1.05;1.1;1.15;1.2;1.25;1.3;1.35;1.4;1.45;1.5] (default) |
vector

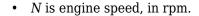
Intake manifold gas pressure ratio relative to optimal pressure ratio breakpoints, dimensionless.

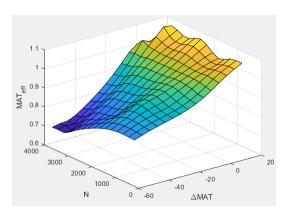
Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas lambda breakpoints, f_tqs_lambda_bpt — Breakpoints
[1.5 1.678571428571429 1.857142857142857 2.035714285714286 2.214285714285714
2.392857142857143 2.571428571428571 2.75 2.928571428571429 3.107142857142857
3.285714285714286 3.464285714285714 3.642857142857143 3.821428571428572 4]
(default) | vector

Intake manifold gas lambda breakpoints, dimensionless.


Dependencies


To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas temperature efficiency multiplier, f_tqs_mat_eff — Intake temperature efficiency multiplier array

The intake manifold gas temperature efficiency multiplier lookup table, f_{MATeff} , is a function of the engine speed and intake manifold gas temperature relative to optimal temperature, $MAT_{eff} = f_{MATeff}(\Delta MAT,N)$, where:

- MAT_{eff} is intake manifold gas temperature efficiency multiplier, dimensionless.
- ΔMAT is intake manifold gas temperature relative to optimal temperature, in K.

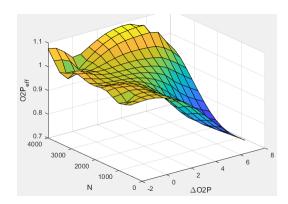
To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas temperature relative to optimal gas temperature
breakpoints, f_tqs_mat_delta_bpt — Breakpoints

[-55;-50;-45;-40;-35;-30;-25;-20;-15;-10;-5;0;5;10;15] (default) | vector

Intake manifold gas temperature relative to optimal gas temperature breakpoints, in K.

Dependencies


To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas oxygen efficiency multiplier, f_{tqs_0} ozygen efficiency multiplier

array

The intake manifold gas oxygen efficiency multiplier lookup table, f_{O2Peff} , is a function of the engine speed and intake manifold gas oxygen percent relative to optimal, $O2P_{eff} = f_{O2Peff}(\Delta O2P,N)$, where:

- \bullet $O2P_{eff}$ is intake manifold gas oxygen efficiency multiplier, dimensionless.
- $\triangle O2P$ is intake gas oxygen percent relative to optimal, in percent.
- *N* is engine speed, in rpm.

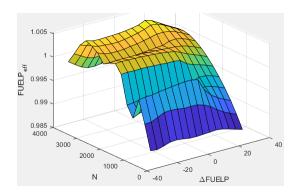
To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake gas oxygen percent relative to optimal breakpoints,
f_tqs_o2pct_delta_bpt — Breakpoints

vector

Intake gas oxygen percent relative to optimal breakpoints, in percent.

Dependencies


To enable this parameter, for **Torque model**, select **Torque Structure**.

Fuel rail pressure efficiency multiplier, f_tqs_fuelpress_eff — Efficiency multiplier

array

The fuel rail pressure efficiency multiplier lookup table, $f_{FUELPeff}$, is a function of the engine speed and fuel rail pressure relative to optimal breakpoints, $FUELP_{eff} = f_{FUELPeff}(\Delta FUELP,N)$, where:

- *FUELP*_{eff} is fuel rail pressure efficiency multiplier, dimensionless.
- $\Delta FUELP$ is fuel rail pressure relative to optimal, in MPa.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Fuel rail pressure relative to optimal breakpoints, f_tqs_fuelpress_delta_bpt — Breakpoints

vector

Fuel rail pressure relative to optimal breakpoints, in MPa.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

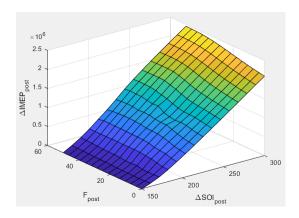
Fuel mass injection type identifier, f_tqs_f_inj_type — Type identifier 0 (default) | scalar

Fuel mass injection type identifier, dimensionless.

In the CI Core Engine and CI Controller blocks, you can represent multiple injections with the start of injection (SOI) and fuel mass inputs to the model. To specify the type of injection, use the **Fuel mass injection type identifier** parameter.

Type of Injection	Parameter Value
Pilot	0
Main	1
Post	2
Passed	3

The model considers Passed fuel injections and fuel injected later than a threshold to be unburned fuel. Use the **Maximum start of injection angle for burned fuel**, **f_tqs_f_burned_soi_limit** parameter to specify the threshold.


Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Indicated mean effective pressure post inject correction, f_tqs_imep_post_corr — Post inject correction array

The indicated mean effective pressure post inject correction lookup table, $f_{IMEPpost}$, is a function of the engine speed and fuel rail pressure relative to optimal breakpoints, $\Delta IMEP_{post} = f_{IMEPpost}(\Delta SOI_{post}, F_{post})$, where:

- $\Delta IMEP_{post}$ is indicated mean effective pressure post inject correction, in Pa.
- ΔSOI_{post} is indicated mean effective pressure post inject start of inject timing centroid, in degATDC.
- F_{post} is indicated mean effective pressure post inject mass sum, in mg per injection.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Indicated mean effective pressure post inject mass sum breakpoints, f_tqs_f_post_sum_bpt — Breakpoints

[0 3.571428571428572 7.142857142857143 10.71428571428571 14.28571428571429 17.85714285714286 21.42857142857143 25 28.57142857142857 32.14285714285715

35.71428571428572 39.28571428571428 42.85714285714285 46.42857142857143 50] (default) | vector

Indicated mean effective pressure post inject mass sum breakpoints, in mg per injection.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Indicated mean effective pressure post inject start of inject timing centroid breakpoints, f_tqs_soi_post_cent_bpt — Breakpoints

[150 160.7142857142857 171.4285714285714 182.1428571428571 192.8571428571429 203.5714285714286 214.2857142857143 225 235.7142857142857 246.4285714285714 257.1428571428571 267.8571428571429 278.5714285714286 289.2857142857143 300] (default) | vector

Indicated mean effective pressure post inject start of inject timing centroid breakpoints, in degATDC.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Maximum start of injection angle for burned fuel, f_tqs_f_burned_soi_limit — Maximum SOI angle for burned fuel

500 (default) | scalar

Maximum start of injection angle for burned fuel, in degATDC.

Dependencies

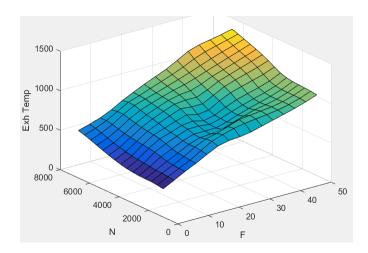
To enable this parameter, for **Torque model**, select **Torque Structure**.

Exhaust

Exhaust gas specific heat at constant pressure, cp_exh — Specific heat 1005 (default) | scalar

Exhaust gas-specific heat, Cp_{exh} , in J/(kg·K).

Exhaust Temperature - Simple Torque Lookup


Exhaust temperature table, f_t_exh — Lookup table array

The lookup table for the exhaust temperature is a function of injected fuel mass and engine speed

$$T_{exh} = f_{Texh}(F, N)$$

where:

- T_{exh} is exhaust temperature, in K.
- *F* is injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

To enable this parameter, for **Torque model**, select Simple Torque Lookup.

Fuel mass per injection breakpoints, f_t_exh_f_bpt — Breakpoints [0 3.5714 7.1429 10.7143 14.2857 17.8571 21.4286 25 28.5714 32.1429 35.7143 39.2857 42.8571 46.4286 50] (default) | array

Engine load breakpoints used for exhaust temperature lookup table, in mg per injection.

Dependencies

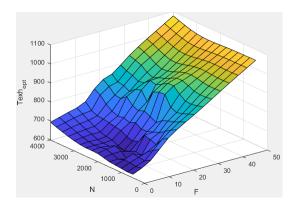
To enable this parameter, for **Torque model**, select Simple Torque Lookup.

Speed breakpoints, f_t_exh_n_bpt — Breakpoints [1000 1410.7143 1821.4286 2232.1429 2642.8571 3053.5714 3464.2857 3875 4285.7143 4696.4286 5107.1429 5517.8571 5928.5714 6339.2857 6750] (default) | array

Engine speed breakpoints used for exhaust temperature lookup table, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select Simple Torque Lookup.

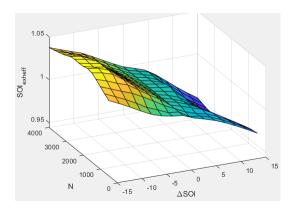

Exhaust Temperature - Torque Structure

Optimal exhaust manifold gas temperature, f_tqs_exht — Optimal exhaust manifold gas temperature

array

The optimal exhaust manifold gas temperature lookup table, f_{Texh} , is a function of the engine speed engine speed and injected fuel mass, $Texh_{opt} = f_{Texh}(F,N)$, where:

- $Texh_{opt}$ is optimal exhaust manifold gas temperature, in K.
- *F* is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

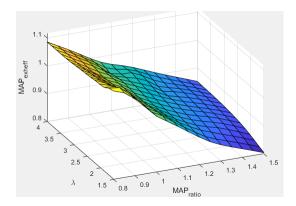


To enable this parameter, for **Torque model**, select **Torque Structure**.

Main start of injection timing exhaust temperature efficiency multiplier, f_tqs_exht_mainsoi_eff — Main SOI timing efficiency multiplier array

The main start of injection (SOI) timing exhaust temperature efficiency multiplier lookup table, $f_{SOIexhteff}$, is a function of the engine speed engine speed and injected fuel mass, $SOI_{exhteff} = f_{SOIexhteff}(\Delta SOI,N)$, where:

- \bullet $SOI_{exhteff}$ is main SOI exhaust temperature efficiency multiplier, dimensionless.
- ΔSOI is main SOI timing relative to optimal timing, in degBTDC.
- *N* is engine speed, in rpm.

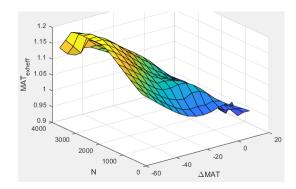

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas pressure exhaust temperature efficiency multiplier,
f_tqs_exht_map_eff — Intake manifold efficiency multiplier
array

The intake manifold gas pressure exhaust temperature efficiency multiplier lookup table, $f_{MAPexheff}$, is a function of the intake manifold gas pressure ratio relative to optimal pressure ratio and lambda, $MAP_{exheff} = f_{MAPexheff}(MAP_{ratio}, \lambda)$, where:

- MAP_{exheff} is intake manifold gas pressure exhaust temperature efficiency multiplier, dimensionless.
- *MAP*_{ratio} is intake manifold gas pressure ratio relative to optimal pressure ratio, dimensionless.
- λ is intake manifold gas lambda, dimensionless.

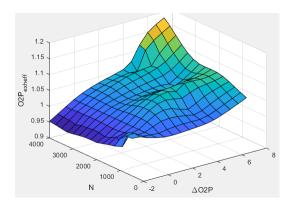


To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas temperature exhaust temperature efficiency multiplier,
f_tqs_exht_mat_eff — Intake manifold efficiency multiplier
array

The intake manifold gas temperature exhaust temperature efficiency multiplier lookup table, $f_{MATexheff}$, is a function of the engine speed and intake manifold gas temperature relative to optimal temperature, $MAT_{exheff} = f_{MATexheff}(\Delta MAT,N)$, where:

- \bullet MAT_{exheff} is intake manifold gas temperature exhaust temperature efficiency multiplier, dimensionless.
- ΔMAT is intake manifold gas temperature relative to optimal temperature, in K.
- *N* is engine speed, in rpm.

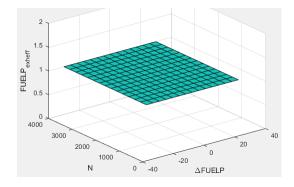

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas oxygen exhaust temperature efficiency multiplier,
f_tqs_exht_o2pct_eff — Intake manifold efficiency multiplier
array

The intake manifold gas oxygen exhaust temperature efficiency multiplier lookup table, $f_{O2Pexheff}$, is a function of the engine speed and intake manifold gas oxygen percent relative to optimal, $O2P_{exheff} = f_{O2Pexheff}(\Delta O2P_{exheff})$, where:

- O2P_{exheff} is intake manifold gas oxygen exhaust temperature efficiency multiplier, dimensionless.
- $\triangle O2P$ is intake gas oxygen percent relative to optimal, in percent.
- *N* is engine speed, in rpm.


Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Fuel rail pressure exhaust temperature efficiency multiplier,
f_tqs_exht_fuelpress_eff — Fuel rail pressure exhaust temperature efficiency multiplier
array

The fuel rail pressure efficiency exhaust temperature multiplier lookup table, $f_{FUELPexheff}$, is a function of the engine speed and fuel rail pressure relative to optimal breakpoints, $FUELP_{exheff} = f_{FUELPexheff}(\Delta FUELP,N)$, where:

- $FUELP_{exheff}$ is fuel rail pressure exhaust temperature efficiency multiplier, dimensionless.
- *ΔFUELP* is fuel rail pressure relative to optimal, in MPa.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Post-injection cylinder wall heat loss transfer coefficient, f_tqs_exht_post_inj_wall_htc — Post-injection offset

0 (default) | scalar

Post-injection cylinder wall heat loss transfer coefficient, in W/K.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

References

[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

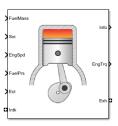
See Also

CI Core Engine | Mapped CI Engine

Topics

"Engine Calibration Maps"

"Generate Mapped CI Engine from a Spreadsheet"


Introduced in R2017a

CI Core Engine

Compression-ignition engine from intake to exhaust port

Library: Powertrain Blockset / Propulsion / Combustion Engine

Components / Core Engine

Description

The CI Core Engine block implements a compression-ignition (CI) engine from intake to the exhaust port. You can use the block for hardware-in-the-loop (HIL) engine control design or vehicle-level fuel economy and performance simulations.

The CI Core Engine block calculates:

- · Brake torque
- · Exhaust temperature
- Air-fuel ratio (AFR)
- · Fuel rail pressure
- Engine-out (EO) exhaust emissions:
 - Hydrocarbon (HC)
 - Carbon monoxide (CO)
 - Nitric oxide and nitrogen dioxide (NOx)
 - Carbon dioxide (CO₂)
 - Particulate matter (PM)

Air Mass Flow

To calculate the air mass flow, the compression-ignition (CI) engine uses the "CI Engine Speed-Density Air Mass Flow Model". The speed-density model uses the speed-density equation to calculate the engine air mass flow, relating the engine intake port mass flow to the intake manifold pressure, intake manifold temperature, and engine speed.

Brake Torque

To calculate the engine torque, you can configure the block to use either of these torque models.

Brake Torque Model	Description
"CI Engine Torque Structure Model"	The CI core engine torque structure model determines the engine torque by reducing the maximum engine torque potential as these engine conditions vary from nominal:
	Start of injection (SOI) timing
	Exhaust back-pressure
	Burned fuel mass
	Intake manifold gas pressure, temperature, and oxygen percentage
	Fuel rail pressure
	To account for the effect of post-inject fuel on torque, the model uses a calibrated torque offset table.
"CI Engine Simple Torque Model"	For the simple engine torque calculation, the CI engine uses a torque lookup table map that is a function of engine speed and injected fuel mass.

Fuel Flow

In the CI Core Engine and CI Controller blocks, you can represent multiple injections with the start of injection (SOI) and fuel mass inputs to the model. To specify the type of injection, use the **Fuel mass injection type identifier** parameter.

Type of Injection	Parameter Value
Pilot	0
Main	1
Post	2
Passed	3

The model considers Passed fuel injections and fuel injected later than a threshold to be unburned fuel. Use the **Maximum start of injection angle for burned fuel, f_tqs_f_burned_soi_limit** parameter to specify the threshold.

To calculate the engine fuel mass flow, the CI Core Engine block uses fuel mass flow delivered by the injectors and the engine airflow.

$$\dot{m}_{fuel} = \frac{N \cdot N_{cyl}}{Cps\left(\frac{60s}{\min}\right)\left(\frac{1000mg}{a}\right)} \sum m_{fuel,inj}$$

To calculate the fuel economy for high-fidelity models, the block uses the volumetric fuel flow.

$$Q_{fuel} = \frac{\dot{m}_{fuel}}{\left(\frac{1000kg}{m^3}\right) Sg_{fuel}}$$

The equation uses these variables.

 \dot{m}_{fuel} Fuel mass flow, g/s

 $m_{fuel,inj}$ Fuel mass per injection

Cps Crankshaft revolutions per power stroke, rev/stroke

 N_{cvl} Number of engine cylinders

N Engine speed, rpm Q_{fuel} Volumetric fuel flow Sg_{fuel} Specific gravity of fuel

The block uses the internal signal FlwDir to track the direction of the flow.

Air-Fuel Ratio

To calculate the air-fuel (AFR) ratio, the CI Core Engine and SI Core Engine blocks implement this equation.

$$AFR = \frac{\dot{m}_{air}}{\dot{m}_{fuel}}$$

The CI Core Engine uses this equation to calculate the relative AFR.

$$\lambda = \frac{AFR}{AFR_S}$$

To calculate the exhaust gas recirculation (EGR), the blocks implement this equation. The calculation expresses the EGR as a percent of the total intake port flow.

$$EGR_{pct} = 100 \frac{\dot{m}_{intk, b}}{\dot{m}_{intk}} = 100 y_{intk, b}$$

The equations use these variables.

AFR Air-fuel ratio

 AFR_s Stoichiometric air-fuel ratio

 \dot{m}_{intk} Engine air mass flow

 \dot{m}_{fuel} Fuel mass flow λ Relative AFR

y_{intk.b} Intake burned mass fraction

 EGR_{pct} EGR percent

 $\dot{m}_{intk,\,b}$ Recirculated burned gas mass flow rate

Exhaust Temperature

The exhaust temperature calculation depends on the torque model. For both torque models, the block implements lookup tables.

Torque Model	Description	Equations	
Simple Torque Lookup	Exhaust temperature lookup table is a function of the injected fuel mass and engine speed.	$T_{exh} = f_{Texh}(F, N)$	
Torque Structure	The nominal exhaust temperature, $Texh_{nom}$, is a product of these exhaust temperature efficiencies:	$T_{exhnom} = SOI_{exhteff}MAP_{exhteff}MAT_{exhteff}O2p_{ex}$ $T_{exh} = T_{exhnom} + \Delta T_{post}$	$_{xhteff}FUI$
	• SOI timing	$SOI_{exhteff} = f_{SOI_{exhteff}}(\Delta SOI, N)$ $MAP_{exhteff} = f_{MAP_{exhteff}}(MAP_{ratio}, \lambda)$	l
	Intake manifold gas pressureIntake manifold gas temperature	$MAT_{exhteff} = f_{MAT_{exhteff}}(\Delta MAT, N)$	
	Intake manifold gas oxygen percentage	$O2p_{exhteff} = f_{O2p_{exhteff}}(\Delta O2p, N)$ $Texh_{opt} = f_{Texh}(F, N)$	
	Fuel rail pressureOptimal temperature	Texnopt - f Texnox (1.11)	
	The exhaust temperature, $Texh_{nom}$, is offset by a post temperature effect, ΔT_{post} , that accounts for post and late injections during the expansion and exhaust strokes.		

The equations use these variables.

F	Compression stroke injected fuel mass
N	Engine speed
Texh	Exhaust manifold gas temperature
$Texh_{opt}$	Optimal exhaust manifold gas temperature
ΔT_{post}	Post injection temperature effect
$Texh_{nom}$	Nominal exhaust temperature
$SOI_{exhteff}$	Main SOI exhaust temperature efficiency multiplier
ΔSOI	Main SOI timing relative to optimal timing
MAP_{exheff}	Intake manifold gas pressure exhaust temperature efficiency multiplier
MAP_{ratio}	Intake manifold gas pressure ratio relative to optimal pressure ratio
λ	Intake manifold gas lambda
MAT_{exheff}	Intake manifold gas temperature exhaust temperature efficiency multiplier
ΔMAT	Intake manifold gas temperature relative to optimal temperature
$O2P_{exheff}$	Intake manifold gas oxygen exhaust temperature efficiency multiplier
$\Delta O2P$	Intake gas oxygen percent relative to optimal
$FUELP_{exheff}$	Fuel rail pressure exhaust temperature efficiency multiplier
$\Delta FUELP$	Fuel rail pressure relative to optimal

EO Exhaust Emissions

The block calculates these engine-out (EO) exhaust emissions:

- Hydrocarbon (HC)
- Carbon monoxide (CO)
- Nitric oxide and nitrogen dioxide (NOx)
- Carbon dioxide (CO₂)
- Particulate matter (PM)

The exhaust temperature determines the specific enthalpy.

$$h_{exh} = Cp_{exh}T_{exh}$$

The exhaust mass flow rate is the sum of the intake port air mass flow and the fuel mass flow.

$$\dot{m}_{exh} = \dot{m}_{intake} + \dot{m}_{fuel}$$

To calculate the exhaust emissions, the block multiplies the emission mass fraction by the exhaust mass flow rate. To determine the emission mass fractions, the block uses lookup tables that are functions of the engine torque and speed.

$$y_{exh, i} = f_{i_frac}(T_{brake}, N)$$

$$\dot{m}_{exh, i} = \dot{m}_{exh}y_{exh, i}$$

The fraction of air and fuel entering the intake port, injected fuel, and stoichiometric AFR determine the air mass fraction that exits the exhaust.

$$y_{exh,\,air} = \max \left[y_{in,\,air} - \frac{\dot{m}_{fuel} + y_{in,\,fuel} \dot{m}_{intake}}{\dot{m}_{fuel} + \dot{m}_{intake}} AFR_s \right]$$

If the engine is operating at the stoichiometric or fuel rich AFR, no air exits the exhaust. Unburned hydrocarbons and burned gas comprise the remainder of the exhaust gas. This equation determines the exhaust burned gas mass fraction.

$$y_{exh, b} = \max[(1 - y_{exh, air} - y_{exh, HC}), 0]$$

The equations use these variables.

 T_{exh} Engine exhaust temperature

 h_{exh} Exhaust manifold inlet-specific enthalpy

 Cp_{exh} Exhaust gas specific heat

 \dot{m}_{intk} Intake port air mass flow rate

 \dot{m}_{fuel} Fuel mass flow rate

 \dot{m}_{exh} Exhaust mass flow rate

yin, fuel Intake fuel mass fraction

 $y_{exh,i}$ Exhaust mass fraction for $i = CO_2$, CO, HC, NOx, air, burned gas, and PM $\dot{m}_{exh,i}$ Exhaust mass flow rate for $i = CO_2$, CO, HC, NOx, air, burned gas, and PM

 T_{brake} Engine brake torque

N Engine speed

 $y_{exh,air}$ Exhaust air mass fraction

 $y_{exh,b}$ Exhaust air burned mass fraction

Power Accounting

For the power accounting, the block implements equations that depend on **Torque model**.

When you set **Torque model** to **Simple Torque Lookup**, the block implements these equations.

Bus Sign	Bus Signal		Description	Equations
PwrInfo	Info PwrTrnsfrd — Power	PwrIntk HeatFlw	Intake heat flow	$\dot{m}_{intk}h_{intk}$
	transferred between blocks	PwrExhH eatFlw	Exhaust heat flow	$-\dot{m}_{exh}h_{exh}$
	• Positive signals indicate flow into block	PwrCrks hft	Crankshaft power	$-T_{brake}\omega$
	Negative signals indicate flow out of block			
	PwrNotTrns frd — Power crossing the block boundary, but not transferred	PwrFuel	Fuel input power	$\dot{m}_{fuel}LHV$
		PwrLoss	All losses	$T_{brake}\omega - \dot{m}_{fuel}LHV - \dot{m}_{intk}h_{intk} + \dot{m}_{exh}h_{exh}$
	• Positive signals indicate an input			
	Negative signals indicate a loss			

Bus Sign	Bus Signal		Description	Equations
	Stored energy rate of changePositive	Not used		
	signals indicate an increase			
	 Negative signals indicate a decrease 			

When you set **Torque model** to **Torque Structure**, the block implements these equations.

Bus Sign	Bus Signal		Description	Equations
PwrInfo PwrTrnsfrd — Power	PwrIntk HeatFlw	Intake heat flow	$\dot{m}_{intk}h_{intk}$	
	transferred between blocks	PwrExhH eatFlw	Exhaust heat flow	$-\dot{m}_{exh}h_{exh}$
	Positive signals indicate flow into block	PwrCrks hft	Crankshaft power	$-T_{brake}\omega$
	Negative signals indicate flow out of block			
	PwrNotTrns	PwrFuel	Fuel input power	$\dot{m}_{fuel}LHV$
	frd — Power crossing the block	PwrFric Loss	Friction loss	$-T_{fric}\omega$
	boundary, but not	PwrPump Loss	Pumping loss	$-T_{pump}\omega$
	Positive signals indicate an input	PwrHeat TrnsfrL oss	Heat transfer loss	$T_{brake}\omega - \dot{m}_{fuel}LHV - \dot{m}_{intk}h_{intk} + \dot{m}_{exh}h_{exh} + T_{fric}\omega + T_{pump}\omega$
	• Negative signals indicate a loss			

Bus Signal	Bus Signal		Equations
PwrStored — Stored energy rate of change • Positive signals indicate an increase			
Negative signals indicate a decrease			

 h_{intk} Intake port specific enthalpy \dot{m}_{intk} Intake port air mass flow rate \dot{m}_{fuel} Fuel mass flow rate \dot{m}_{exh} Exhaust mass flow rate ω Engine speed

Exhaust manifold inlet-specific enthalpy

 T_{brake} Brake torque

 T_{pump} Engine pumping torque offset to inner torque

 T_{fric} Engine friction torque LHV Fuel lower heating value

Ports

 h_{exh}

Input

FuelMass — Fuel injector pulse-width

vector

Fuel mass per injection, $m_{fuel,inj}$, in mg per injection.

Soi — Start of fuel injection timing

vector

Fuel injection timing, SOI, in degrees crank angle after top dead center (degATDC). First vector value, Soi(1), is main injection timing.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

EngSpd — **Engine speed**

scalar

Engine speed, N, in rpm.

FuelPrs — Fuel rail pressure

scalar

Fuel rail pressure, FUELP, in MPa.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Ect — Engine cooling temperature

scalar

Engine cooling temperature, $T_{coolant}$, in K.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Intk — Intake port pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the upstream:

- Prs Pressure, in Pa
- Temp Temperature, in K
- Enth Specific enthalpy, in J/kg
- MassFrac Intake port mass fractions, dimensionless. Exhaust gas recirculation (EGR) mass flow at the intake port is burned gas.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Exh — Exhaust port pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the exhaust:

• Prs — Pressure, in Pa

- Temp Temperature, in K
- Enth Specific enthalpy, in J/kg
- MassFrac Exhaust port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Variable	Units
IntkGasMassFlw	Engine intake air mass flow.	\dot{m}_{air}	kg/s
IntkAirMassFlw	Engine intake port mass flow.	\dot{m}_{intk}	kg/s
NrmlzdAirChrg	Engine load (that is, normalized cylinder air mass) corrected for final steady-state cam phase angles	L	N/A
Afr	Air-fuel ratio at engine exhaust port	AFR	N/A
FuelMassFlw	Fuel flow into engine	\dot{m}_{fuel}	kg/s
FuelVolFlw	Volumetric fuel flow	Q_{fuel}	m³/s
ExhManGasTemp	Exhaust gas temperature at exhaust manifold inlet	T_{exh}	K
EngTrq	Engine brake torque	T _{brake}	N⋅m
EngSpd	Engine speed	N	rpm

Signal			Description	Variable	Units
IntkCa	amPhase		Intake cam phaser angle	$arphi_{ICP}$ i	degrees crank advance
ExhCan	ıPhase		Exhaust cam phaser angle	ФЕСР	degrees crank retard
CrkAng	J		Engine crankshaft absolute angle	$\int\limits_{0}^{(360)Cps} EngSpd\frac{180}{30}d\theta$ where Cps is crankshaft revolutions per power stroke	degrees crank angle
EgrPct	-		EGR percent	EGR_{pct}	N/A
EoAir			EO air mass flow rate	\dot{m}_{exh}	kg/s
EoBrno	lGas		EO burned gas mass flow rate	Yexh,b	kg/s
EoHC			EO hydrocarbon emission mass flow rate	Yexh,HC	kg/s
EoC0			EO carbon monoxide emission mass flow rate	Yexh,CO	kg/s
EoN0x			EO nitric oxide and nitrogen dioxide emissions mass flow rate	Yexh,NOx	kg/s
EoC02			EO carbon dioxide emission mass flow rate	Yexh,CO2	kg/s
EoPm			EO particulate matter emission mass flow rate	Yexh,PM	kg/s
PwrIn fo	PwrTrns frd	PwrIntkHea tFlw	Intake heat flow	$\dot{m}_{intk}h_{intk}$	W
		PwrExhHeat Flw	Exhaust heat flow	$-\dot{m}_{exh}h_{exh}$	W
		PwrCrkshft	Crankshaft power	$-T_{brake}\omega$	W
	PwrNotT	PwrFuel	Fuel input power	$\dot{m}_{fuel}LHV$	W
rnsfrd		PwrLoss	For Torque model set to Simple Torque Lookup:	$T_{brake}\omega - \dot{m}_{fuel}LHV - \dot{m}_{intk}h_{intk} + \dot{m}_{exh}h_{exh}$	W
			All losses		
		PwrFricLos s	For Torque model set to Torque Structure:	$-T_{fric}\omega$	W
			Friction loss		

Signal			Description	Variable	Units
		PwrPumpLos s	For Torque model set to Torque Structure: Pumping loss	$-T_{pump}\omega$	W
			For Torque model set to Torque Structure: Heat transfer loss	$T_{brake}\omega - \dot{m}_{fuel}LHV \\ - \dot{m}_{intk}h_{intk} + \dot{m}_{exh}h_{exh} \\ + T_{fric}\omega + T_{pump}\omega$	W
	PwrStor ed	Not used			

EngTrq — **Engine brake torque**

scalar

Engine brake torque, T_{brake} , in N·m.

${\bf Intk-Intake\ port\ mass\ flow\ rate,\ heat\ flow\ rate,\ temperature,\ mass\ fraction}$

two-way connector port

Bus containing:

- MassFlwRate Intake port mass flow rate, in kg/s
- HeatFlwRate Intake port heat flow rate, in J/s
- ExhManGasTemp Intake port temperature, in K
- MassFrac Intake port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Exh — Exhaust port mass flow rate, heat flow rate, temperature, mass fraction

two-way connector port

Bus containing:

MassFlwRate — Exhaust port mass flow rate, in kg/s

- HeatFlwRate Exhaust heat flow rate, in J/s
- ExhManGasTemp Exhaust port temperature, in K
- MassFrac Exhaust port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Parameters

Block Options

Torque model — Select torque model

Torque Structure (default) | Simple Torque Lookup

To calculate the engine torque, you can configure the block to use either of these torque models.

Brake Torque Model	Description
"CI Engine Torque Structure Model"	The CI core engine torque structure model determines the engine torque by reducing the maximum engine torque potential as these engine conditions vary from nominal:
	Start of injection (SOI) timing
	Exhaust back-pressure
	Burned fuel mass
	Intake manifold gas pressure, temperature, and oxygen percentage
	Fuel rail pressure
	To account for the effect of post-inject fuel on torque, the model uses a calibrated torque offset table.
"CI Engine Simple Torque Model"	For the simple engine torque calculation, the CI engine uses a torque lookup table map that is a function of engine speed and injected fuel mass.

Air

Number of cylinders, NCyl — Engine cylinders

4 (default) | scalar

Number of engine cylinders, N_{cyl} .

Air standard temperature, Pstd — Temperature

293.15 (default) | scalar

Standard air temperature, T_{std} , in K.

Crank revolutions per power stroke, Cps — Revolutions per stroke

2 (default) | scalar

Crankshaft revolutions per power stroke, Cps, in rev/stroke.

Total displaced volume, Vd — Volume

0.0015 (default) | scalar

Displaced volume, V_d , in m³.

Ideal gas constant air, Rair — Constant

287.05 (default) | scalar

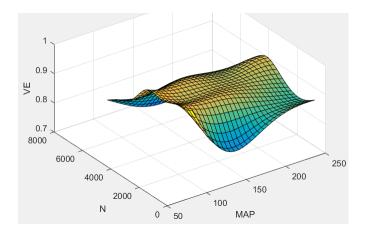
Ideal gas constant, R_{air} , in J/(kg·K).

Air standard pressure, Pstd — Pressure

101325 (default) | scalar

Standard air pressure, P_{std} , in Pa.

Speed-density volumetric efficiency, f_nv — Lookup table


array

The volumetric efficiency lookup table is a function of the intake manifold absolute pressure at intake valve closing (IVC) and engine speed

$$\eta_{\mathcal{V}} = f_{\eta_{\mathcal{V}}}(MAP, N)$$

where:

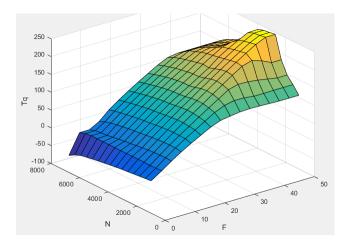
- η_{V} is engine volumetric efficiency, dimensionless.
- *MAP* is intake manifold absolute pressure, in KPa.
- *N* is engine speed, in rpm.

Speed-density intake manifold pressure breakpoints, f_nv_prs_bpt — Breakpoints vector

Intake manifold pressure breakpoints for speed-density volumetric efficiency lookup table, in KPa.

Speed-density engine speed breakpoints, f_nv_n_bpt — Breakpoints vector

Engine speed breakpoints for speed-density volumetric efficiency lookup table, in rpm.


Torque

Torque - Simple Torque Lookup

Torque table, f_tq_nf — Lookup table array

For the simple torque lookup table model, the CI engine uses a lookup table is a function of engine speed and injected fuel mass, $T_{brake} = f_{Tnf}(F, N)$, where:

- $Tq = T_{brake}$ is engine brake torque after accounting for engine mechanical and pumping friction effects, in N·m.
- *F* is injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

To enable this parameter, for **Torque model**, select Simple Torque Lookup.

Torque table fuel mass per injection breakpoints, f_tq_nf_f_bpt — Breakpoints [0 3.5714 7.1429 10.7143 14.2857 17.8571 21.4286 25 28.5714 32.1429 35.7143 39.2857 42.8571 46.4286 50] (default) | vector

Torque table fuel mass per injection breakpoints, in mg per injection.

Dependencies

To enable this parameter, for **Torque model**, select Simple Torque Lookup.

Torque table speed breakpoints, f_tq_nf_n_bpt — Breakpoints [1000 1410.7143 1821.4286 2232.1429 2642.8571 3053.5714 3464.2857 3875 4285.7143 4696.4286 5107.1429 5517.8571 5928.5714 6339.2857 6750] (default) | vector

Engine speed breakpoints, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select Simple Torque Lookup.

Torque - Torque Structure

Fuel mass per injection breakpoints, f_tqs_f_bpt — Breakpoints vector

Fuel mass per injection breakpoints, in mg per injection.

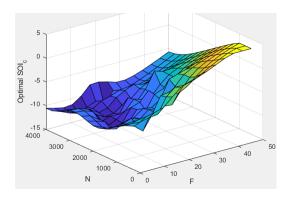
Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Engine speed breakpoints, f_tqs_n_bpt — Breakpoints

[500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000] (default) | vector

Engine speed breakpoints, in rpm.

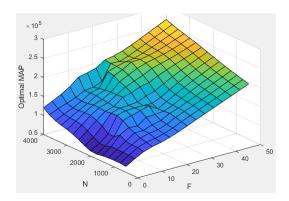

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Optimal main start of injection timing, f_tqs_mainsoi — Optimal MAINSOI array

The optimal main start of injection (SOI) timing lookup table, f_{SOIc} , is a function of the engine speed and injected fuel mass, $SOI_c = f_{SOIc}(F,N)$, where:

- *SOI*_c is optimal SOI timing, in degATDC.
- *F* is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

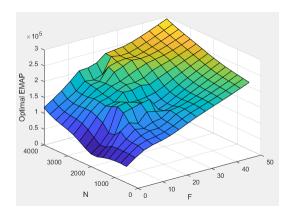


To enable this parameter, for Torque model, select Torque Structure.

Optimal intake manifold gas pressure, f_tqs_map — Optimal intake MAP array

The optimal intake manifold gas pressure lookup table, f_{MAP} , is a function of the engine speed and injected fuel mass, $MAP = f_{MAP}(F,N)$, where:

- *MAP* is optimal intake manifold gas pressure, in Pa.
- *F* is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

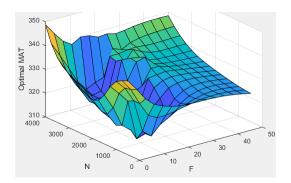

Dependencies

To enable this parameter, for Torque model, select Torque Structure.

Optimal exhaust manifold gas pressure, f_tqs_emap — Optimal exhaust MAP array

The optimal exhaust manifold gas pressure lookup table, f_{EMAP} , is a function of the engine speed and injected fuel mass, $EMAP = f_{EMAP}(F,N)$, where:

- EMAP is optimal exhaust manifold gas pressure, in Pa.
- *F* is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

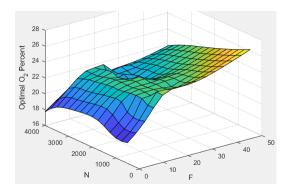


To enable this parameter, for **Torque model**, select **Torque Structure**.

Optimal intake manifold gas temperature, f_tqs_mat — Optimal intake MAT array

The optimal intake manifold gas temperature lookup table, f_{MAT} , is a function of the engine speed and injected fuel mass, $MAT = f_{MAT}(F,N)$, where:

- MAT is optimal intake manifold gas temperature, in K.
- *F* is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

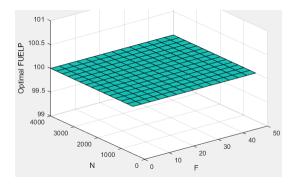

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Optimal intake gas oxygen percent, f_tqs_o2pct — Optimal intake gas oxygen array

The optimal intake gas oxygen percent lookup table, f_{O2} , is a function of the engine speed and injected fuel mass, $O2PCT = f_{O2}(F,N)$, where:

- *O2PCT* is optimal intake gas oxygen, in percent.
- *F* is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.



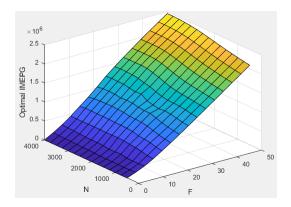
To enable this parameter, for **Torque model**, select **Torque Structure**.

Optimal fuel rail pressure, f_tqs_fuelpress — Optimal fuel rail pressure array

The optimal fuel rail pressure lookup table, f_{fuelp} , is a function of the engine speed and injected fuel mass, $FUELP = f_{fuelp}(F,N)$, where:

- FUELP is optimal fuel rail pressure, in MPa.
- *F* is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

Dependencies

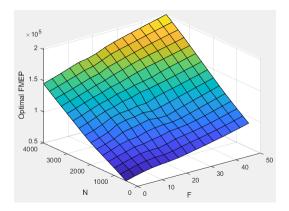

To enable this parameter, for **Torque model**, select **Torque Structure**.

Optimal gross indicated mean effective pressure, f_tqs_imepg — Optimal mean effective pressure

array

The optimal gross indicated mean effective pressure lookup table, f_{imepg} , is a function of the engine speed and injected fuel mass, $IMEPG = f_{imepg}(F,N)$, where:

- *IMEPG* is optimal gross indicated mean effective pressure, in Pa.
- *F* is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.


To enable this parameter, for **Torque model**, select **Torque Structure**.

Optimal friction mean effective pressure, f_tqs_fmep — Optimal friction mean effective pressure

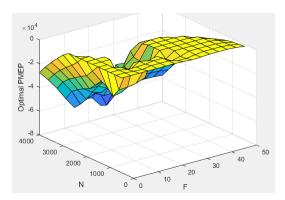
array

The optimal friction mean effective pressure lookup table, f_{fmep} , is a function of the engine speed and injected fuel mass, $FMEP = f_{fmep}(F,N)$, where:

- FMEP is optimal friction mean effective pressure, in Pa.
- *F* is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.


Optimal pumping mean effective pressure, f_tqs_pmep — Optimal pumping mean effective pressure

array

The optimal pumping mean effective pressure lookup table, f_{pmep} , is a function of the engine speed and injected fuel mass, $PMEP = f_{pmep}(F,N)$, where:

• *PMEP* is optimal pumping mean effective pressure, in Pa.

- *F* is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

To enable this parameter, for **Torque model**, select **Torque Structure**.

Friction multiplier as a function of temperature, f_tqs_fric_temp_mod — Friction multiplier

array

Friction multiplier as a function of temperature, dimensionless.

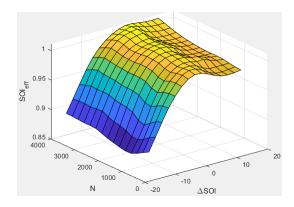
Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Friction multiplier temperature breakpoints, f_tqs_fric_temp_bpt — Breakpoints vector

Friction multiplier temperature breakpoints, in K.

Dependencies


To enable this parameter, for **Torque model**, select **Torque Structure**.

Main start of injection timing efficiency multiplier, f_tqs_mainsoi_eff — MAINSOI efficiency multiplier

array

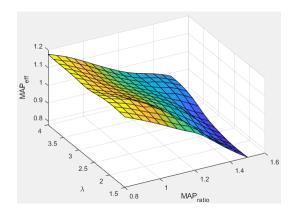
The main start of injection (SOI) timing efficiency multiplier lookup table, f_{SOIeff} , is a function of the engine speed and main SOI timing relative to optimal timing, $SOI_{eff} = f_{SOIeff}(\Delta SOI, N)$, where:

- *SOI_{eff}* is main SOI timing efficiency multiplier, dimensionless.
- ΔSOI is main SOI timing relative to optimal timing, in degBTDC.
- *N* is engine speed, in rpm.

To enable this parameter, for **Torque model**, select **Torque Structure**.

Main start of injection timing relative to optimal timing breakpoints,
f_tqs_mainsoi_delta_bpt — Breakpoints
vector

Main start of injection timing relative to optimal timing breakpoints, in degBTDC.


Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas pressure efficiency multiplier, f_tqs_map_eff — Intake pressure efficiency multiplier array

The intake manifold gas pressure efficiency multiplier lookup table, f_{MAPeff} , is a function of the intake manifold gas pressure ratio relative to optimal pressure ratio and lambda, $MAP_{eff} = f_{MAPeff}(MAP_{ratio}, \lambda)$, where:

- $\mathit{MAP}_{\mathit{eff}}$ is intake manifold gas pressure efficiency multiplier, dimensionless.
- *MAP*_{ratio} is intake manifold gas pressure ratio relative to optimal pressure ratio, dimensionless.
- λ is intake manifold gas lambda, dimensionless.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas pressure ratio relative to optimal pressure ratio breakpoints, f tqs map ratio bpt — Breakpoints

 $\begin{array}{l} [0.8; 0.85; 0.9; 0.95; 1; 1.05; 1.1; 1.15; 1.2; 1.25; 1.3; 1.35; 1.4; 1.45; 1.5] \; (\text{default}) \; | \; \text{vector} \end{array}$

Intake manifold gas pressure ratio relative to optimal pressure ratio breakpoints, dimensionless.

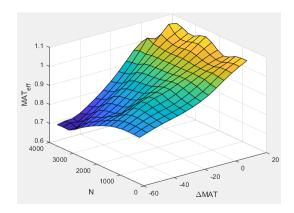
Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas lambda breakpoints, f_tqs_lambda_bpt — Breakpoints
[1.5 1.678571428571429 1.857142857142857 2.035714285714286 2.214285714285714
2.392857142857143 2.571428571428571 2.75 2.928571428571429 3.107142857142857
3.285714285714286 3.464285714285714 3.642857142857143 3.821428571428572 4]
(default) | vector

Intake manifold gas lambda breakpoints, dimensionless.

Dependencies


To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas temperature efficiency multiplier, f_tqs_mat_eff — Intake temperature efficiency multiplier

array

The intake manifold gas temperature efficiency multiplier lookup table, f_{MATeff} , is a function of the engine speed and intake manifold gas temperature relative to optimal temperature, $MAT_{eff} = f_{MATeff}(\Delta MAT,N)$, where:

- *MAT*_{eff} is intake manifold gas temperature efficiency multiplier, dimensionless.
- ΔMAT is intake manifold gas temperature relative to optimal temperature, in K.
- *N* is engine speed, in rpm.

Dependencies

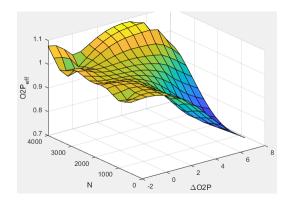
To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas temperature relative to optimal gas temperature breakpoints, f tqs mat delta bpt — Breakpoints

[-55;-50;-45;-40;-35;-30;-25;-20;-15;-10;-5;0;5;10;15] (default) | vector

Intake manifold gas temperature relative to optimal gas temperature breakpoints, in K.

Dependencies


To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas oxygen efficiency multiplier, f_tqs_o2pct_eff — Intake oxygen efficiency multiplier

array

The intake manifold gas oxygen efficiency multiplier lookup table, f_{O2Peff} , is a function of the engine speed and intake manifold gas oxygen percent relative to optimal, $O2P_{eff} = f_{O2Peff}(\Delta O2P,N)$, where:

- O2P_{eff} is intake manifold gas oxygen efficiency multiplier, dimensionless.
- $\triangle O2P$ is intake gas oxygen percent relative to optimal, in percent.
- *N* is engine speed, in rpm.

Dependencies

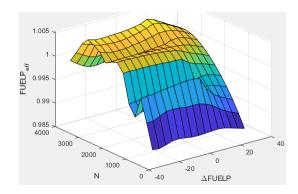
To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake gas oxygen percent relative to optimal breakpoints, f_tqs_o2pct_delta_bpt — Breakpoints vector

VECTOI

Intake gas oxygen percent relative to optimal breakpoints, in percent.

Dependencies


To enable this parameter, for **Torque model**, select **Torque Structure**.

Fuel rail pressure efficiency multiplier, f_tqs_fuelpress_eff — Efficiency multiplier

array

The fuel rail pressure efficiency multiplier lookup table, $f_{FUELPeff}$, is a function of the engine speed and fuel rail pressure relative to optimal breakpoints, $FUELP_{eff} = f_{FUELPeff}(\Delta FUELP,N)$, where:

- FUELP_{eff} is fuel rail pressure efficiency multiplier, dimensionless.
- $\Delta FUELP$ is fuel rail pressure relative to optimal, in MPa.
- *N* is engine speed, in rpm.

To enable this parameter, for **Torque model**, select **Torque Structure**.

Fuel rail pressure relative to optimal breakpoints, f_tqs_fuelpress_delta_bpt — Breakpoints

vector

Fuel rail pressure relative to optimal breakpoints, in MPa.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

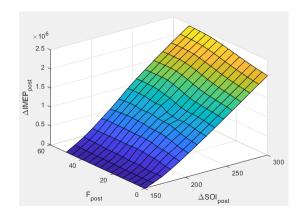
Fuel mass injection type identifier, f_tqs_f_inj_type — Type identifier 0 (default) | scalar

Fuel mass injection type identifier, dimensionless.

In the CI Core Engine and CI Controller blocks, you can represent multiple injections with the start of injection (SOI) and fuel mass inputs to the model. To specify the type of injection, use the **Fuel mass injection type identifier** parameter.

Type of Injection	Parameter Value
Pilot	0
Main	1
Post	2
Passed	3

The model considers Passed fuel injections and fuel injected later than a threshold to be unburned fuel. Use the **Maximum start of injection angle for burned fuel, f_tqs_f_burned_soi_limit** parameter to specify the threshold.


Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Indicated mean effective pressure post inject correction,
f_tqs_imep_post_corr — Post inject correction
array

The indicated mean effective pressure post inject correction lookup table, $f_{IMEPpost}$, is a function of the engine speed and fuel rail pressure relative to optimal breakpoints, $\Delta IMEP_{post} = f_{IMEPpost}(\Delta SOI_{post}, F_{post})$, where:

- $\Delta IMEP_{post}$ is indicated mean effective pressure post inject correction, in Pa.
- ΔSOI_{post} is indicated mean effective pressure post inject start of inject timing centroid, in degATDC.
- F_{post} is indicated mean effective pressure post inject mass sum, in mg per injection.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Indicated mean effective pressure post inject mass sum breakpoints, f tgs f post sum bpt — Breakpoints

[0 3.571428571428572 7.142857142857143 10.71428571428571 14.28571428571429 17.85714285714286 21.42857142857143 25 28.57142857142857 32.14285714285715 35.71428571428572 39.28571428571428 42.85714285714285 46.42857142857143 50] (default) | vector

Indicated mean effective pressure post inject mass sum breakpoints, in mg per injection.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Indicated mean effective pressure post inject start of inject timing centroid breakpoints, f_tqs_soi_post_cent_bpt — Breakpoints

[150 160.7142857142857 171.4285714285714 182.1428571428571 192.8571428571429 203.5714285714286 214.2857142857143 225 235.7142857142857 246.4285714285714 257.1428571428571 267.8571428571429 278.5714285714286 289.2857142857143 300] (default) | vector

Indicated mean effective pressure post inject start of inject timing centroid breakpoints, in degATDC.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Maximum start of injection angle for burned fuel, f_tqs_f_burned_soi_limit — Maximum SOI angle for burned fuel

500 (default) | scalar

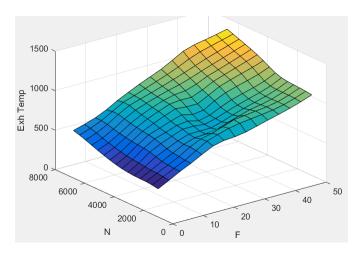
Maximum start of injection angle for burned fuel, in degATDC.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Exhaust

Exhaust Temperature - Simple Torque Lookup


Exhaust temperature table, f_t_exh — **Lookup table** array

The lookup table for the exhaust temperature is a function of injected fuel mass and engine speed

$$T_{exh} = f_{Texh}(F, N)$$

where:

- T_{exh} is exhaust temperature, in K.
- *F* is injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select **Simple Torque Lookup**.

Fuel mass per injection breakpoints, f_t_exh_f_bpt — Breakpoints [0 3.5714 7.1429 10.7143 14.2857 17.8571 21.4286 25 28.5714 32.1429 35.7143 39.2857 42.8571 46.4286 50] (default) | array

Engine load breakpoints used for exhaust temperature lookup table, in mg per injection.

Dependencies

To enable this parameter, for **Torque model**, select Simple Torque Lookup.

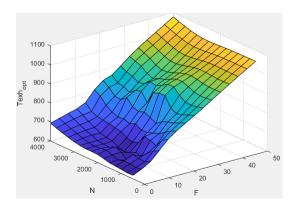
Speed breakpoints, f_t_exh_n_bpt — Breakpoints

[1000 1410.7143 1821.4286 2232.1429 2642.8571 3053.5714 3464.2857 3875 4285.7143 4696.4286 5107.1429 5517.8571 5928.5714 6339.2857 6750] (default) | array

Engine speed breakpoints used for exhaust temperature lookup table, in rpm.

Dependencies

To enable this parameter, for **Torque model**, select Simple Torque Lookup.

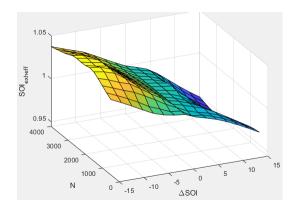

Exhaust Temperature - Torque Structure

Optimal exhaust manifold gas temperature, f_tqs_exht — Optimal exhaust manifold gas temperature

array

The optimal exhaust manifold gas temperature lookup table, f_{Texh} , is a function of the engine speed engine speed and injected fuel mass, $Texh_{opt} = f_{Texh}(F,N)$, where:

- Texh_{opt} is optimal exhaust manifold gas temperature, in K.
- *F* is compression stroke injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.

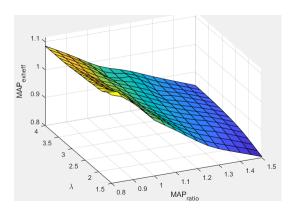

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Main start of injection timing exhaust temperature efficiency multiplier, f_tqs_exht_mainsoi_eff — Main SOI timing efficiency multiplier array

The main start of injection (SOI) timing exhaust temperature efficiency multiplier lookup table, $f_{SOIexhteff}$, is a function of the engine speed engine speed and injected fuel mass, $SOI_{exhteff} = f_{SOIexhteff}(\Delta SOI,N)$, where:

- $SOI_{exhtoff}$ is main SOI exhaust temperature efficiency multiplier, dimensionless.
- ΔSOI is main SOI timing relative to optimal timing, in degBTDC.
- *N* is engine speed, in rpm.

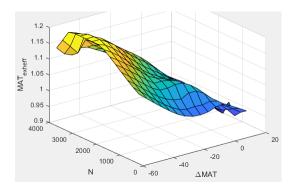


To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas pressure exhaust temperature efficiency multiplier,
f_tqs_exht_map_eff — Intake manifold efficiency multiplier
array

The intake manifold gas pressure exhaust temperature efficiency multiplier lookup table, $f_{MAPexheff}$, is a function of the intake manifold gas pressure ratio relative to optimal pressure ratio and lambda, $MAP_{exheff} = f_{MAPexheff}(MAP_{ratio}, \lambda)$, where:

- MAP_{exheff} is intake manifold gas pressure exhaust temperature efficiency multiplier, dimensionless.
- *MAP*_{ratio} is intake manifold gas pressure ratio relative to optimal pressure ratio, dimensionless.
- λ is intake manifold gas lambda, dimensionless.

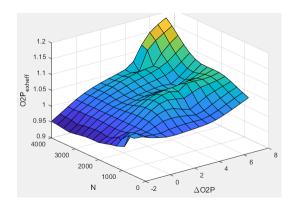

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas temperature exhaust temperature efficiency multiplier,
f_tqs_exht_mat_eff — Intake manifold efficiency multiplier
array

The intake manifold gas temperature exhaust temperature efficiency multiplier lookup table, $f_{MATexheff}$, is a function of the engine speed and intake manifold gas temperature relative to optimal temperature, $MAT_{exheff} = f_{MATexheff}(\Delta MAT,N)$, where:

- MAT_{exheff} is intake manifold gas temperature exhaust temperature efficiency multiplier, dimensionless.
- ΔMAT is intake manifold gas temperature relative to optimal temperature, in K.
- *N* is engine speed, in rpm.

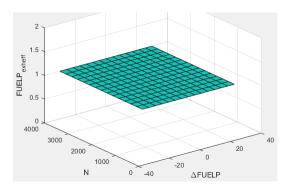


To enable this parameter, for **Torque model**, select **Torque Structure**.

Intake manifold gas oxygen exhaust temperature efficiency multiplier,
f_tqs_exht_o2pct_eff — Intake manifold efficiency multiplier
array

The intake manifold gas oxygen exhaust temperature efficiency multiplier lookup table, $f_{O2Pexheff}$, is a function of the engine speed and intake manifold gas oxygen percent relative to optimal, $O2P_{exheff} = f_{O2Pexheff}(\Delta O2P_{exheff})$, where:

- *O2P_{exheff}* is intake manifold gas oxygen exhaust temperature efficiency multiplier, dimensionless.
- $\triangle O2P$ is intake gas oxygen percent relative to optimal, in percent.
- *N* is engine speed, in rpm.


Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Fuel rail pressure exhaust temperature efficiency multiplier, f_tqs_exht_fuelpress_eff — Fuel rail pressure exhaust temperature efficiency multiplier array

The fuel rail pressure efficiency exhaust temperature multiplier lookup table, $f_{FUELPexheff}$, is a function of the engine speed and fuel rail pressure relative to optimal breakpoints, $FUELP_{exheff} = f_{FUELPexheff}(\Delta FUELP,N)$, where:

- *FUELP*_{exheff} is fuel rail pressure exhaust temperature efficiency multiplier, dimensionless.
- $\Delta FUELP$ is fuel rail pressure relative to optimal, in MPa.
- *N* is engine speed, in rpm.

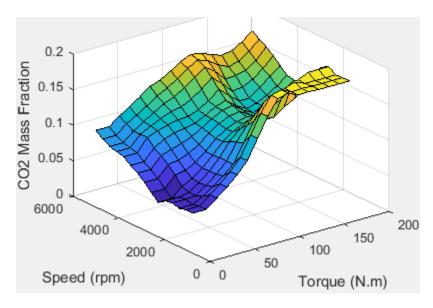
Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Post-injection cylinder wall heat loss transfer coefficient, f_tqs_exht_post_inj_wall_htc — Post-injection offset 0 (default) | scalar

Post-injection cylinder wall heat loss transfer coefficient, in W/K.

Dependencies

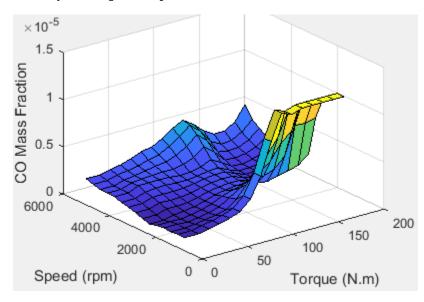

To enable this parameter, for **Torque model**, select **Torque Structure**.

Emissions

CO2 mass fraction table, f_CO2_frac — Carbon dioxide (CO_2) emission lookup table array

The CI Core Engine CO_2 emission mass fraction lookup table is a function of engine torque and engine speed, CO2 Mass Fraction = f(Speed, Torque), where:

- CO2 Mass Fraction is the CO₂ emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- *Torque* is engine torque, in N·m.

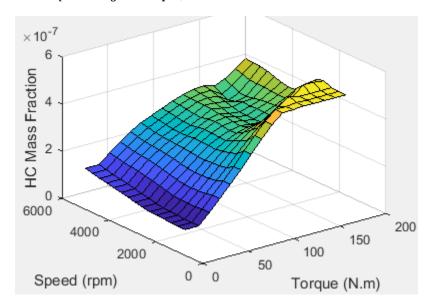


To enable this parameter, on the Exhaust tab, select CO2.

${\tt CO}$ mass fraction table, f_CO_frac — Carbon monoxide (CO) emission lookup table array

The CI Core Engine CO emission mass fraction lookup table is a function of engine torque and engine speed, CO Mass Fraction = f(Speed, Torque), where:

- CO Mass Fraction is the CO emission mass fraction, dimensionless.
- *Speed* is engine speed, in rpm.
- *Torque* is engine torque, in $N \cdot m$.


Dependencies

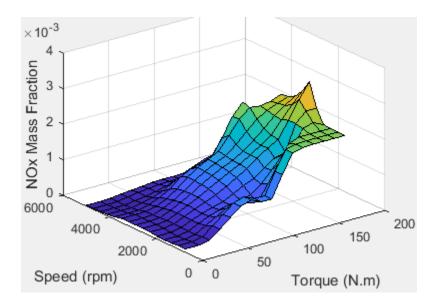
To enable this parameter, on the **Exhaust** tab, select **CO**.

HC mass fraction table, f_HC_frac — Hydrocarbon (HC) emission lookup table array

The CI Core Engine HC emission mass fraction lookup table is a function of engine torque and engine speed, HC Mass Fraction = f(Speed, Torque), where:

- HC Mass Fraction is the HC emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- *Torque* is engine torque, in N·m.

Dependencies


To enable this parameter, on the **Exhaust** tab, select **HC**.

N0x mass fraction table, $f_N0x_frac - Nitric oxide$ and nitrogen dioxide (NOx) emission lookup table

array

The CI Core Engine NOx emission mass fraction lookup table is a function of engine torque and engine speed, NOx Mass Fraction = f(Speed, Torque), where:

- NOx Mass Fraction is the NOx emission mass fraction, dimensionless.
- *Speed* is engine speed, in rpm.
- *Torque* is engine torque, in N·m.

To enable this parameter, on the **Exhaust** tab, select **NOx**.

PM mass fraction table, f_PM_frac — Particulate matter (PM) emission lookup table array

The CI Core Engine PM emission mass fraction lookup table is a function of engine torque and engine speed where:

- *PM* is the PM emission mass fraction, dimensionless.
- *Speed* is engine speed, in rpm.
- *Torque* is engine torque, in $N \cdot m$.

Dependencies

To enable this parameter, on the **Exhaust** tab, select **PM**.

Engine speed breakpoints, f exhfrac n bpt — Breakpoints

[750 1053.57142857143 1357.14285714286 1660.71428571429 1964.28571428571 2267.85714285714 2571.42857142857 2875 3178.57142857143 3482.14285714286 3785.71428571429 4089.28571428571 4392.85714285714 4696.42857142857 5000] (default) | vector

Engine speed breakpoints used for the emission mass fractions lookup tables, in rpm.

Dependencies

To enable this parameter, on the **Exhaust** tab, select **CO2**, **CO**, **NOx**, **HC**, or **PM**.

Engine torque breakpoints, f_exhfrac_trq_bpt — Breakpoints

[0 15 26.4285714285714 37.8571428571429 49.2857142857143 60.7142857142857 72.1428571428571 83.5714285714286 95 106.428571428571 117.857142857143 129.285714285714 140.714285714286 152.142857142857 163.571428571429 175] (default) | vector

Engine torque breakpoints used for the emission mass fractions lookup tables, in N·m.

Dependencies

To enable this parameter, on the **Exhaust** tab, select **CO2**, **CO**, **NOx**, **HC**, or **PM**.

Exhaust gas specific heat at constant pressure, cp_exh — Specific heat 1005 (default) | scalar

Exhaust gas-specific heat, Cp_{exh} , in J/(kg·K).

Fuel

Stoichiometric air-fuel ratio, afr_stoich — Air-fuel ratio 14.6 (default) | scalar

Air-fuel ratio, AFR.

Fuel lower heating value, fuel_lhv — Heating value 42e6 (default) | scalar

Fuel lower heating value, LHV, in J/kg.

Fuel specific gravity, fuel_sg — Specific gravity
0.832 (default) | scalar

Specific gravity of fuel, Sg_{fuel} , dimensionless.

References

[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.

Extended Capabilities

C/C++ Code Generation

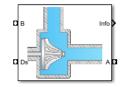
Generate C and C++ code using Simulink® Coder™.

See Also

CI Controller | Mapped CI Engine

Topics

"CI Core Engine Air Mass Flow and Torque Production" "Engine Calibration Maps"

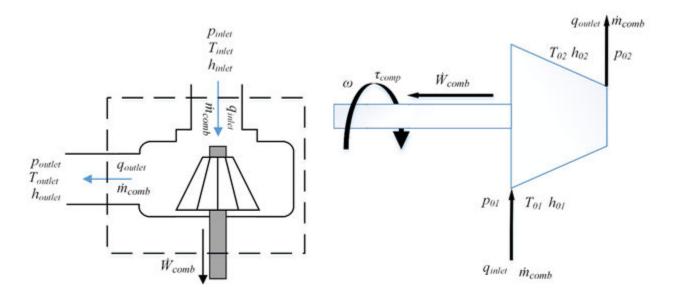

Introduced in R2017a

Compressor

Compressor for boosted engines

Library: Powertrain Blockset / Propulsion / Combustion Engine

Components / Boost



Description

The Compressor block simulates engine boost by using the drive shaft energy to increase the intake manifold pressure. The block is a component of supercharger and turbocharger models. The block uses two-way ports to connect to the inlet and outlet control volumes and the drive shaft. The control volumes provide the pressure, temperature, and specific enthalpy for the compressor to calculate the mass and energy flow rates. To calculate the torque and flow rates, the drive shaft provides the speed to the compressor. Typically, compressor manufacturers provide the mass flow rate and efficiency tables as a function of corrected speed and pressure ratio. You can specify the lookup tables to calculate the mass flow rate and efficiency. The block does not support reverse mass flow.

If you have Model-Based Calibration Toolbox, click **Calibrate Performance Maps** to virtually calibrate the mass flow rate and turbine efficiency lookup tables using measured data.

The mass flows from the inlet control volume to the outlet control volume.

Virtual Calibration

If you have Model-Based Calibration Toolbox, click **Calibrate Performance Maps** to virtually calibrate the mass flow rate and turbine efficiency lookup tables using measured data. The dialog box steps through these tasks.

Task	Description						
Import compressor data	Import this compressor data from a file. For more information, see "Using Data" (Model-Based Calibration Toolbox).						
	Speed, Spd, in rad/s						
	Mass flow r	ate, Ma	assFlwRa	te, in kg/s			
	Pressure ra	tio, Pre	Ratio, di	mensionless			
	Efficiency, I	Eff, dim	ensionles	SS			
	The speed, mass flow rate, pressure ratio, and efficiency are in the 2nd-5th columns of the data file, respectively. The first and second rows of the data file provide the variable names and units. For example, use this format.						
	Name:	Spd		MassFlwRate	PrsRatio	Eff	
	Unit:	rad/s		kg/s			
	Data:	8373	3.3	0.02	1.21	0.44	
	Model-Based Calibration Toolbox limits the speed and pressure ratio breakpoint values to the maximum values in the file. To filter or edit the data, select Edit in Application . The Model-Based Calibration Toolbox Data Editor opens.						
Generate response models	Model-Based C	Calibrat	ion Toolb	ox fits the impor	ted data to th	e response models.	
models	Data		Respons	se Model			
	Mass flow rate	9	Extended ellipse response model described in <i>Modeling</i> and Control of Engines and Drivelines ²				
	Efficiency Polynomial						
To assess or adjust the response model fit, select Edit in Applicati Model-Based Calibration Toolbox Model Browser opens. For more i see "Model Assessment" (Model-Based Calibration Toolbox).					more information,		
Generate calibration	Model-Based Calibration Toolbox calibrates the response model and general calibrated tables.				del and generates		
	To assess or adjust the calibration, select Edit in Application . The Model-Based Calibration Toolbox CAGE Browser opens. For more information, select Edit in Application . The Model-Based Calibration Toolbox (Model-Based Calibration Toolbox).				nformation, see		

Task	Description
Update block parameters	Update these mass flow rate and efficiency parameters with the calibration. • Corrected mass flow rate table, mdot_corr_tbl
	Efficiency table, eta_comp_tbl
	Corrected speed breakpoints, w_corr_bpts1
	Pressure ratio breakpoints, Pr_bpts2

Thermodynamics

The block uses these equations to model the thermodynamics.

Calculation	Equations
Forward mass flow	$\dot{m}_{comp} > 0$
	$p_{01} = p_{inlet}$
	$p_{02} = p_{outlet}$
	$T_{01} = T_{inlet}$
	$h_{01} = h_{inlet}$
First law of thermodynamics	$\dot{W}_{comp} = \dot{m}_{comp} c_p (T_{01} - T_{02})$
Isentropic efficiency	$\eta_{comp} = \frac{h_{02s} - h_{01}}{h_{02} - h_{01}} = \frac{T_{02s} - T_{01}}{T_{02} - T_{01}}$
Isentropic outlet temperature, assuming ideal gas and constant specific heats	$T_{02s} = T_{01} \left(\frac{p_{02}}{p_{01}}\right)^{\frac{\gamma - 1}{\gamma}}$
Specific heat ratio	$\gamma = \frac{c_p}{c_p - R}$
Outlet temperature	$T_{02} = T_{01} + \frac{T_{01}}{\eta_{comb}} \left\{ \left(\frac{p_{02}}{p_{01}} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right\}$
Heat flows	$q_{inlet} = \dot{m}_{comp} h_{01}$
	$q_{outlet} = \dot{m}_{comp} h_{02} = \dot{m}_{comp} c_p T_{02}$
Corrected mass flow rate	$\dot{m}_{corr} = \dot{m}_{comp} \frac{\sqrt{T_{01}/T_{ref}}}{p_{01}/p_{ref}}$
Corrected speed	$\omega_{corr} = \frac{\omega}{\sqrt{T_{01}/T_{ref}}}$
Pressure ratio	$p_r = \frac{p_{01}}{p_{02}}$

The block uses the internal signal FlwDir to track the direction of the flow.

The equations use these variables.

Inlet control volume total pressure p_{inlet}, p_{01}

 T_{inlet} , T_{01} Inlet control volume total temperature

Inlet control volume total specific enthalpy h_{inlet} , h_{01}

Outlet control volume total pressure p_{outlet}, p_{02}

Outlet control volume total temperature T_{outlet}

Outlet control volume total specific enthalpy h_{outlet}

Drive shaft power \dot{W}_{comp}

 T_{02} Outlet total temperature

Outlet total specific enthalpy h_{02}

 \dot{m}_{comp} Mass flow rate through compressor

Inlet heat flow rate q_{inlet} Outlet heat flow rate *q*outlet

Compressor isentropic efficiency η_{comp} Isentropic outlet total temperature T_{02s}

Isentropic outlet total specific enthalpy h_{02s}

R Ideal gas constant

Specific heat at constant pressure c_p

Specific heat ratio γ

Corrected mass flow rate \dot{m}_{corr}

Drive shaft speed ω

Corrected drive shaft speed ω_{corr}

Lookup table reference temperature T_{ref} Lookup table reference pressure P_{ref} Compressor drive shaft torque

 τ_{comp}

Pressure ratio p_r

Compressor efficiency 3-D lookup table $\eta_{comb, tbl}$ Corrected mass flow rate 3-D lookup table $\dot{m}_{corr,\,tbl}$

Corrected speed breakpoints $\omega_{corr, bpts1}$ Pressure ratio breakpoints $p_{r,bpts2}$

Power Accounting

For the power accounting, the block implements these equations.

Bus Sig	nal		Description	Equations
PwrInf o	PwrTrnsfrd — Power transferred between blocks • Positive signals indicate flow into block	PwrDriveshf t	Power transmitted from the shaft	$-\dot{W}_{turb}$
	Negative signals indicate flow out of block	PwrHeatFlwI n	Heat flow rate at port A	Q outlet
		PwrHeatFlw0 ut	Heat flow rate at port B	Q outlet
	PwrNotTrnsfrd — Power crossing the block boundary, but not transferred • Positive signals indicate an input • Negative signals indicate a loss	PwrLoss	Power loss	$-q_{inlet} - q_{outlet} + \dot{W}_{turb}$
	PwrStored — Stored energy rate of change • Positive signals indicate an increase • Negative signals indicate a decrease	Not used		

The equations use these variables.

 \dot{W}_{turb} Drive shaft power q_{outlet} Total outlet heat flow rate

q_{inlet} Total inlet heat flow rate

Ports

Input

Ds — Drive shaft speed

two-way connector port

ShftSpd — Signal containing the drive shaft angular speed, ω , in rad/s.

A — Inlet pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the inlet control volume:

- InPrs Pressure, p_{inlet}, in Pa
- InTemp Temperature, T_{inlet} , in K
- InEnth Specific enthalpy, h_{inlet}, in J/kg

B — Outlet pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the outlet control volume:

- OutPrs Pressure, poutlet, in Pa
- OutTemp Temperature, *Toutlet*, in K
- OutEnth Specific enthalpy, houtlet, in J/kg

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal			Description	Units
CmprsOutletTemp			Temperature exiting the compressor	K
Driveshf	tPwr		Drive shaft power	W
Driveshf	tTrq		Drive shaft torque	N·m
CmprsMas	sFlw		Mass flow rate through compressor	kg/s
PrsRatio	ı		Pressure ratio	N/A
Driveshf	tCorrSpd		Corrected drive shaft speed	rad/s
CmprsEff			Compressor isentropic efficiency	N/A
CorrMass	Flw		Corrected mass flow rate	kg/s
PwrInfo	PwrTrns	PwrDriveshft	Power transmitted from the shaft	W
	frd	PwrHeatFlwIn	Heat flow rate at port A	W
PwrHeatFlwOut		PwrHeatFlwOut	Heat flow rate at port B	W
	PwrNotT PwrLoss rnsfrd		Power loss	W
	PwrStored		Not used	W

Ds — Drive shaft torque

two-way connector port

Trq — Signal containing the drive shaft torque, τ_{comp} , in N·m.

A — Inlet mass flow rate, heat flow rate, temperature, mass fractions

two-way connector port

Bus containing:

- MassFlwRate Mass flow rate through inlet, \dot{m}_{comp} , in kg/s
- HeatFlwRate Inlet heat flow rate, q_{inlet}, in J/s
- Temp Inlet temperature, in K
- MassFrac Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

B — Outlet mass flow rate, heat flow rate, temperature, mass fractions

two-way connector port

Bus containing:

- MassFlwRate Outlet mass flow rate, \dot{m}_{comp} , in kg/s
- HeatFlwRate Outlet heat flow rate, q_{outlet}, in J/s
- Temp Outlet temperature, in K
- MassFrac Outlet mass fractions, dimensionless.

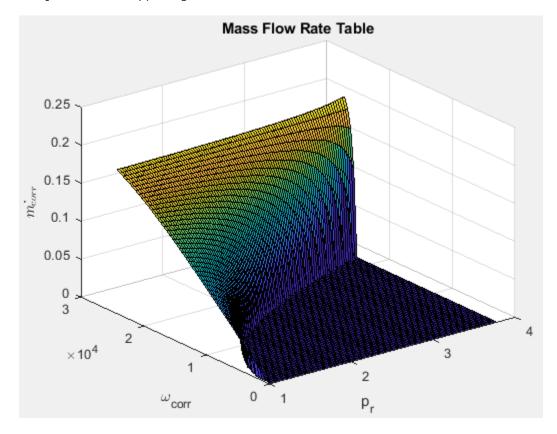
Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Parameters

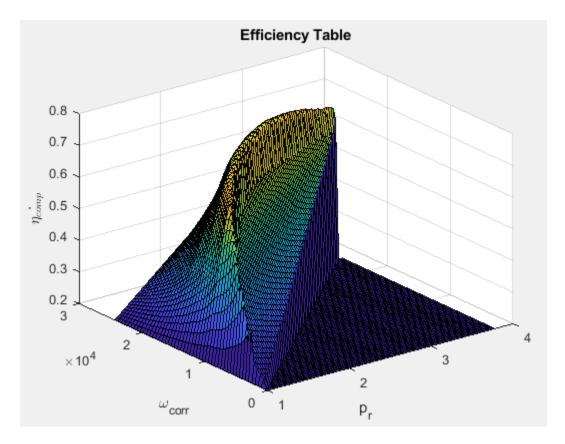
Performance Tables

Calibrate Performance Maps — Calibrate tables with measured data selection


If you have Model-Based Calibration Toolbox, click **Calibrate Performance Maps** to virtually calibrate the mass flow rate and turbine efficiency lookup tables using measured data. The dialog box steps through these tasks.

Task	Description					
Import compressor data	Import this compressor data from a file. For more information, see "Using Data" (Model-Based Calibration Toolbox).					
	• Speed, Spd,	in rad	l/s			
	Mass flow rate, MassFlwRate, in kg/s					
	Pressure rat	io, Pre	sRatio, dir	nensionless		
	Efficiency, E	ff, dim	ensionles	S		
	The speed, mass flow rate, pressure ratio, and efficiency are in the 2nd-5th columns of the data file, respectively. The first and second rows of the data file provide the variable names and units. For example, use this format.					
	Name:	Spd		MassFlwRate	PrsRatio	Eff
	Unit:	rad/s		kg/s		
	Data:	8373	3.3	0.02	1.21	0.44
Generate response	breakpoint values to the maximum values in the file. To filter or edit the data, select Edit in Application . The Model-Based Calibration Toolbox Data Editor opens. Model-Based Calibration Toolbox fits the imported data to the response models.					
models	Model-based Co	anni at	,1011 10010	ox nus une milpor	Lea data to tii	le response models.
	Data		Respons	e Model		
				ed ellipse response model described in <i>Modeling</i> atrol of Engines and Drivelines ²		
	Efficiency Polynomial					
To assess or adjust the response model fit, select Edit in Application Model-Based Calibration Toolbox Model Browser opens. For more in see "Model Assessment" (Model-Based Calibration Toolbox).					more information,	
Generate calibration	Model-Based Calibration Toolbox calibrates the response model and gener calibrated tables.				del and generates	
	To assess or adjust the calibration, select Edit in Application . The Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Lookup Tables" (Model-Based Calibration Toolbox).				nformation, see	

Task	Description
Update block parameters	Update these mass flow rate and efficiency parameters with the calibration.Corrected mass flow rate table, mdot_corr_tbl
	Efficiency table, eta_comp_tbl
	 Corrected speed breakpoints, w_corr_bpts1
	Pressure ratio breakpoints, Pr_bpts2


Corrected mass flow rate table, mdot_corr_tbl — Lookup table array

Corrected mass flow rate lookup table, $\dot{m}_{corr,tbl}$, as a function of corrected driveshaft speed, ω_{corr} , and pressure ratio, p_r , in kg/s.

Efficiency table, eta_comp_tbl — Lookup table array

Efficiency lookup table, $\eta_{comb,\,tbl}$, as a function of corrected driveshaft speed, ω_{corr} , and pressure ratio, p_r , dimensionless.

Corrected speed breakpoints, w_corr_bpts1 — Breakpoints
vector

Corrected drive shaft speed breakpoints, $\omega_{corr, bpts1}$, in rad/s.

Pressure ratio breakpoints, Pr_bpts2 — Breakpoints vector

Pressure ratio breakpoints, $p_{r,bpts2}$.

Reference temperature, T_ref — Reference 293.15 (default) | scalar

Lookup table reference temperature, T_{ref} , in K.

Reference pressure, P_ref — Reference 101325 (default) | scalar

Lookup table reference pressure, P_{ref} , in Pa.

Gas Properties

Ideal gas constant, R — Constant 287 (default) | scalar

Ideal gas constant, R, in J/(kg*K).

Specific heat at constant pressure, cp — Specific heat

1005 (default) | scalar

Specific heat at constant pressure, c_p , in J/(kg*K).

References

- [1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.
- [2] Eriksson, Lars and Lars Nielsen. *Modeling and Control of Engines and Drivelines*. Chichester, West Sussex, United Kingdom: John Wiley & Sons Ltd, 2014.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also

Boost Drive Shaft | Turbine

Topics

"Model-Based Calibration Toolbox"

Introduced in R2017a

Control Volume System

Constant volume open thermodynamic system with heat transfer **Library:** Powertrain Blockset / Propulsion / Combustion Engine
Components / Fundamental Flow

Description

The Control Volume System block models a constant volume open thermodynamic system with heat transfer. The block uses the conservation of mass and energy, assuming an ideal gas, to determine the pressure and temperature. The block implements an automotive-specific Constant Volume Pneumatic Chamber block that includes thermal effects related to the under hood of passenger vehicles. You can specify heat transfer models:

- Constant
- · External input
- External wall convection

You can use the Control Volume System block to represent engine components that contain volume, including pipes and manifolds.

Thermodynamics

The Control Volume System block implements a constant volume chamber containing an ideal gas. To determine the rate changes in temperature and pressure, the block uses the continuity equation and the first law of thermodynamics.

$$\begin{split} \frac{dT_{vol}}{dt} &= \frac{RT_{vol}}{c_v V_{ch} P_{vol}} \left(\sum \left(q_i - T_{vol} c_v \dot{m}_i \right) - Q_{wall} \right) \\ \frac{dP_{vol}}{dt} &= \frac{P_{vol}}{T_{vol}} \frac{dT_{vol}}{dt} + \frac{RT_{vol}}{V_{ch}} \sum \dot{m}_i \end{split}$$

The block uses this equation for the volume-specific enthalpy.

$$h_{vol} = c_p T_{vol}$$

The equations use these variables.

\dot{m}_i	Mass flow rate at port
q_i	Heat flow rate at port
V_{ch}	Chamber volume
P_{vol}	Absolute pressure in the chamber
R	Ideal gas constant
C_{v}	Specific heat at constant volume
T_{vol}	Absolute gas temperature

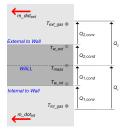
Q_{wall}	Wall heat transfer rate		
h_{vol}	Volume-specific enthalpy		
c_p	Specific heat capacity		

Mass Fractions

The Control Volume Source block is part of a flow network. Blocks in the network determine the mass fractions that the block will track during simulation. The block can track these mass fractions:

- 02 Oxygen
- N2 Nitrogen
- UnburnedFuel Unburned fuel
- CO2 Carbon dioxide
- H20 Water
- C0 Carbon monoxide
- NO Nitric oxide
- NO2 Nitrogen dioxide
- PM Particulate matter
- Air Air
- BurnedGas Burned gas

Using the conservation of mass for each gas constituent, this equation determines the rate change:


$$\frac{dy_{vol,j}}{dt} = \frac{RT_{vol}}{P_{vol}V_{ch}} \left(\sum \dot{m}_i y_{i,j} + y_{vol,j} \sum \dot{m}_i \right)$$

The equations use these variables.

V_{ch}	Chamber volume
P_{vol}	Absolute pressure in the chamber
R	Ideal gas constant
T_{vol}	Absolute gas temperature
$y_{i,j}$	I-th port mass fraction for j = O_2 , N_2 , unburned fuel, CO_2 , H_2O , CO , NO , NO_2 , PM , air, and burned gas
$\mathcal{Y}_{vol,j}$	Control volume mass fraction for $j=O_2,N_2,$ unburned fuel, $CO_2,H_2O,CO,NO,NO_2,PM,$ air, and burned gas
\dot{m}_i	Mass flow rate for $i = O_2$, N_2 , unburned fuel, CO_2 , H_2O , CO , NO , NO_2 , PM , air, and burned gas

External Wall Convection Heat Transfer Model

To calculate the heat transfer, you can configure the Control Volume Source block to calculate the heat transfer across the wall of the control volume.

The block implements these equations to calculate the heat transfer, Q_1 , from the internal control volume gas to the internal wall depth, D_{int_cond} .

$$Q_1 = Q_{1,conv} = Q_{1,cond}$$

$$Q_{1,conv} = h_{int}(x_{int}) \cdot A_{int_conv} \cdot (T_{int_gas} - T_{w_int})$$

$$Q_{1,cond} = k_{int} \cdot \frac{A_{int_cond}}{D_{int_cond}} \cdot \left(T_{w_int} - T_{mass}\right)$$

The block implements these equations to calculate the heat transfer, Q_2 , from the external wall depth, $D_{ext\ cond}$ to the external gas.

$$Q_2 = Q_{2,conv} = h_{ext}(x_{ext}) \cdot A_{ext\ conv} \cdot (T_{w\ ext} - T_{ext\ gas})$$

$$Q_{2,\,cond} = k_{ext} \bullet \frac{A_{ext_cond}}{D_{ext_cond}} \bullet \left(T_{mass} - T_{w_ext}\right)$$

This equation expresses the heat stored in the thermal mass.

$$\frac{dT_{mass}}{dt} = \frac{Q_1 - Q_2}{c_{p_{wall}} m_{wall}}$$

The block determines the interior convection heat transfer coefficient using a lookup table that is a function of the average mass flow rate.

$$\dot{m}_{int_gas} = \frac{1}{2} \sum |\dot{m}_i|$$

The equations use these variables.

 Q_1 Heat flow from the internal gas to a specified wall depth

 $Q_{1,conv}$ Heat flow convection from the internal gas to the internal wall

 $Q_{1,cond}$ Conduction heat transfer rate

 Q_2 Heat transfer rate

 $Q_{2,conv}$ Convection heat transfer

 $Q_{2,cond}$ Heat flow conduction from the external middle portion of the wall to the external

wall

 Q_{mass} Heat stored in thermal mass

 h_{int} Internal convection heat transfer coefficient

 x_{int} Internal mass flow rate breakpoints

 $A_{int\ conv}$ Internal flow convection area

 T_{int_gas} Temperature of the gas inside the chamber $T_{w\ int}$ Temperature of the inside wall of the chamber

 k_{int} Internal wall thermal conductivity

 A_{int_cond} Internal conduction area D_{int_cond} Internal wall thickness

 h_{ext} External convection heat transfer coefficient

 $T_{w ext}$ Temperature of the external wall of the chamber

 k_{ext} External wall thermal conductivity

 A_{ext_cond} External conduction area D_{ext_cond} External wall thickness

 T_{mass} Temperature of the thermal mass

 c_{p_wall} Wall heat capacity m_{wall} Thermal mass

 Flw_{spd} External flow velocity

 $\dot{m}_{int~gas}$ Average internal mass flow rate

Power Accounting

For the power accounting, the block implements these equation based on the number of inlet and outlet ports.

Bus Sig	nal (maintenance)		Description	Equations
PwrIn fo	PwrTrnsfrd — Power transferred between blocks • Positive signals indicate flow into block	PwrHeatFl w <i>i</i>	Port <i>i</i> heat flow	q_i
Negative signals indicate flow out of block				
PwrNotTrnsfrd — Power crossing the block boundary, but not transferred		PwrHeatTr nsfr	Heat transfer rate from wall to control volume	-Q _{wall}
	Positive signals indicate an input			
	Negative signals indicate a loss			

Bus Signal	Description	Equations	
PwrStored — Stored energy rate of change • Positive signals indicate an increase • Negative signals indicate a decrease		Rate of heat stored in the control volume	$\left(\sum (q_i) - Q_{wall}\right)$

For example, if you configure your block with 3 input ports and 2 outlet ports, the block implements these equations $\frac{1}{2}$

Bus Sig	ınal 💮 💮 💮 🤄 💮 💮 💮 💮 💮 💮 🤄 🤄 🤄 💮 🤄 🤄 💮 💮 💮 💮 💮 💮 💮 💮 💮 💮 💮 💮 💮		Description	Equations
PwrIn fo	PwrTrnsfrd — Power transferred between blocks	PwrHeatFl w1	Inlet port 1 heat flow	q_1
	Positive signals indicate flow into block	PwrHeatFl w2	Inlet port 2 heat flow	q_2
	Negative signals indicate flow out of block	PwrHeatFl w3	Inlet port 3 heat flow	q_3
		PwrHeatFl w4	Outlet port 4 heat flow	q_4
		PwrHeatFl w5	Outlet port 5 heat flow	q_5
	PwrNotTrnsfrd — Power crossing the block boundary, but not transferred	PwrHeatTr nsfr	Heat transfer rate from wall to control volume	-Q _{wall}
	• Positive signals indicate an input			
	Negative signals indicate a loss			
	PwrStored — Stored energy rate of change	PwrHeatSt ored	Rate of heat stored in the control volume	$\left(\sum (q_i) - Q_{wall}\right)$
	Positive signals indicate an increase			
	 Negative signals indicate a decrease 			

Ports

Input

C — Inlet mass flow rate, heat flow rate, mass fractions

two-way connector port

Bus containing:

- $\bullet \quad {\tt MassFlw-Mass\ flow\ rate\ through\ inlet,\ in\ kg/s}$
- HeatFlw Inlet heat flow rate, in J/s

• MassFrac — Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Dependencies

To create input ports, specify the **Number of inlet ports** parameter.

HeatTrnsfrRate — **Heat transfer**

scalar

External heat transfer input to control volume, q_{he} , in Kg/s.

Dependencies

To create this port, select External input for the **Heat transfer model** parameter.

ExtnlFlwVel — External flow velocity

scalar

External flow velocity, Flw_{spd} , in m/s.

Dependencies

To create this port, select External wall convection for the **Heat transfer model** parameter.

ExtnlTemp — Ambient temperature, K

scalar

Dependencies

To create this port, select External wall convection for the **Heat transfer model** parameter.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal			Description	Units
Vol	Prs		Volume pressure	Pa
	Temp		Volume temperature	K
	Enth		Volume specific enthalpy	J/kg
	Species	02MassFrac	Oxygen mass fraction	NA
		N2MassFrac	Nitrogen mass fraction	NA
		UnbrndFuelMassFrac	Unburned gas mass fraction	NA
		C02MassFrac	Carbon dioxide mass fraction	NA
		H20MassFrac	Water mass fraction	NA
		COMassFrac	Carbon monoxide mass fraction	NA
		NOMassFrac	Nitric oxide mass fraction	NA
		N02MassFrac	Nitrogen dioxide mass fraction	NA
		N0xMassFrac	Nitric oxide and nitrogen dioxide mass fraction	NA
		PmMassFrac	Particulate matter mass fraction	NA
		AirMassFrac	Air mass fraction	NA
		BrndGasMassFrac	Burned gas mass fraction	NA
HeatTrnsfr	HeatTrnsfrRate		Wall heat transfer rate	J/s
	MassFlw		Average internal mass flow rate	kg/s
	IntrnTemp		Temperature of gas inside chamber	K
PwrInfo	PwrTrnsfrd	PwrHeatFlw <i>i</i>	Port <i>i</i> heat flow	W
	PwrNotTrnsfrd	PwrHeatTrnsfr	Heat transfer rate from wall to control volume	W
	PwrStored	PwrHeatStored	Rate of heat stored in the control volume	W

C — Outlet pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the outlet control volume:

- Prs Chamber pressure, in Pa
- Temp Gas temperature, in K

- Enth Specific enthalpy, in J/kg
- MassFrac Mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Dependencies

To create outlet ports, specify the **Number of outlet ports** parameter.

Parameters

Block Options

Number of inlet ports — Number of ports 1 (default) | 0 | 2 | 3 | 4

Number of inlet ports.

Dependencies

To create inlet ports, specify the number.

Number of outlet ports — Number of ports

1 (default) | 0 | 2 | 3 | 4

Number of outlet ports.

Dependencies

To create outlet ports, specify the number.

Heat transfer model — Select model

Constant (default) | External input | External wall convection

Dependencies

Selecting Constant or External wall convection enables the **Heat Transfer** parameters.

Image type — Icon color

Cold (default) | Hot

Select color for block icon:

- Cold for blue
- · Hot for red

General

Chamber volume, Vch — Volume

0.0029 (default) | scalar

Chamber volume, V_{ch} , in m³.

Initial chamber pressure, Pinit — Pressure

101325 (default) | scalar

Initial chamber pressure, P_{vol} , in Pa.

Initial chamber temperature, Tinit — Temperature

298 (default) | scalar

Initial chamber temperature, T_{vol} , in K.

Ideal gas constant, R — Ideal gas constant

287 (default) | scalar

Ideal gas constant, R, in J/(kg*K).

Specific heat capacity, cp — Specific heat

1005 (default) | scalar

Specific heat capacity, c_p , in J/(kg·K).

Heat Transfer

Heat transfer rate, q_he — Rate

0 (default) | scalar

Constant heat transfer rate, q_{he} , in J/s.

Dependencies

To enable this parameter, select Constant for the **Heat transfer model** parameter.

External convection heat transfer coefficient, ext_tbl — Manifold external air [40 160 740 2000] (default) | vector

External convection heat transfer coefficient, h_{ext} , in W/(m²K).

Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

External velocity breakpoints, ext_bpts — Manifold external air

linspace(0,180,4) (default) | vector

External velocity breakpoints, x_{ext} , in m/s.

Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

External convection area, Aext_conv — Manifold external air

0.125 (default) | scalar

External convection area, $A_{ext\ conv}$, in m².

Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

Thermal mass, m_wall — Manifold wall general

7 (default) | scalar

Thermal mass, m_{wall} , in kg.

Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

Wall heat capacity, cp_wall — Manifold wall general

900 (default) | scalar

Wall heat capacity, $c_{p \ wall}$, in J/(kg·K).

Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

Initial mass temperature, Tmass — Manifold wall general

293.15 (default) | scalar

Initial mass temperature, T_{mass} , in K.

Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

External wall thickness, Dext_cond — Manifold wall external

0.004 (default) | scalar

External wall thickness, $D_{ext\ cond}$, in m.

Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

External conduction area, Aext_cond — Manifold wall external

0.003 (default) | scalar

External conduction area, $A_{ext\ cond}$, in m².

Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

External wall thermal conductivity, kint — Manifold wall external 25 (default) | scalar

External wall thermal conductivity, k_{ext} , in W/(m·K).

Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

Internal wall thickness, Dint_cond — Manifold wall internal 0.004 (default) | scalar

Internal wall thickness, $D_{int\ cond}$, in m.

Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

Internal conduction area, Aint_cond — Manifold wall internal 0.003 (default) | scalar

Internal conduction area, $A_{int \ cond}$, in m².

Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

Internal wall thermal conductivity, kint — Manifold wall internal 25 (default) | scalar

Internal wall thermal conductivity, k_{int} , in W/(m·K).

Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

Internal convection heat transfer coefficient, int_tbl — Manifold internal air [40 160 740 2000] (default) | vector

Internal convection heat transfer coefficient, h_{int} , in W/(m²K).

Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

Internal mass flow rate breakpoints, int_bpts — Manifold internal air linspace(0.0020,0.1100,4) (default) | vector

Internal velocity breakpoints, x_{int} , in kg/s.

Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

Internal flow convection area, Aint_conv — Manifold internal air 0.125 (default) | scalar

Internal convection area, $A_{int conv}$, in m².

Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

References

[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also

Constant Volume Pneumatic Chamber | Flow Restriction | Heat Exchanger

Introduced in R2017a

Flow Boundary

Flow boundary for ambient temperature and pressure

Library: Powertrain Blockset / Propulsion / Combustion Engine

Components / Fundamental Flow

Description

The Flow Boundary block implements a flow boundary that typically represents ambient temperature and pressure. Engine models require flow boundaries at the intake inlet and exhaust outlet. In dynamic engine models, flow-modifying components (for example, flow restriction, turbines, and compressors) connect to control volumes and flow boundaries.

You can specify these block configurations:

- Constant pressure and temperature
- · Externally input pressure and temperature

The Flow Boundary block outputs pressure, temperature, and specific enthalpy:

$$h = c_p T$$

The block models the mass fractions as dry air, resulting in these mass fractions:

- $y_{N2} = 0.767$
- $y_{02} = .233$

The equation uses these variables.

T Temperatureh Specific enthalpy

 c_p Specific heat at constant pressure

 y_{N2} Nitrogen mass fraction y_{O2} Oxygen mass fraction

Power Accounting

For the power accounting, the block implements these equations.

Bus Sig	ınal	Description	Equations	
PwrIn fo	PwrTrnsfrd — Power transferred between blocks	PwrBndrFl w	Heat flow rate to flow restriction	q_{orf}
	Positive signals indicate flow into block			
	 Negative signals indicate flow out of block 			

Bus Sig	ynal		Description	Equations
	PwrNotTrnsfrd — Power crossing the block boundary, but not transferred	PwrEnv	Heat flow rate to environment	-q _{orf}
	Positive signals indicate an input			
	Negative signals indicate a loss			
	PwrStored — Stored energy rate of change			
	Positive signals indicate an increase			
	Negative signals indicate a decrease			

Ports

Input

Prs — Pressure

scalar

External input pressure, P, in Pa.

Dependencies

To create this port, select External input for the **Pressure and temperature source** parameter.

Temp — Temperature

scalar

External input temperature, T, in K.

Dependencies

To create this port, select External input for the **Pressure and temperature source** parameter.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal		Description	Units	
BndryPrs		Boundary pressure	Pa	
BndryTemp		Boundary temperature	K	
BndryEnth			Boundary specific enthalpy	J/kg
PwrInfo	PwrTrnsfrd	PwrBndryFlw	Heat flow rate to flow restriction	W

Signal			Description	Units
PwrNotTrnsfrd PwrEnv		Heat flow rate to environment	W	
PwrStored		Not used		

C — Boundary pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the flow boundary:

- Prs Pressure, P, in Pa
- Temp Temperature, *T*, in K
- Enth Specific enthalpy, h, in J/kg
- MassFrac Mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Parameters

Block Options

Pressure and temperature source — Select source

External input (default) | Constant

Pressure and temperature source.

Dependencies

The table summarizes the parameter and port dependencies.

Value	Enables Parameters	Creates Ports
Constant	Pressure, Pcnst	None
	Temperature, Tcnst	

Value	Enables Parameters	Creates Ports
External input	None	Prs
		Тетр

Image type — Icon color

Cold (default) | Hot

Select color for block icon:

- Cold for blue
- Hot for red

Pressure, Pcnst — Constant

101325 (default) | scalar

Constant pressure, P, in Pa.

Dependencies

To enable this parameter, select Constant for the **Pressure and temperature source** parameter.

Temperature, Tcnst — Constant

298.15 (default) | scalar

Constant temperature, T, in K.

Dependencies

To enable this parameter, select Constant for the **Pressure and temperature source** parameter.

Specific heat at constant pressure, cp — Constant

1005 (default) | scalar

Specific heat at constant pressure, in J/(kg·K).

References

[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.

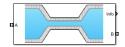
Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also

Compressor | Flow Restriction | Turbine


Introduced in R2017a

Flow Restriction

Isentropic ideal gas flow through an orifice

Library: Powertrain Blockset / Propulsion / Combustion Engine

Components / Fundamental Flow

Description

The Flow Restriction block models isentropic ideal gas flow through an orifice. The block uses the conservation of mass and energy to determine the mass flow rate. The flow velocity is limited by choked flow.

You can specify these orifice area models:

- Constant
- · External input
- Throttle body geometry

Equations

The Flow Restriction block implements these equations.

Calculation	Equations
	$\begin{split} \dot{m}_{orf} &= \Gamma \cdot \Psi(P_{ratio}) \\ P_{ratio} &= \frac{P_{downstr}}{P_{upstr}} \\ \Gamma &= \frac{A_{eff} \cdot P_{upstr}}{\sqrt{R \cdot T_{upstr}}} \\ P_{cr} &= \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma}{\gamma - 1}} \\ \Psi &= \begin{cases} \sqrt{\gamma \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma + 1}{\gamma - 1}}} & P_{ratio} < P_{cr} \\ \sqrt{\frac{2\gamma}{\gamma - 1} \left(P_{ratio} \frac{2}{\gamma} - P_{ratio} \frac{\gamma + 1}{\gamma}\right)} & P_{cr} \leq P_{ratio} \leq P_{lim} \\ \frac{P_{ratio} - 1}{P_{lim} - 1} \sqrt{\frac{2\gamma}{\gamma - 1} \left(P_{lim} \frac{2}{\gamma} - P_{lim} \frac{\gamma + 1}{\gamma}\right)} & P_{lim} < P_{ratio} \end{cases} \end{split}$
Constituent mass flow rates	$\dot{m}_i = \dot{m}_{orf} y_{upstr, i}$
Constant orifice area	$A_{eff} = A_{orf_cnst} \cdot Cd_{cnst}$
External input orifice area	$A_{eff} = A_{orf_ext} \cdot Cd_{ext}$

Calculation	Equations
Throttle body geometry	$\theta_{thr} = Pct_{thr} \cdot \frac{90}{100}$ $A_{eff_thr} = \frac{\pi}{4} D_{thr}^2 C_{d_thr}(\theta_{thr})$
Heat flow rate	$q_{orf} = \dot{m}_{orf} h_{upstr}$

The equations use these variables.

 A_{eff} , $A_{eff\ thr}$ Effective orifice cross-sectional area

 $A_{orf\ cnst}$, $A_{orf\ ext}$ Orifice area

 Cd_{cnst} , Cd_{ext} Discharge coefficient R Ideal gas constant

 P_{cr} Critical pressure at which choked flow occurs

γ Ratio of specific heats

 Γ Flow function based on pressure ratio

 P_{ratio} Pressure ratio

 P_{upstr} Upstream orifice pressure $P_{downstr}$ Downstream orifice pressure

 P_{lim} Pressure ratio limit to avoid singularities as the pressure ratio approaches 1 $y_{upstr,i}$ Upstream species mass fraction for $i = O_2$, N_2 , unburned fuel, CO_2 , H_2O , CO,

NO, NO₂, PM, air, and burned gas

 \dot{m}_i Mass flow rate for $i = O_2$, N_2 , unburned fuel, CO_2 , H_2O , CO, NO, NO_2 , PM, air,

and burned gas

 θ_{thr} Throttle angle

 Pct_{thr} Percentage of throttle body that is open

 C_{d_thr} Throttle discharge coefficient D_{thr} Throttle body diameter at opening

 \dot{m}_{orf} Orifice mass flow

 h_{upstr} Upstream specific enthalpy

 q_{orf} Heat flow rate

The block uses the internal signal FlwDir to track the direction of the flow.

Power Accounting

For the power accounting, the block implements these equations.

Bus Sign	al		Descripti on	Equations
PwrInfo	PwrTrnsfrd — Power transferred between blocks	PwrHeatFlwIn	Heat flow rate at port A	q_{orf}
	 Positive signals indicate flow into block Negative signals indicate flow out of block 	PwrHeatFlwOu t	Heat flow rate at port B	-q _{orf}
	PwrNotTrnsfrd — Power crossing the block boundary, but not transferred	Not used		
	Positive signals indicate an inputNegative signals indicate a loss			
	PwrStored — Stored energy rate of change	Not used		
	Positive signals indicate an increaseNegative signals indicate a decrease			

Ports

Input

A — Inlet orifice pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing orifice:

- Prs Pressure, in Pa
- Temp Temperature, in K
- Enth Specific enthalpy, in J/kg
- MassFrac Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

B — Outlet orifice pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing orifice:

- Prs Pressure, in Pa
- Temp Temperature, in K
- Enth Specific enthalpy, in J/kg
- MassFrac Outlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Area — Orifice area

scalar

External area input for orifice area, $A_{orf\ ext}$, in m².

Dependencies

To create this port, select External input for the Orifice area model parameter.

ThrPct — Throttle body percent open

scalar

Percentage of throttle body that is open, Pct_{thr} .

Dependencies

To create this port, select Throttle body geometry for the **Orifice area model** parameter.

Output

A — Inlet mass flow rate, heat flow rate, temperature

two-way connector port

Bus containing:

- MassFlw Mass flow rate through inlet, in kg/s
- HeatFlw Inlet heat flow rate, in J/s
- Temp Inlet temperature, in K
- MassFrac Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

B — Outlet mass flow rate, heat flow rate, temperature

two-way connector port

Bus containing:

- MassFlw Outlet mass flow rate, in kg/s
- HeatFlw Outlet heat flow rate, in J/s
- Temp Outlet temperature, in K
- MassFrac Outlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Info — Bus signal bus

Bus signal containing these block calculations.

Signal			Description	Units	
Flw	PrsAdj		DwnstrmPrs	Downstream pressure	Pa
			UpstrmPrs	Upstream pressure	Pa
			PrsRatio	Pressure ratio	NA
			DwnstrmTemp	Downstream temperature	K
			UpstrmTemp	Upstream temperature	K
	OrfMassF	lw		Mass flow rate through orifice	kg/s
	Species		02MassFlw	Oxygen mass flow rate	kg/s
			N2MassFlw	Nitrogen mass flow rate	kg/s
			UnbrndFuelMas sFlw	Unburned gas mass flow rate	kg/s
			C02MassFlw	Carbon dioxide mass flow rate	kg/s
			H20MassFlw	Water mass flow rate	kg/s
			COMassFlw	Carbon monoxide mass flow rate	kg/s
			NOMassFlw	Nitric oxide mass flow rate	kg/s
			N02MassFlw	Nitrogen dioxide mass flow rate	kg/s
			N0xMassFlw	Nitric oxide and nitrogen dioxide mass flow rate	kg/s
			PmMassFlw	Particulate matter mass flow rate	kg/s
			AirMassFlw	Air mass flow rate	kg/s
			BrnedGasMassF lw	Burned gas mass flow rate	kg/s
	PwrInfo	PwrTrnsfrd	PwrHeatFlwIn	Heat flow rate at port A	W
			PwrHeatFlwOut	Heat flow rate at port B	W
		PwrNotTrns	frd Not used		
		PwrStored		Not used	
Area	FlwArea			Cross-sectional flow area	m^2
	EffctAre	a		Effective orifice cross- sectional area	m^2
	ThrAng			Throttle area, if applicable	deg

Parameters

Block Options

Orifice area model — Select model

Constant (default) | External input | Throttle body geometry

Orifice area model.

Dependencies

The orifice area model enables the parameters on the **Area Parameters** tab.

Image type — Icon color

Cold (default) | Hot

Block icon color:

- Cold for blue.
- Hot for red.

General

Ratio of specific heats, gamma — Ratio

1.3998 (default) | scalar

Ratio of specific heats, γ .

Ideal gas constant, R — Constant

287.05 (default) | scalar

Ideal gas constant, R, in $J/(kg \cdot K)$.

Pressure ratio linearize limit, Plim — Limit

0.95 (default) | scalar

Pressure ratio limit to avoid singularities as the pressure ratio approaches 1, P_{lim} .

Area

Constant area value, Aorf_cnst — Area

.1 (default) | scalar

Constant area value, $A_{orf\ cnst}$, in m^2.

Dependencies

To enable this parameter, select Constant for the Orifice area model parameter.

Discharge coefficient, Cd_cnst — Coefficient

1 (default) | scalar

Discharge coefficient for constant area, Cd_{cnst} .

Dependencies

To enable this parameter, select Constant for the Orifice area model parameter.

Discharge coefficient, Cd_ext — Coefficient

1 (default) | scalar

Discharge coefficient for external area input, Cd_{ext} .

Dependencies

To enable this parameter, select External input for the **Orifice area model** parameter.

Throttle diameter, Dthr — Diameter

50 (default) | scalar

Throttle body diameter at opening, D_{thr} , in mm.

Dependencies

To enable this parameter, select Throttle body geometry for the Orifice area model parameter.

Discharge coefficient table, ThrCd — Coefficient

[0.001; 0.735] (default) | vector

Discharge coefficient table, $C_{d\ thr}$.

Dependencies

To enable this parameter, select Throttle body geometry for the Orifice area model parameter.

Angle breakpoints, ThrAngBpts — Angle

[0; 90] (default) | vector

Angle breakpoints, $Thr_{ang\ bpts}$, in deg.

Dependencies

To enable this parameter, select Throttle body geometry for the Orifice area model parameter.

References

[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also

Control Volume System | Heat Exchanger

Introduced in R2017a

Heat Exchanger

Intercooler or exhaust gas recirculation (EGR) cooler

Library: Powertrain Blockset / Propulsion / Combustion Engine

Components / Fundamental Flow

Description

The Heat Exchanger block models a heat exchanger, for example, an intercooler or exhaust gas recirculation (EGR) cooler. The inlet (port C) connects to an engine flow component (flow restriction, compressor, turbine, or engine block). The outlet (port B) connects to a volume (control volume or environment). Based on the upstream temperature, heat exchanger effectiveness, and cooling medium temperature, the block determines the heat transfer rate and downstream temperature.

For the heat exchanger effectiveness and cooling medium temperature, you can specify either a constant value or an external input. For example, if you specify a heat exchanger effectiveness that is:

- Equal to 1, the downstream temperature is equal to the cooling medium temperature.
- Equal to 0, there is no heat transfer to the cooling medium. The downstream temperature is equal to the upstream temperature.

The block assumes no pressure drop. To model pressure losses, use a Flow Restriction block.

Equations

The Heat Exchanger block implements equations that use these variables.

 T_{upstr} Upstream temperature T_{dnstr} Downstream temperature T_{cool} Cooling medium temperature

 $T_{cool, cnst}$ Constant cooling medium temperature

 $T_{cool,input}$ External input cooling medium temperature

 ε Heat exchanger effectiveness

 $egin{array}{lll} arepsilon_{cnst} & ext{Constant heat exchanger effectiveness} \\ arepsilon_{input} & ext{Input heat exchanger effectiveness} \\ c_p & ext{Specific heat at constant pressure} \\ q_{ht} & ext{Heat exchanger heat transfer rate} \\ \end{array}$

 $p_{flw,in}$ Pressure at inlet $p_{vol,out}$ Pressure at outlet $T_{vol,out}$ Temperature at outlet $h_{vol,out}$ Specific enthalpy at outlet

 q_{in} Heat flow rate at inlet

*q*_{out} Heat flow rate at outlet

 \dot{m} Heat exchanger mass flow rate

 $T_{flw,in}$ Temperature at inlet

 T_{in} Heat exchanger inlet temperature T_{out} Heat exchanger outlet temperature

 h_{in} Inlet specific enthalpy

Heat Exchanger Effectiveness

Heat exchanger effectiveness measures the effectiveness of heat transfer from the incoming hot fluid to the cooling medium:

$$\varepsilon = \frac{T_{upstr} - T_{dnstr}}{T_{upstr} - T_{cool}}$$

In an ideal heat exchanger, the downstream temperature equals the cooling temperature. The effectiveness is equal to 1.

$$T_{dnstr} = T_{cool}$$

 $\varepsilon = 1$

The Heat Exchanger block uses the effectiveness to determine the downstream temperature and heat transfer rate.

$$T_{dnstr} = T_{upstr} - \varepsilon (T_{upstr} - T_{cool})$$
$$q_{ht} = \dot{m}c_p(T_{upstr} - T_{dnstr})$$

Fluid Flow

Since the block assumes no pressure drop, $P_{flw,in} = P_{vol,out}$.

The flow component connection to the heat exchanger inlet determines the direction of the mass flow. Based on the mass flow rate direction, these temperature and heat flow equations apply.

Fluid Flow	Mass Flow Rate	Temperatures and Heat Flow
Forward — From engine flow component to outlet volume	<i>m</i> ≥ 0	$T_{upstr} = T_{flw,in}$ $T_{in} = T_{upstr}$ $T_{out} = T_{dnstr}$ $q_{out} = \dot{m}c_pT_{dnstr}$
Reverse — From outlet volume to engine flow component	<i>m</i> < 0	$T_{upstr} = T_{vol,out}$ $T_{in} = T_{dnstr}$ $T_{out} = T_{vol,out}$ $h_{in} = c_p T_{dnstr}$ $q_{out} = \dot{m} h_{vol,out}$

The block uses the internal signal FlwDir to track the direction of the flow.

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Equations
PwrIn fo	PwrTrnsfrd — Power transferred between blocks	PwrHeatFlw In	Heat flow rate at port C	q_{in}
	Positive signals indicate flow into block	PwrHeatFlw Out	Heat flow rate at port B	-q _{out}
	Negative signals indicate flow out of block			
	PwrNotTrnsfrd — Power crossing the block boundary, but not transferred		Heat transfer rate to cooling medium	-q _{ht}
	Positive signals indicate an input			
	Negative signals indicate a loss			
	PwrStored — Stored energy rate of change		Not used	
	Positive signals indicate an increase			
	Negative signals indicate a decrease			

Ports

Input

C — Inlet mass flow rate, heat flow rate, temperature, mass fractions

two-way connector port

Bus containing the heat exchanger:

- MassFlwRate Mass flow rate at inlet, \dot{m} , in kg/s
- HeatFlwRate Heat flow rate at inlet, q_{in} , in J/s
- Temp Temperature at inlet, $T_{flw,in}$, in K
- MassFrac Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide

- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

B — Outlet volume pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the heat exchanger:

- Prs Pressure at outlet, $p_{vol,out}$, in Pa
- Temp Temperature at outlet, $T_{vol.out}$, in K
- Enth Specific enthalpy at outlet, h_{vol. out}, in J/kg
- MassFrac Outlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Effct — Heat exchanger effectiveness

scalar

Heat exchanger effectiveness, ε_{input} .

Dependencies

To create this port, select External input for the Effectiveness model parameter.

CoolTemp — Cooling medium temperature

scalar

Cooling medium temperature, $T_{cool,input}$.

Dependencies

To create this port, select External input for the **Cooling medium temperature input** parameter.

Output

Info - Bus signal

bus

Bus signal containing these block calculations.

Signal			Description	Units
InletTemp			Heat exchanger inlet temperature	K
OutletTemp			Heat exchanger outlet temperature	K
HeatTrnsfrRate			Heat exchanger heat transfer rate	J/s
PwrInfo	PwrTrnsfrd	PwrHeatFlwIn	Heat flow rate at port C	W
		PwrHeatFlwOut	Heat flow rate at port B	W
	PwrNotTrnsfrd	PwrHeatTrnsfr	Heat transfer rate to cooling medium	W
	PwrStored		Not used	

C — Inlet flow pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the heat exchanger:

- Prs Pressure at inlet, $p_{flw,in}$, in Pa
- Temp Temperature at inlet, T_{in} , in K
- Enth Specific enthalpy at inlet, h_{in} , in J/kg
- MassFrac Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

B — Outlet volume mass flow rate, heat flow rate, temperature, mass fractions

two-way connector port

Bus containing the heat exchanger:

- MassFlwRate Mass flow rate at outlet, \dot{m} , in kg/s
- HeatFlwRate Heat flow rate at outlet, q_{out}, in J/s
- Temp Temperature at outlet, T_{out} , in K
- MassFrac Outlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Parameters

Block Options

Effectiveness model — Model type for heat effectiveness

Constant (default) | External input

Type of model to calculate the heat exchanger effectiveness.

Dependencies

- Selecting External input creates the Effct port.
- Selecting Constant enables the **Heat exchanger effectiveness**, **ep_cnst** parameter.

Cooling medium temperature input — Specify type

Constant (default) | External input

Cooling medium temperature input.

Dependencies

- Selecting External input creates the CoolTemp port.
- Selecting Constant enables the Cooling medium temperature, T_cool_cnst parameter.

Image type — Icon color

Intercooler (default) | EGR cooler

Block icon color:

- Intercooler for blue, to indicate an intercooler
- EGR cooler for red, to indicate exhaust-gas-recirculation (EGR) cooling

Heat exchanger effectiveness, ep_cnst — Effectiveness

0.7 (default) | scalar

Constant heat exchanger effectiveness, ε_{cnst} .

Dependencies

To enable this parameter, select Constant for the **Effectiveness model** parameter.

${\tt Cooling\ medium\ temperature,\ T_cool_cnst-Temperature}$

300 (default) | scalar

Constant cooling medium temperature, $T_{cool, cnst}$, in K.

Dependencies

To enable this parameter, select Constant for the Cooling medium temperature input parameter.

Specific heat at constant pressure, cp — Specific heat

1005 (default) | scalar

Specific heat at constant pressure, c_p , in J/(kg*K).

References

[1] Eriksson, Lars and Nielsen, Lars. *Modeling and Control of Engines and Drivelines*. Chichester, West Sussex, United Kingdom: John Wiley & Sons Ltd, 2014.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also

Control Volume System | Flow Restriction

Introduced in R2017a

SI Controller

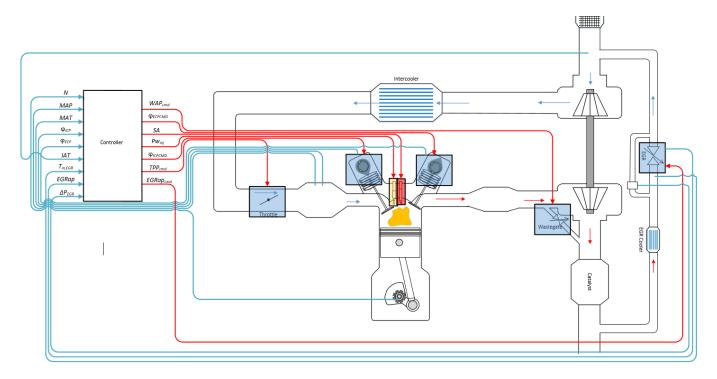
Spark-ignition engine controller that uses the driver torque request **Library:** Powertrain Blockset / Propulsion / Combustion Engine

Controllers

Description

The SI Controller block implements a spark-ignition (SI) controller that uses the driver torque request to calculate the open-loop air, fuel, and spark actuator commands that are required to meet the driver demand.

You can use the SI Controller block in engine control design or performance, fuel economy, and emission tradeoff studies. The core engine, throttle, and turbocharger wastegate subsystems require the commands that are output from the SI Controller block.


The block uses the commanded torque and engine speed to determine these open-loop actuator commands:

- Throttle position percent
- · Wastegate area percent
- · Injector pulse-width
- · Spark advance
- · Intake cam phaser angle
- · Exhaust cam phaser angle
- Exhaust gas recirculation (EGR) valve area percent

The SI Controller block has two subsystems:

- The Controller subsystem Determines the commands based on the commanded torque, measured engine speed, and estimated cylinder air mass.
- The Estimator subsystem Determines the estimated air mass flow, torque, and exhaust gas temperature from intake manifold gas pressure, intake manifold gas temperature, engine speed, and cam phaser positions.

The figure illustrates the signal flow.

The figure uses these variables.

N Engine speed

MAP Cycle average intake manifold pressure

IAT Intake air temperature

 $T_{in,EGR}$ Temperature at EGR valve inlet

MAT Cycle average intake manifold gas absolute temperature

 $\varphi_{ICP}, \varphi_{ICPCMD}$ Intake cam phaser angle and intake cam phaser angle command, respectively $\varphi_{ECP}, \varphi_{ECPCMD}$ Exhaust cam phaser angle and exhaust cam phaser angle command, respectively

EGRap, EGR valve area percent and EGR valve area percent command, respectively

 $EGRap_{cmd}$

 ΔP_{EGR} Pressure difference at EGR valve inlet and outlet WAP_{cmd} Turbocharger wastegate area percent command

SA Spark advance

 Pw_{ini} Fuel injector pulse-width

 TPP_{cmd} Throttle position percent command

The Model-Based Calibration Toolbox was used to develop the tables that are available with the Powertrain Blockset.

Controller

Air

The block determines the commanded engine load (that is, normalized cylinder air mass) from a lookup table that is a function of commanded torque and measured engine speed.

$$L_{cmd} = f_{Lcmd}(T_{cmd}, N)$$

To achieve the commanded load, the controller sets the throttle position percent and turbocharger wastegate area percent using feed forward lookup tables. The lookup tables are functions of the commanded load and measured engine speed.

$$TAP_{cmd} = f_{TAPcmd}(L_{cmd}, N)$$

 $TPP_{cmd} = f_{TPPcmd}(TAP_{cmd})$
 $WAP_{cmd} = f_{WAPcmd}(L_{cmd}, N)$

To determine the cam phaser angle commands, the block uses lookup tables that are functions of estimated engine load and measured engine speed.

$$\varphi_{ICPCMD} = f_{ICPCMD}(L_{est}, N)$$

$$\varphi_{ECPCMD} = f_{ECPCMD}(L_{est}, N)$$

The block calculates the desired engine load using this equation.

$$L_{est} = \frac{CpsR_{air}T_{std}\dot{m}_{air,\,est}}{P_{std}V_dN}$$

The equations use these variables.

 L_{est} Estimated engine load L_{cmd} Commanded engine load

N Engine speed

 T_{cmd} Commanded engine torque TAP_{cmd} Throttle area percent command

 TPP_{cmd} Throttle position percent command

 $W\!AP_{cmd}$ Turbocharger wastegate area percent command

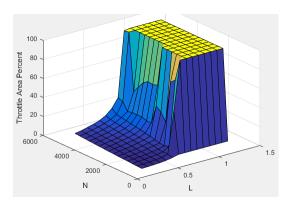
Cps Crankshaft revolutions per power stroke

 P_{std} Standard pressure T_{std} Standard temperature

 R_{air} Ideal gas constant for air and burned gas mixture

 V_d Displaced volume

 $\dot{m}_{air.\,est}$ Estimated engine air mass flow

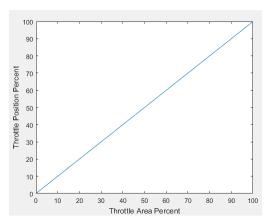

The controller subsystem uses these lookup tables for the air calculations.

• The throttle area percent command lookup table, f_{TAPcmd} , is a function of commanded load and engine speed

$$TAP_{cmd} = f_{TAPcmd}(L_{cmd}, N)$$

where:

- TAP_{cmd} is throttle area percentage command, in percent.
- L_{cmd} =L is commanded engine load, dimensionless.
- *N* is engine speed, in rpm.

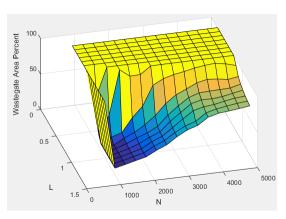

• To account for the non-linearity of the throttle position to throttle area, the throttle position percent lookup table linearizes the open-loop air mass flow control.

The throttle position percent command lookup table, f_{TPPcmd} , is a function of the throttle area percentage command

$$TPP_{cmd} = f_{TPPcmd}(TAP_{cmd})$$

where:

- *TPP_{cmd}* is throttle position percentage command, in percent.
- ullet TAP_{cmd} is throttle area percentage command, in percent.

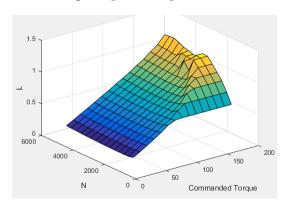


• The wastegate area percent command lookup table, f_{WAPcmd} , is a function of the commanded engine load and engine speed

$$WAP_{cmd} = f_{WAPcmd}(L_{cmd}, N)$$

- WAP_{cmd} is wastegate area percentage command, in percent.
- L_{cmd} =L is commanded engine load, dimensionless.

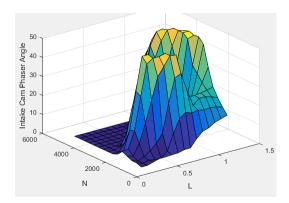
• *N* is engine speed, in rpm.



• The commanded engine load lookup table, f_{Lcmd} , is a function of the commanded torque and engine speed

$$L_{cmd} = f_{Lcmd}(T_{cmd}, N)$$

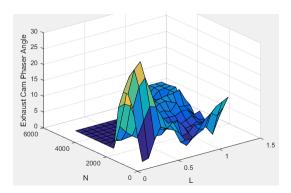
where:


- L_{cmd} =L is commanded engine load, dimensionless.
- T_{cmd} is commanded torque, in N·m.
- *N* is engine speed, in rpm.

• The intake cam phaser angle command lookup table, f_{ICPCMD} , is a function of the engine load and engine speed

$$\varphi_{ICPCMD} = f_{ICPCMD}(L_{est}, N)$$

- φ_{ICPCMD} is commanded intake cam phaser angle, in degrees crank advance.
- L_{est} =L is estimated engine load, dimensionless.
- *N* is engine speed, in rpm.

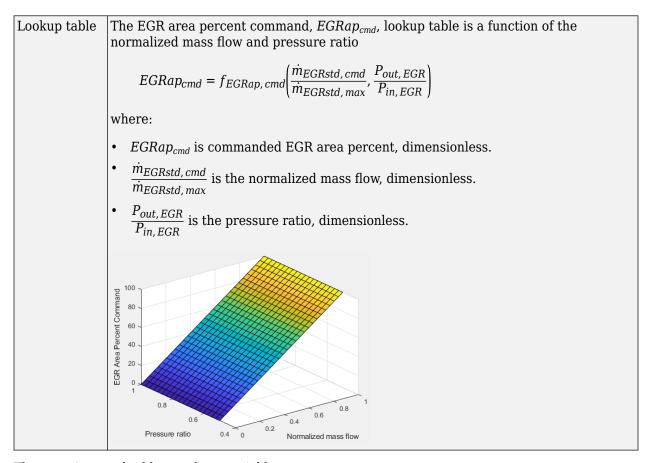


• The exhaust cam phaser angle command lookup table, f_{ECPCMD} , is a function of the engine load and engine speed

$$\varphi_{ECPCMD} = f_{ECPCMD}(L_{est}, N)$$

where:

- ϕ_{ECPCMD} is commanded exhaust cam phaser angle, in degrees crank retard.
- L_{est} =L is estimated engine load, dimensionless.
- *N* is engine speed, in rpm.


EGR

EGR is typically expressed as a percent of total intake port flow.

$$EGR_{pct} = 100 \frac{\dot{m}_{EGR}}{\dot{m}_{EGR} + \dot{m}_{air}}$$

To calculate the EGR area percent command, the block uses equations and a lookup table.

Equations	$\dot{m}_{EGRstd,cmd} = \dot{m}_{EGR,cmd} \frac{P_{std}}{P_{in,EGR}} \sqrt{\frac{T_{in,EGR}}{T_{std}}}$
	$\dot{m}_{EGRstd, max} = f_{EGRstd, max} \left(\frac{P_{out, EGR}}{P_{in, EGR}} \right)$
	$\dot{m}_{EGR,cmd} = EGR_{pct,cmd}\dot{m}_{intk,est}$

The equations and table use these variables.

EGRap, EGR valve area percent and EGR valve area percent command, respectively

 $EGRap_{cmd}$

 $EGR_{pct,cmd}$ EGR percent command

 $\dot{m}_{EGRstd, cmd}$ Commanded standard mass flow $\dot{m}_{EGRstd, max}$ Maximum standard mass flow

 $\dot{m}_{EGR, cmd}$ Commanded mass flow

 $\dot{m}_{intk,\,est}$ Estimated intake port mass flow $T_{std},\,P_{std}$ Standard temperature and pressure $T_{in.EGR}$ Temperature at EGR valve inlet

 $P_{out.EGR}$, $P_{in.EGR}$ Pressure at EGR valve inlet and outlet, respectively

Fuel

The air-fuel ratio (AFR) impacts three-way-catalyst (TWC) conversion efficiency, torque production, and combustion temperature. The engine controller manages AFR by commanding injector pulsewidth from a desired relative AFR. The relative AFR, λ_{cmd} , is the ratio between the commanded AFR and the stoichiometric AFR of the fuel.

$$\lambda_{cmd} = \frac{AFR_{cmd}}{AFR_{stoich}}$$

$$AFR_{cmd} = \frac{\dot{m}_{air, est}}{\dot{m}_{fuel, cmd}}$$

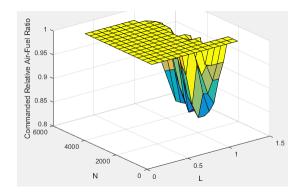
The SI Controller block accounts for the extra fuel delivered to the SI engine during startup. If the engine speed is greater than the startup engine cranking speed, the SI Controller block enriches the optimal AFR, lambda, with an exponentially decaying delta lambda. To initialize the delta lambda, the block uses the engine coolant temperature at startup. The delta lambda exponentially decays to zero based on a time constant that is a function of the engine coolant temperature.

You can configure the block for open-loop and closed-loop AFR control.

То		Use	Controls > Fuel > Closed-loop feedback Parameter Setting
•	Assess the dynamic and steady-state accuracy of the controller airflow estimation and fuel delivery.	(default) Open-loop control	off
•	Hold the average AFR close to stoichiometric AFR to maintain a high TWC conversion efficiency.	Closed-loop control	on

Open-Loop Control

To create an input port for the commanded AFR (lambda), on the **Controls > Fuel > Open-loop fuel** pane, select **Input lambda**.


You can manually tune the catalyst for maximum efficiency during open-loop AFR control with or without dither. If you want to implement dither during open-loop control, on the **Fuel** tab, on the **Closed-loop fuel** pane, select **Dither**.

By default, the block is configured to use a lookup table for the commanded AFR.

The commanded lambda, λ_{cmd} , lookup table is a function of estimated engine load and measured engine speed

$$\lambda_{cmd} = f_{\lambda cmd}(L_{est}, N)$$

- λ_{cmd} is commanded relative AFR, dimensionless.
- *L_{est}=L* is estimated engine load, dimensionless.
- *N* is engine speed, in rpm.

The block calculates the estimated fuel mass flow rate using the commanded lambda, λ_{cmd} , stoichiometric AFR, and estimated air mass flow rate.

$$\dot{m}_{fuel,\,cmd} = \frac{\dot{m}_{air,\,est}}{AFR_{cmd}} = \frac{\dot{m}_{air,\,est}}{\lambda_{cmd}AFR_{stoich}}$$

The block assumes that the battery voltage and fuel pressure are at nominal settings where pulse-width correction is not necessary. The commanded fuel injector pulse-width is proportional to the fuel mass per injection. The fuel mass per injection is calculated from the commanded fuel mass flow rate, engine speed, and the number of cylinders.

$$Pw_{inj} = \begin{cases} \frac{\dot{m}_{fuel,\,cmd}Cps(\frac{60s}{min})\left(\frac{1000mg}{g}\right)\left(\frac{1000g}{kg}\right)}{NS_{inj}N_{cyl}} & \text{when } Trq_{cmd} > 0\\ 0 & \text{when } Trq_{cmd} \leq 0 \end{cases}$$

Closed-Loop Control

TWC converters are most efficient when the exhaust AFR is near the stoichiometric AFR, where the air and fuel burn most completely. Around this ideal point, the AFR is within the *catalyst window* in which the catalyst is most efficient at converting carbon monoxide, hydrocarbons, and nitrogen oxides to non-harmful exhaust products. Empirical studies show that oscillating the AFR around stoichiometry at an optimized AFR frequency, amplitude, and bias widens the TWC window, increasing catalyst conversion efficiency in the presence of unavoidable disturbances.

To keep production hardware costs down, AFR control systems include inexpensive switching oxygen sensors positioned in the engine exhaust stream upstream and downstream of the catalyst. The oxygen sensors have a narrow range. Essentially, they switch between too lean (i.e., more air is available than is required to burn the available fuel) and too rich (i.e., more air is available than is required to burn the available fuel).

The block implements a period-based method to control the average AFR at a value within the catalyst window for maximum conversion efficiency. Period-based AFR control is independent of the transport delay across the engine from the fuel injection point to the sensor measurement point. For more information about the method, see Developing a Period-Based Air-Fuel Ratio Controller Using a Low-Cost Switching Sensor.

Spark


Spark advance is the crank angle before top dead center (BTDC) of the power stroke when the spark is delivered. The spark advance has an impact on engine efficiency, torque, exhaust temperature, knock, and emissions.

The spark advance lookup table is a function of estimated load and engine speed.

$$SA = f_{SA}(L_{est}, N)$$

where:

- SA is spark advance, in crank advance degrees.
- L_{est} =L is estimated engine load, dimensionless.
- *N* is engine speed, in rpm.

The equations use these variables.

 L_{est} Estimated engine load, based on normalized cylinder air mass

N Engine speed

 f_{SA} Lookup table for spark advance

N Spark advance

Idle Speed

When the commanded torque is below a threshold value, the idle speed controller regulates the engine speed.

If	Idle Speed Controller
$Trq_{cmd,input} < Trq_{idlecmd,enable}$	Enabled
$Trq_{idlecmd,enable} \leq Trq_{cmd,input}$	Not enabled

The idle speed controller uses a discrete PI controller to regulate the target idle speed by commanding a torque.

The PI controller uses this transfer function:

$$C_{idle}(z) = K_{p,\,idle} + K_{i,\,idle} \frac{t_S}{z-1}$$

The idle speed commanded torque must be less than the maximum commanded torque:

$$0 \le Trq_{idlecomd} \le Trq_{idlecmd,max}$$

Idle speed control is active under these conditions. If the commanded input torque drops below the threshold for enabling the idle speed controller ($Trq_{cmd,input} < Trq_{idlecmd,enable}$), the commanded engine torque is given by:

 $Trq_{cmd} = \max(Trq_{cmd,input}, Trq_{idlecmd}).$

The equations use these variables.

Trq_{cmd} Commanded engine torque

Trq_{cmd,input} Input commanded engine torque

 $Trq_{idlecmd,enable}$ Threshold for enabling idle speed controller $Trq_{idlecmd}$ Idle speed controller commanded torque

Trq_{idlecmd.max} Maximum commanded torque

 N_{idle} Base idle speed

 $K_{p,idle}$ Idle speed controller proportional gain $K_{i.idle}$ Idle speed controller integral gain

Speed Limiter

To prevent over revving the engine, the block implements an engine speed limit controller that limits the engine speed to the value specified by the **Rev-limiter speed threshold** parameter on the **Controls > Idle Speed** tab.

If the engine speed, N, exceeds the engine speed limit, N_{lim} , the block sets the commanded engine torque to 0.

To smoothly transition the torque command to 0 as the engine speed approaches the speed limit, the block implements a lookup table multiplier. The lookup table multiplies the torque command by a value that ranges from 0 (engine speed exceeds limit) to 1 (engine speed does not exceed the limit).

Estimator

The estimator subsystem determines the estimated air mass flow, torque, EGR mass flow, and exhaust temperature based on sensor feedback and calibration parameters.

 $\dot{m}_{air.\,est}$ Estimated engine air mass flow

Trq_{est} Estimated engine torque

 $T_{exh,est}$ Estimated engine exhaust temperature $\dot{m}_{EGR,\,est}$ Estimated low-pressure EGR mass flow

Air Mass Flow

To calculate engine air mass flow, configure the SI engine to use either of these air mass flow models.

Air Mass Flow Model	Description
"SI Engine Speed-Density Air Mass	Uses the speed-density equation to calculate the engine air
Flow Model"	mass flow, relating the engine air mass flow to the intake
	manifold pressure and engine speed. Consider using this air
	mass flow model in engines with fixed valvetrain designs.

Air Mass Flow Model	Description
"SI Engine Dual-Independent Cam Phaser Air Mass Flow Model"	To calculate the engine air mass flow, the dual-independent cam phaser model uses:
	Empirical calibration parameters developed from engine mapping measurements
	Desktop calibration parameters derived from engine computer-aided design (CAD) data
	In contrast to typical embedded air mass flow calculations based on direct air mass flow measurement with an air mass flow (MAF) sensor, this air mass flow model offers:
	Elimination of MAF sensors in dual cam-phased valvetrain applications
	Reasonable accuracy with changes in altitude
	Semiphysical modeling approach
	Bounded behavior
	Suitable execution time for electronic control unit (ECU) implementation
	Systematic development of a relatively small number of calibration parameters

To determine the estimated air mass flow, the block uses the intake air mass fraction. The EGR mass fraction at the intake port lags the mass fraction near the EGR valve outlet. To model the lag, the block uses a first order system with a time constant.

$$y_{intk, EGR, est} = \frac{\dot{m}_{EGR, est}}{\dot{m}_{intk, est}} \frac{t_s z}{\tau_{EGR} z + t_s - \tau_{EGR}}$$

The remainder of the gas is air.

$$y_{intk, air, est} = 1 - y_{intk, EGR, est}$$

The equations use these variables.

$y_{intk,EGR,est}$	Estimated intake manifold EGR mass fraction
${\cal Y}$ intk,air,est	Estimated intake manifold air mass fraction
$\dot{m}_{EGR,est}$	Estimated low-pressure EGR mass flow
$\dot{m}_{intk,est}$	Estimated intake port mass flow
$ au_{EGR}$	EGR time constant

Torque

To calculate the brake torque, configure the SI engine to use either of these torque models.

Brake Torque Model	Description
"SI Engine Torque Structure Model"	For the structured brake torque calculation, the SI engine uses tables for the inner torque, friction torque, optimal spark, spark efficiency, and lambda efficiency.
"SI Engine Simple Torque Model"	For the simple brake torque calculation, the SI engine block uses a torque lookup table map that is a function of engine speed and load.

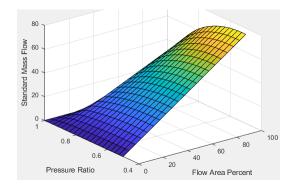
EGR

The controller estimates low-pressure mass flow, EGR valve inlet pressure, and EGR valve outlet pressure using an algorithm developed by F. Liu and J. Pfeiffer. The estimator requires measured EGR valve differential pressure, EGR valve area percent, intake air temperature, and EGR valve inlet temperature.

To estimate the EGR valve commands, the block uses:

· Equations

$$\dot{m}_{air,\,std} = \dot{m}_{air,\,est} \frac{P_{std}}{P_{amb}} \sqrt{\frac{IAT}{T_{std}}}$$

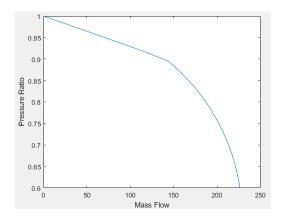

$$P_{in,EGR} = P_{out,EGR} + \Delta P_{EGR}$$

$$\dot{m}_{EGR, est} = \dot{m}_{EGR, std} \frac{P_{in, EGR}}{P_{std}} \sqrt{\frac{T_{std}}{T_{in, EGR}}}$$

- Tables
 - The EGR valve standard mass flow lookup table is a function of EGR valve area percent and the pressure ratio

$$\dot{m}_{EGR, std} = f_{EGR, std} \left(EGRap, \frac{P_{out, EGR}}{P_{in, EGR}} \right)$$

- $\dot{m}_{EGR.\,std}$ is EGR valve standard mass flow, dimensionless.
- EGRap is EGR valve flow area percent, in percent.
- $\frac{P_{out,EGR}}{P_{in,EGR}}$ is the pressure ratio, dimensionless.



· The pressure ratio is a function of the standard mass flow

$$\frac{P_{out,EGR}}{P_{amb}} = f_{intksys,\,pr}(\dot{m}_{air,\,std})$$

where:

- $\dot{m}_{air, std}$ is standard mass flow, in g/s.
- $\frac{P_{out,EGR}}{P_{amb}}$ is pressure ratio, dimensionless.

The equations use these variables.

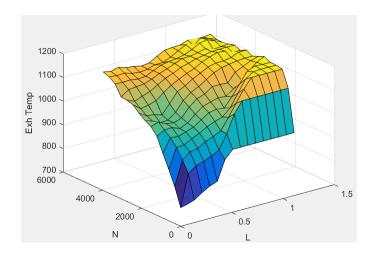
EGR valve area percent command

IAT Intake air temperature

 $\dot{m}_{air,std}$, $\dot{m}_{EGR,std}$ Standard air and EGR valve mass flow, respectively $\dot{m}_{air,est}$, $\dot{m}_{EGR,est}$ Estimated air and EGR valve mass flow, respectively

 T_{std} , P_{std} Standard temperature and pressure T_{amb} , P_{amb} Ambient temperature and pressure

 ΔP_{EGR} Pressure difference at EGR valve inlet and outlet


 $T_{in,EGR}$, $T_{out,EGR}$ Temperature at EGR valve inlet and outlet, respectively $P_{in,EGR}$, $P_{out,EGR}$ Pressure at EGR valve inlet and outlet, respectively

Exhaust Temperature

The exhaust temperature lookup table, f_{Texh} , is a function of engine load and engine speed

$$T_{exh} = f_{Texh}(L, N)$$

- T_{exh} is engine exhaust temperature, in K.
- L is normalized cylinder air mass or engine load, dimensionless.
- *N* is engine speed, in rpm.

Ports

Input

TrqCmd — Commanded engine torque

scalar

Commanded engine torque, $Trq_{cmd,input}$, in N·m.

EngSpd — Measured engine speed

scalar

Measured engine speed, N, in rpm.

AmbPrs — **Measured absolute ambient pressure**

scalar

Measured ambient pressure, P_{Amb} , in Pa.

Map — Measured intake manifold absolute pressure

scalar

Measured intake manifold absolute pressure MAP, in Pa.

Mat — Measured intake manifold absolute temperature

scalar

Measured intake manifold absolute temperature, MAT, in K.

IntkCamPhase — Intake cam phaser angle

scalar

Intake cam phaser angle, φ_{ICP} , in degCrkAdv, or degrees crank advance.

ExhCamPhase — Exhaust cam phaser angle

scalar

Exhaust cam phaser angle, φ_{ECP} , in degCrkRet, or degrees crank retard.

Iat - Intake air temperature

scalar

Intake air temperature, IAT, in K.

Ect — Engine cooling temperature

scalar

Engine cooling temperature, $T_{coolant}$, in K.

EgrVlvInTemp — EGR valve inlet temperature

scalar

EGR valve inlet temperature, $T_{in,EGR}$, in K.

EgrVlvAreaPct — EGR valve area percent

scalar

EGR valve area percent, *EGRap*, in %.

EgrVlvDeltaPrs — EGR valve delta pressure

scalar

EGR valve delta pressure, ΔP_{EGR} , in Pa.

02VoltSen — Oxygen sensor voltage

scalar

Oxygen sensor voltage for closed-loop air-fuel-ratio (lambda) control, in mV.

To configure the block to use closed-loop air-fuel-ratio control, on the **Fuel** tab, on the **Closed-loop fuel** pane, select **Closed-loop feedback**.

LambdaCmd — Commanded AFR, lambda

scalar

Commanded air-fuel-ratio (lambda), λ_{cmd} , dimensionless.

Dependencies

To create this port, on the **Fuel** tab, on the **Open-loop fuel** pane, select **Input lambda**.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Variable	Units
TrqCmd Engine torque		Trq_{cmd}	N·m
LdCmd	Commanded load	L_{cmd}	N/A
ThrPosCmd Throttle area percent command TAP_{cmd} %		%	
WgAreaPctCmd	Wastegate area percent command	WAP_{cmd}	%

Signal	Description	Variable	Units
InjPw	Fuel injector pulse-width	Pw_{inj}	ms
SpkAdv	Spark advance	SA	degBTDC
IntkCamPhaseCmd	Intake cam phaser angle command	φ_{ICPCMD}	degCrkAdv
ExhCamPhaseCmd	Exhaust cam phaser angle command	φ_{ECPCMD}	degCrkRet
EgrVlvAreaPctCmd	Exhaust cam phaser angle command	$EGRap_{cmd}$	%
FuelMassFlwCmd	EGR valve area percent command	$\dot{m}_{fuel,cmd}$	kg/s
AfrCmd	Commanded air-fuel ratio	AFR_{cmd}	N/A
EstEngTrq	Estimated engine torque	Trq_{est}	N·m
EstNrmlzdAirCharg	Estimated normalized cylinder air mass	N/A	N/A
EstIntkPortMassFlw	Estimated intake port air mass flow rate	$\dot{m}_{intk,est}$	kg/s
EstIntkAirMassFlw	Estimated air mass flow rate	$\dot{m}_{air,est}$	kg/s
EstEgrMassFlw	Estimated low-pressure EGR mass flow rate	$\dot{m}_{EGR,est}$	kg/s
EstExhManGasTemp	Estimated exhaust manifold gas temperature	$T_{exh,est}$	K
EngRevLimAct	Flag that indicates if rev-limiter control is active	N/A	N/A
ClsdLpFuelMult	Fuel injector pulse-width multiplier for closed-loop AFR control	Pw_{inj_mult}	N/A

ThrPosPctCmd — Throttle area percent command

scalar

Throttle area percent command, TAP_{cmd} .

WgAreaPctCmd — Wastegate area percent command

scalar

Wastegate area percent command, WAP_{cmd} .

InjPw — Fuel injector pulse-width

scalar

Fuel injector pulse-width, Pw_{ini} , in ms.

SpkAdv — **Spark** advance

scalar

Spark advance, SA, in degrees crank angle before top dead center (degBTDC).

IntkCamPhaseCmd — Intake cam phaser angle command

scalar

Intake cam phaser angle command, φ_{ICPCMD} .

ExhCamPhaseCmd — Exhaust cam phaser angle command

scalar

Exhaust cam phaser angle command, φ_{ECPCMD} .

EgrVlvAreaPctCmd — EGR valve area percent command

scalar

EGR valve area percent command, $EGRap_{cmd}$, in %.

Parameters

Configuration

Air mass flow estimation model — Select air mass flow estimation model

Dual Variable Cam Phasing (default) | Simple Speed-Density

To calculate engine air mass flow, configure the SI engine to use either of these air mass flow models.

Air Mass Flow Model	Description
"SI Engine Speed-Density Air Mass Flow Model"	Uses the speed-density equation to calculate the engine air mass flow, relating the engine air mass flow to the intake manifold pressure and engine speed. Consider using this air mass flow model in engines with fixed valvetrain designs.
"SI Engine Dual-Independent Cam Phaser Air Mass Flow Model"	To calculate the engine air mass flow, the dual-independent cam phaser model uses:
	Empirical calibration parameters developed from engine mapping measurements
	Desktop calibration parameters derived from engine computer-aided design (CAD) data
	In contrast to typical embedded air mass flow calculations based on direct air mass flow measurement with an air mass flow (MAF) sensor, this air mass flow model offers:
	Elimination of MAF sensors in dual cam-phased valvetrain applications
	Reasonable accuracy with changes in altitude
	Semiphysical modeling approach
	Bounded behavior
	Suitable execution time for electronic control unit (ECU) implementation
	Systematic development of a relatively small number of calibration parameters

Dependencies

The table summarizes the parameter dependencies.

Air Mass Flow Estimation Model	Enables Parameters on Estimation > Air Tab
Dual Variable Cam Phasing	Cylinder volume at intake valve close table, f_vivc
	Cylinder volume intake cam phase breakpoints, f_vivc_icp_bpt
	Cylinder trapped mass correction factor, f_tm_corr
	Normalized density breakpoints, f_tm_corr_nd_bpt
	Engine speed breakpoints, f_tm_corr_n_bpt
	Air mass flow, f_mdot_air
	Exhaust cam phase breakpoints, f_mdot_air_ecp_bpt
	Trapped mass flow breakpoints, f_mdot_trpd_bpt
	Air mass flow correction factor, f_mdot_air_corr
	Engine load breakpoints for air mass flow correction, f_mdot_air_corr_ld_bpt
	Engine speed breakpoints for air mass flow correction, f_mdot_air_n_bpt
Simple Speed- Density	Speed-density volumetric efficiency, f_nv
	Speed-density intake manifold pressure breakpoints, f_nv_prs_bpt
	Speed-density engine speed breakpoints, f_nv_n_bpt

Torque estimation model — Select torque estimation model

Torque Structure (default) | Simple Torque Lookup

To calculate the brake torque, configure the SI engine to use either of these torque models.

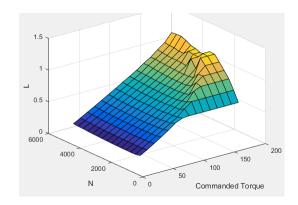
Brake Torque Model	Description
"SI Engine Torque Structure Model"	For the structured brake torque calculation, the SI engine uses tables for the inner torque, friction torque, optimal spark, spark efficiency, and lambda efficiency.
"SI Engine Simple Torque Model"	For the simple brake torque calculation, the SI engine block uses a torque lookup table map that is a function of engine speed and load.

Dependencies

The table summarizes the parameter dependencies.

Torque Estimation Model	Enables Parameters on Estimation > Torque Tab
Torque Structure	Inner torque table, f_tq_inr
	Friction torque table, f_tq_fric
	Engine temperature modifier on friction torque, f_fric_temp_mod
	Engine temperature modifier breakpoints, f_fric_temp_bpt
	Pumping torque table, f_tq_pump
	Optimal spark table, f_sa_opt
	Inner torque load breakpoints, f_tq_inr_l_bpt
	Inner torque speed breakpoints, f_tq_inr_n_bpt
	Spark efficiency table, f_m_sa
	Spark retard from optimal, f_del_sa_bpt
	Lambda efficiency, f_m_lam
	Lambda breakpoints, f_m_lam_bpt
Simple Torque Lookup	Torque table, f_tq_nl
	Torque table load breakpoints, f_tq_nl_l_bpt
	Torque table speed breakpoints, f_tq_nl_n_bpt

Controls


Air

Engine commanded load table, $f_lcmd - Lookup$ table array

The commanded engine load lookup table, f_{Lcmd} , is a function of the commanded torque and engine speed

$$L_{cmd} = f_{Lcmd}(T_{cmd}, N)$$

- L_{cmd} =L is commanded engine load, dimensionless.
- T_{cmd} is commanded torque, in N·m.
- *N* is engine speed, in rpm.

Torque command breakpoints, f_lcmd_tq_bpt — Breakpoints

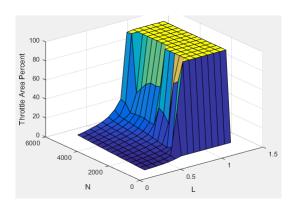
[15 26.43 37.86 49.29 60.71 72.14 83.57 95 106.4 117.9 129.3 140.7 152.1 163.6 175] (default) | vector

Torque command breakpoints, in N·m.

Speed breakpoints, f_lcmd_n_bpt — Breakpoints

[750 1054 1357 1661 1964 2268 2571 2875 3179 3482 3786 4089 4393 4696 5000] (default) | vector

Speed breakpoints, in rpm.


Throttle area percent, f_tap — Lookup table, %

array

The throttle area percent command lookup table, f_{TAPcmd} , is a function of commanded load and engine speed

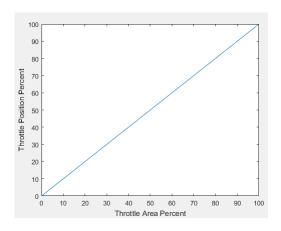
$$TAP_{cmd} = f_{TAPcmd}(L_{cmd}, N)$$

- TAP_{cmd} is throttle area percentage command, in percent.
- L_{cmd} =L is commanded engine load, dimensionless.
- *N* is engine speed, in rpm.

Throttle area percent load breakpoints, f_tap_ld_bpt — Breakpoints [0.2 0.275 0.35 0.425 0.5 0.575 0.65 0.725 0.8 0.875 0.95 1.025 1.1 1.175 1.25] (default) | vector

Throttle area percent load breakpoints, dimensionless.

Throttle area percent speed breakpoints, f_tap_n_bpt — Breakpoints
[750 1054 1357 1661 1964 2268 2571 2875 3179 3482 3786 4089 4393 4696 5000]
(default) | vector


Throttle area percent speed breakpoints, in rpm.

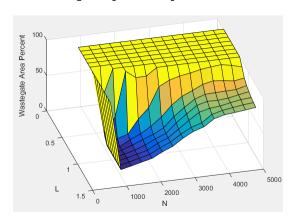
The throttle position percent command lookup table, f_{TPPcmd} , is a function of the throttle area percentage command

$$TPP_{cmd} = f_{TPPcmd}(TAP_{cmd})$$

where:

- TPP_{cmd} is throttle position percentage command, in percent.
- TAP_{cmd} is throttle area percentage command, in percent.

Throttle area percent to position percent area breakpoints, f_tpp_tap_bpt — Breakpoints


[0 100] (default) | vector

Throttle area percent to position percent area breakpoints, dimensionless.

The wastegate area percent command lookup table, f_{WAPcmd} , is a function of the commanded engine load and engine speed

$$WAP_{cmd} = f_{WAPcmd}(L_{cmd}, N)$$

- WAP_{cmd} is wastegate area percentage command, in percent.
- L_{cmd} =L is commanded engine load, dimensionless.
- *N* is engine speed, in rpm.

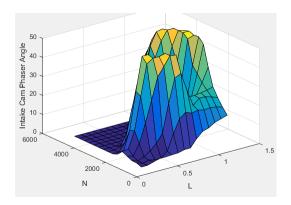
Load breakpoints, f_wap_ld_bpt — Breakpoints

[0.2 0.275 0.35 0.425 0.5 0.575 0.65 0.725 0.8 0.875 0.95 1.025 1.1 1.175 1.25] (default) | vector

Load breakpoints, dimensionless.

Speed breakpoints, f_wap_n_bpt — Breakpoints, rpm

[750 1054 1357 1661 1964 2268 2571 2875 3179 3482 3786 4089 4393 4696 5000] (default) | vector

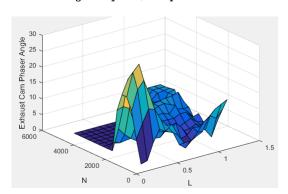

Speed breakpoints, in rpm.

Intake cam phaser angle, f_icp — Lookup table array

The intake cam phaser angle command lookup table, f_{ICPCMD} , is a function of the engine load and engine speed

$$\varphi_{ICPCMD} = f_{ICPCMD}(L_{est}, N)$$

- φ_{ICPCMD} is commanded intake cam phaser angle, in degrees crank advance.
- L_{est} =L is estimated engine load, dimensionless.
- *N* is engine speed, in rpm.


Exhaust cam phaser angle, f_ecp — Lookup table array

The exhaust cam phaser angle command lookup table, f_{ECPCMD} , is a function of the engine load and engine speed

$$\varphi_{ECPCMD} = f_{ECPCMD}(L_{est}, N)$$

where:

- φ_{ECPCMD} is commanded exhaust cam phaser angle, in degrees crank retard.
- L_{est} =L is estimated engine load, dimensionless.
- *N* is engine speed, in rpm.

Load breakpoints, f_cp_ld_bpt — Breakpoints

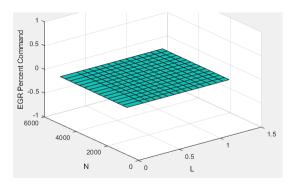
 $[0.2 \ 0.275 \ 0.35 \ 0.425 \ \overline{0.5} \ 0.575 \ 0.65 \ 0.725 \ 0.8 \ 0.875 \ 0.95 \ 1.025 \ 1.1 \ 1.175$ 1.25] (default) | vector

Load breakpoints, dimensionless.

Speed breakpoints, f_cp_n_bpt — Breakpoints
[750 1054 1357 1661 1964 2268 2571 2875 3179 3482 3786 4089 4393 4696 5000] (default) | vector

Speed breakpoints, in rpm.

Commanded EGR percent, f_egrpct_cmd — Lookup table


array

The EGR percent command, $EGR_{pct,cmd}$, lookup table is a function of estimated engine load and engine speed

$$EGR_{pct, cmd} = f_{EGRpct, cmd}(L_{est}, N)$$

where:

- $EGR_{pct,cmd}$ is commanded EGR percent, dimensionless.
- L_{est} =L is estimated engine load, dimensionless.
- *N* is engine speed, in rpm.

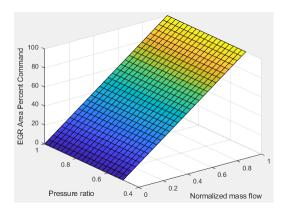
Load breakpoints, f_egrpct_ld_bpt — Breakpoints

[0 0.2 0.275 0.35 0.425 0.5 0.575 0.65 0.725 0.8 0.875 0.95 1.025 1.1 1.175 1.25] (default) | vector

Engine load breakpoints, *L*, dimensionless.

Speed breakpoints, f_egrpct_n_bpt — Breakpoints

[750 1054 1357 1661 1964 2268 2571 2875 3179 3482 3786 4089 4393 4696 5000] (default) | vector


Engine speed breakpoints, N, in rpm.

EGR valve area percent, f_egr_areapct_cmd — Lookup table array

The EGR area percent command, $EGRap_{cmd}$, lookup table is a function of the normalized mass flow and pressure ratio

$$EGRap_{cmd} = f_{EGRap,\,cmd} \left(\frac{\dot{m}_{EGRstd,\,cmd}}{\dot{m}_{EGRstd,\,max}}, \frac{P_{out,\,EGR}}{P_{in,\,EGR}} \right)$$

- $EGRap_{cmd}$ is commanded EGR area percent, dimensionless.
- $\frac{\dot{m}_{EGRstd,\,cmd}}{\dot{m}_{EGRstd,\,max}}$ is the normalized mass flow, dimensionless.
- $\frac{P_{out,EGR}}{P_{in,EGR}}$ is the pressure ratio, dimensionless.

Open EGR valve standard flow, f_egr_max_stdflow — Breakpoints
[74.87 74.87 74.74 74.39 73.81 72.98 71.91 70.58 68.97 67.06 64.84 62.25
59.27 55.81 51.79 47.07 36.33 24.22 12.11 0] (default) | vector

Maximum standard EGR valve mass flow breakpoints, $\dot{m}_{EGRstd,max}$, in N·m.

Normalized EGR valve standard flow breakpoints, f_egr_areapct_nrmlzdflow_bpt — Breakpoints

[0 0.03448 0.06897 0.1034 0.1379 0.1724 0.2069 0.2414 0.2759 0.3103 0.3448 0.3793 0.4138 0.4483 0.4828 0.5172 0.5517 0.5862 0.6207 0.6552 0.6897 0.7241 0.7586 0.7931 0.8276 0.8621 0.8966 0.931 0.9655 1] (default) | vector

Normalized mass flow breakpoints, $\frac{\dot{m}_{EGRstd, cmd}}{\dot{m}_{EGRstd, max}}$, dimensionless.

EGR valve pressure ratio breakpoints, f_egr_areapct_pr_bpt — Breakpoints vector

Pressure ratio breakpoints, $\frac{P_{out,EGR}}{P_{in,EGR}}$, dimensionless.

Fuel

Injector slope, Sinj — Slope

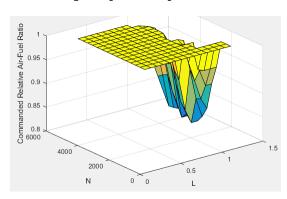
6.452 (default) | scalar

Fuel injector slope, S_{inj} , in mg/ms.

Stoichiometric air-fuel ratio, afr_stoich — Ratio 14.6 (default) | scalar

14.0 (acidait) | 3cacai

Stoichiometric air-fuel ratio, AFR_{stoich} .


Relative air-fuel ratio lambda, f_lamcmd — Air-fuel-ratio (AFR) lookup table array

The commanded lambda, λ_{cmd} , lookup table is a function of estimated engine load and measured engine speed

$$\lambda_{cmd} = f_{\lambda cmd}(L_{est}, N)$$

where:

- λ_{cmd} is commanded relative AFR, dimensionless.
- L_{est} =L is estimated engine load, dimensionless.
- *N* is engine speed, in rpm.

Dependencies

To create this parameter, on the **Fuel** tab, on the **Open-loop fuel** pane, clear **Input lambda**.

Load breakpoints, f lamcmd ld bpt — Breakpoints

[0.2 0.275 0.35 0.425 0.5 0.575 0.65 0.725 0.8 0.875 0.95 1.025 1.1 1.175 1.25] (default) | vector

Load breakpoints, dimensionless.

Dependencies

To create this parameter, on the **Fuel** tab, on the **Open-loop fuel** pane, clear **Input lambda**.

Speed breakpoints, f lamcmd n bpt — Breakpoints

[750 1054 1357 1661 1964 2268 2571 2875 3179 3482 3786 4089 4393 4696 5000] (default) | vector

Speed breakpoints, in rpm.

Dependencies

To create this parameter, on the **Fuel** tab, on the **Open-loop fuel** pane, clear **Input lambda**.

Engine startup lambda enrichment delta vs coolant temperature, f_startup_lambda_delta — Lookup table

[0.5 0.3 0.2 0] (default) | vector

Engine startup lambda enrichment delta as a function of coolant temperature, dimensionless.

The SI Controller block uses this parameter to account for the extra fuel delivered to the sparkignition (SI) engine during startup. If the engine speed is greater than the **Engine cranking speed** parameter, the SI Controller block enriches the optimal relative air-fuel ratio (lambda) with an exponentially decaying delta lambda. To initialize the delta lambda, the block uses the **Engine startup lambda enrichment delta vs coolant temperature** parameter to create a lambda enrichment table that is a function of the engine coolant temperature. The delta lambda exponentially

decays to zero based on a time constant specified with the **Engine startup lambda enrichment delta time constant vs coolant temperature** parameter.

Dependencies

To create this parameter, on the **Fuel** tab, on the **Open-loop fuel** pane, clear **Input lambda**.

Engine startup lambda enrichment delta time constant vs coolant temperature,
f_startup_lambda_delta_timecnst — Lambda time constant
[90 40 12 0] (default) | vector

Engine startup lambda enrichment delta time constant versus coolant temperature, in s.

The SI Controller block uses this parameter to account for the extra fuel delivered to the sparkignition (SI) engine during startup. If the engine speed is greater than the **Engine cranking speed** parameter, the SI Controller block enriches the optimal relative air-fuel ratio (lambda) with an exponentially decaying delta lambda. To initialize the delta lambda, the block uses the **Engine startup lambda enrichment delta vs coolant temperature** parameter to create a lambda enrichment table that is a function of the engine coolant temperature. The delta lambda exponentially decays to zero based on a time constant specified with the **Engine startup lambda enrichment delta time constant vs coolant temperature** parameter.

Dependencies

To create this parameter, on the **Fuel** tab, on the **Open-loop fuel** pane, clear **Input lambda**.

Engine startup coolant temperature breakpoints, f_startup_ect_bpt — Breakpoints
[-40 0 20 50] (default) | vector

Engine startup coolant temperature breakpoints, in C.

The SI Controller block uses this parameter to account for the extra fuel delivered to the sparkignition (SI) engine during startup. If the engine speed is greater than the **Engine cranking speed** parameter, the SI Controller block enriches the optimal relative air-fuel ratio (lambda) with an exponentially decaying delta lambda. To initialize the delta lambda, the block uses the **Engine startup lambda enrichment delta vs coolant temperature** parameter to create a lambda enrichment table that is a function of the engine coolant temperature. The delta lambda exponentially decays to zero based on a time constant specified with the **Engine startup lambda enrichment delta time constant vs coolant temperature** parameter.

Dependencies

To create this parameter, on the **Fuel** tab, on the **Open-loop fuel** pane, clear **Input lambda**.

$\begin{tabular}{ll} \textbf{Closed-loop feedback} & \textbf{--Minimize commanded AFR error} \\ \textbf{off } (default) \mid \texttt{on} \\ \end{tabular}$

Select option to minimize the commanded air-fuel-ratio (lambda), λ_{cmd} error.

Dependencies

Selecting this parameter enables these parameters:

- Closed-loop fuel proportional gain, ClsdLpFuelPGain
- Closed-loop fuel integral gain, ClsdLpFuelIGain

- Closed-loop fuel integrator limit, ClsdLpFuelIntgLmt
- · Lambda dither amplitude, LambdaDitherAmp
- Lambda dither frequency, LambdaDitherFrq
- Oxygen sensor stoichiometric reset voltage, O2ResetStoichVoltSen
- Oxygen sensor minimum voltage reset, O2ResetMinVoltSen
- Oxygen sensor maximum voltage reset, O2ResetMaxVoltSen
- Oxygen sensor voltage learn update period, O2LearnUpdatePerSen
- Oxygen sensor voltage amplitude minimum, O2AmpMinVoltSen
- Oxygen sensor ready voltage, O2ReadyVoltSen
- Oxygen sensor not ready voltage, O2NotReadyVoltSen

Dither — Model catalytic conversion efficiency

off (default) | on

Configure the block to model dither. For open-loop analysis, select this option to tune for maximum catalytic conversion efficiency.

Dependencies

By default, selecting **Closed-loop feedback** configures the block to model dither.

To enable this parameter for open-loop air-fuel-ratio (lambda) commands, clear **Closed-loop feedback**.

Selecting this parameter enables these parameters:

- Lambda dither amplitude, LambdaDitherAmp
- Lambda dither frequency, LambdaDitherFrq

Closed-loop fuel proportional gain, ClsdLpFuelPGain — Proportional gain 0.005 (default) | scalar

Closed-loop fuel proportional gain, dimensionless.

Dependencies

To enable this parameter, on the **Fuel** tab, on the **Closed-loop fuel** pane, select **Closed-loop feedback**.

Closed-loop fuel integral gain, ClsdLpFuelIGain — Integral gain 0.05 (default) | scalar

Closed-loop fuel integral gain, dimensionless.

Dependencies

To enable this parameter, on the **Fuel** tab, on the **Closed-loop fuel** pane, select **Closed-loop feedback**.

Closed-loop fuel integrator limit, ClsdLpFuelIntgLmt — Integrator limit 0.2 (default) | scalar

Closed-loop fuel integrator limit, dimensionless.

Dependencies

To enable this parameter, on the **Fuel** tab, on the **Closed-loop fuel** pane, select **Closed-loop feedback**.

Lambda dither amplitude, LambdaDitherAmp — Amplitude 0.03 (default) | scalar

Lambda dither amplitude, dimensionless.

Dependencies

To enable this parameter, on the **Fuel** tab, on the **Closed-loop fuel** pane, select either **Closed-loop feedback** or **Dither**.

Lambda dither frequency, LambdaDitherFrq — Frequency 0.75 (default) | scalar

or, o (dolddir) | ocd car

Lambda dither frequency, in Hz.

Dependencies

To enable this parameter, on the **Fuel** tab, on the **Closed-loop fuel** pane, select either **Closed-loop feedback** or **Dither**.

Oxygen sensor stoichiometric reset voltage, O2ResetStoichVoltSen — Closed-loop AFR control

2500 (default) | scalar

Oxygen sensor stoichiometric reset voltage, O2ResetStoichVoltSen, in mV.

Dependencies

To enable this parameter, on the **Fuel** tab, on the **Closed-loop fuel** pane, select **Closed-loop feedback**.

Oxygen sensor minimum voltage reset, O2ResetMinVoltSen — Closed-loop AFR control θ (default) | scalar

Oxygen sensor minimum voltage reset, O2ResetMinVoltSen, in mV.

Dependencies

To enable this parameter, on the **Fuel** tab, on the **Closed-loop fuel** pane, select **Closed-loop feedback**.

Oxygen sensor maximum voltage reset, O2ResetMaxVoltSen — Closed-loop AFR control 5000 (default) | scalar

Oxygen sensor maximum voltage reset, O2ResetMaxVoltSen, in mV.

Dependencies

To enable this parameter, on the **Fuel** tab, on the **Closed-loop fuel** pane, select **Closed-loop feedback**.

Oxygen sensor voltage learn update period, O2LearnUpdatePerSen — Closed-loop AFR control

4 (default) | scalar

Oxygen sensor voltage learn update period, O2LearnUpdatePerSen, in mV.

Dependencies

To enable this parameter, on the **Fuel** tab, on the **Closed-loop fuel** pane, select **Closed-loop feedback**.

Oxygen sensor voltage amplitude minimum, O2AmpMinVoltSen — Closed-loop AFR control

250 (default) | scalar

Oxygen sensor voltage amplitude minimum, O2AmpMinVoltSen, in mV.

Dependencies

To enable this parameter, on the **Fuel** tab, on the **Closed-loop fuel** pane, select **Closed-loop feedback**.

Oxygen sensor ready voltage, O2ReadyVoltSen — Closed-loop AFR control 1150 (default) | scalar

Oxygen sensor ready voltage, O2ReadyVoltSen, in mV.

Dependencies

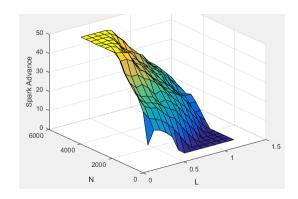
To enable this parameter, on the **Fuel** tab, on the **Closed-loop fuel** pane, select **Closed-loop feedback**.

Oxygen sensor not ready voltage, O2NotReadyVoltSen — Closed-loop AFR control 1950 (default) | scalar

Oxygen sensor not ready voltage, O2NotReadyVoltSen, in mV.

Dependencies

To enable this parameter, on the **Fuel** tab, on the **Closed-loop fuel** pane, select **Closed-loop feedback**.


Spark

Spark advance table, f_sa — Lookup table array

The spark advance lookup table is a function of estimated load and engine speed.

$$SA = f_{SA}(L_{est}, N)$$

- SA is spark advance, in crank advance degrees.
- *L_{est}=L* is estimated engine load, dimensionless.
- *N* is engine speed, in rpm.

Load breakpoints, f_sa_ld_bpt — Breakpoints

[0.2 0.275 0.35 0.425 0.5 0.575 0.65 0.725 0.8 0.875 0.95 1.025 1.1 1.175 1.25] (default) | vector

Load breakpoints, dimensionless.

Speed breakpoints, f_sa_n_bpt — Breakpoints

[750 1054 1357 1661 1964 2268 2571 2875 3179 3482 3786 4089 4393 4696 5000] (default) | vector

Speed breakpoints, in rpm.

Idle Speed

Target idle speed, N_idle — Speed

750 (default) | scalar

Target idle speed, N_{idle} , in rpm.

Enable torque command limit, Trq_idlecmd_enable — Torque

1 (default) | scalar

Torque to enable the idle speed controller, $Trq_{idlecmd,enable}$, in N·m.

Maximum torque command, Trq_idlecmd_max — Torque

50 (default) | scalar

Maximum idle controller commanded torque, $Trq_{idlecmd,max}$, in N·m.

Proportional gain, Kp_idle — PI Controller

0.05 (default) | scalar

Proportional gain for idle speed control, $K_{p,idle}$, in N·m/rpm.

Integral gain, Ki_idle — PI Controller

0.2 (default) | scalar

Integral gain for idle speed control, $K_{i,idle}$, in N·m/(rpm·s).

Rev-limiter speed threshold — Engine speed limit

scalar

Engine speed limit, N_{lim} , in rpm.

If the engine speed, N, exceeds the engine speed limit, N_{lim} , the block sets the commanded engine torque to 0.

To smoothly transition the torque command to 0 as the engine speed approaches the speed limit, the block implements a lookup table multiplier. The lookup table multiplies the torque command by a value that ranges from 0 (engine speed exceeds limit) to 1 (engine speed does not exceed the limit).

Engine cranking speed, CrankSpeed — Engine speed

150 (default) | scalar

Engine cranking speed, in rpm.

Estimation

Air

Number of cylinders, NCyl — Engine cylinders

4 (default) | scalar

Number of engine cylinders, N_{cyl} .

Crank revolutions per power stroke, Cps — Revolutions per stroke

2 (default) | scalar

Crankshaft revolutions per power stroke, Cps, in rev/stroke.

Total displaced volume, Vd — Volume

0.0015 (default) | scalar

Displaced volume, V_d , in m³.

Ideal gas constant air, Rair — Constant

287 (default) | scalar

Ideal gas constant, R_{air} , in J/(kg·K).

Air standard pressure, Pstd — Pressure

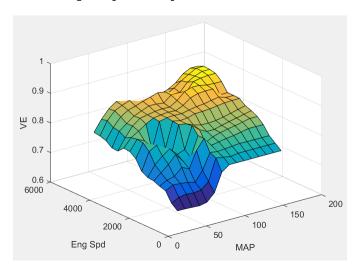
101325 (default) | scalar

Standard air pressure, P_{std} , in Pa.

Air standard temperature, Tstd — Temperature

293.15 (default) | scalar

Standard air temperature, T_{std} , in K.


Speed-density volumetric efficiency, f_nv — Lookup table

array

The engine volumetric efficiency lookup table, f_{η_V} , is a function of intake manifold absolute pressure and engine speed

$$\eta_{v} = f_{\eta_{v}}(MAP, N)$$

- η_{V} is engine volumetric efficiency, dimensionless.
- *MAP* is intake manifold absolute pressure, in KPa.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, for the **Air mass flow estimation model** parameter, select **Simple** Speed-Density.

Speed-density intake manifold pressure breakpoints, f_nv_prs_bpt — Breakpoints [31 40.64 50.29 59.93 69.57 79.21 88.86 98.5 108.1 117.8 127.4 137.1 146.7 156.4 166] (default) | vector

Intake manifold pressure breakpoints for speed-density volumetric efficiency lookup table, in KPa.

Dependencies

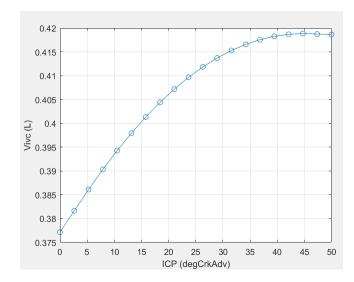
To enable this parameter, for the **Air mass flow estimation model** parameter, select Simple Speed-Density.

Speed-density engine speed breakpoints, f_nv_n_bpt — Breakpoints
[750 1054 1357 1661 1964 2268 2571 2875 3179 3482 3786 4089 4393 4696 5000]
(default) | vector

Engine speed breakpoints for speed-density volumetric efficiency lookup table, in rpm.

Dependencies

To enable this parameter, for the **Air mass flow estimation model** parameter, select Simple Speed-Density.


Cylinder volume at intake valve close table, $f_{vivc} - 2-D$ lookup table array

The cylinder volume at intake valve close table (IVC), f_{Vivc} is a function of the intake cam phaser angle

$$V_{IVC} = f_{Vivc}(\varphi_{ICP})$$

where:

- V_{IVC} is cylinder volume at IVC, in L.
- φ_{ICP} is intake cam phaser angle, in crank advance degrees.

Dependencies

To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.

Engine speed breakpoints, f_tm_corr_n_bpt — Breakpoints [750 973.7 1197 1421 1645 1868 2092 2316 2539 2763 2987 3211 3434 3658 3882 4105 4329 4553 4776 5000] (default) | vector

Engine speed breakpoints, in rpm.

Dependencies

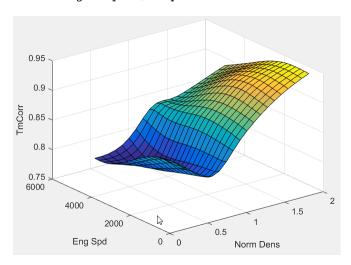
To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.

Cylinder volume intake cam phase breakpoints, f_vivc_icp_bpt — Breakpoints [0 2.632 5.263 7.895 10.53 13.16 15.79 18.42 21.05 23.68 26.32 28.95 31.58 34.21 36.84 39.47 42.11 44.74 47.37 50] (default) | vector

Cylinder volume at intake valve close table breakpoints.

Dependencies

To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.


Cylinder trapped mass correction factor, f_tm_corr — Lookup table array

The trapped mass correction factor table, f_{TMcorr} , is a function of the normalized density and engine speed

$$TM_{corr} = f_{TMcorr}(\rho_{norm}, N)$$

where:

- TM_{corr} , is trapped mass correction multiplier, dimensionless.
- ρ_{norm} is normalized density, dimensionless.
- N is engine speed, in rpm.

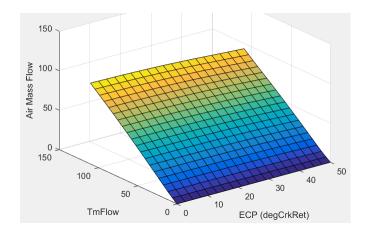
Dependencies

To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.

Normalized density breakpoints, f_tm_corr_nd_bpt — Breakpoints [0.3 0.3895 0.4789 0.5684 0.6579 0.7474 0.8368 0.9263 1.016 1.105 1.195 1.284 1.374 1.463 1.553 1.642 1.732 1.821 1.911 2] (default) | vector

Normalized density breakpoints.

Dependencies


To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.

Intake mass flow, f_mdot_intk — Lookup table array

The phaser intake mass flow model lookup table is a function of exhaust cam phaser angles and trapped air mass flow

$$\dot{m}_{intkideal} = f_{intkideal}(\varphi_{ECP}, TM_{flow})$$

- $\dot{m}_{intkideal}$ is engine intake port mass flow at arbitrary cam phaser angles, in g/s.
- φ_{FCP} is exhaust cam phaser angle, in degrees crank retard.
- TM_{flow} is flow rate equivalent to corrected trapped mass at the current engine speed, in g/s.

Dependencies

To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.

Exhaust cam phase breakpoints, f_mdot_air_ecp_bpt — Breakpoints
[0 2.632 5.263 7.895 10.53 13.16 15.79 18.42 21.05 23.68 26.32 28.95 31.58
34.21 36.84 39.47 42.11 44.74 47.37 50] (default) | vector

Exhaust cam phaser breakpoints for air mass flow lookup table.

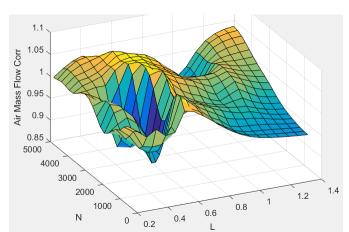
Dependencies

To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.

Trapped mass flow breakpoints, f_mdot_trpd_bpt — Breakpoints[0 5.79 11.58 17.37 23.16 28.95 34.74 40.53 46.32 52.11 57.89 63.68 69.47 75.26 81.05 86.84 92.63 98.42 104.2 110] (default) | vector

Trapped mass flow breakpoints for air mass flow lookup table.

Dependencies


To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.

Air mass flow correction factor, f_mdot_air_corr — Lookup table
array

The intake air mass flow correction lookup table, $f_{aircorr}$, is a function of ideal load and engine speed

$$\dot{m}_{air} = \dot{m}_{intkideal} f_{aircorr}(L_{ideal}, N)$$

- L_{ideal} is engine load (normalized cylinder air mass) at arbitrary cam phaser angles, uncorrected for final steady-state cam phaser angles, dimensionless.
- *N* is engine speed, in rpm.
- \dot{m}_{air} is engine intake air mass flow final correction at steady-state cam phaser angles, in g/s.

• $\dot{m}_{intkideal}$ is engine intake port mass flow at arbitrary cam phaser angles, in g/s.

Dependencies

To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.

Engine load breakpoints for air mass flow correction, f_mdot_air_corr_ld_bpt — Breakpoints

vector

Engine load breakpoints for air mass flow final correction.

Dependencies

To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.

Engine speed breakpoints for air mass flow correction, f_mdot_air_n_bpt — Breakpoints

[750 973.7 1197 1421 1645 1868 2092 2316 2539 2763 2987 3211 3434 3658 3882 4105 4329 4553 4776 5000] (default) | vector

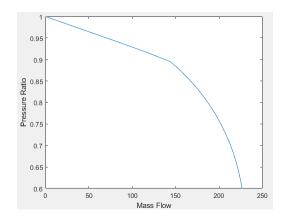
Engine speed breakpoints for air mass flow final correction.

Dependencies

To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.

EGR flow time constant, tau_egr — Constant 0.2 (default) | scalar

EGR flow time constant, τ_{EGR} , in s.


Intake system pressure ratio table, f_intksys_stdflow_pr — Table array

The pressure ratio is a function of the standard mass flow

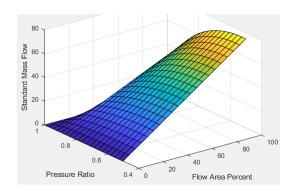
$$\frac{P_{out, EGR}}{P_{amb}} = f_{intksys, pr}(\dot{m}_{air, std})$$

where:

- $\dot{m}_{air, std}$ is standard mass flow, in g/s.
- $\frac{P_{out,EGR}}{P_{amb}}$ is pressure ratio, dimensionless.

Standard mass flow rate breakpoints for intake pressure ratio, f_intksys_stdflow_bpt — Breakpoints

[0 29.67 59.34 89.01 117.8 144.1 155.7 166 175.2 183.3 190.7 197 202.7 207.7 212.2 216.1 219.4 222.2 224.5 226.4] (default) | vector


Standard mass flow, $\dot{m}_{air,std}$, in g/s.

EGR valve standard mass flow rate, f_egr_stdflow — Table array

The EGR valve standard mass flow lookup table is a function of EGR valve area percent and the pressure ratio

$$\dot{m}_{EGR, std} = f_{EGR, std} \left(EGRap, \frac{P_{out, EGR}}{P_{in, EGR}} \right)$$

- $\dot{m}_{EGR, std}$ is EGR valve standard mass flow, dimensionless.
- *EGRap* is EGR valve flow area percent, in percent.
- $\frac{P_{out,EGR}}{P_{in,EGR}}$ is the pressure ratio, dimensionless.

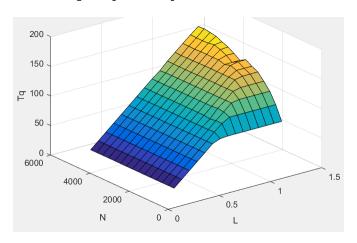
EGR valve standard flow pressure ratio breakpoints, f_egr_stdflow_pr_bpt — $\mbox{\bf Breakpoints}$

vector

EGR valve standard flow pressure ratio, $\frac{P_{out,EGR}}{P_{in,EGR}}$, dimensionless.

EGR valve standard flow area percent breakpoints, f_egr_stdflow_egrap_bpt — Breakpoints

[0;5;10;15;20;25;30;35;40;45;50;55;60;65;70;75;80;85;90;95;100] (default) | vector


EGR valve flow area percent, EGRap, in percent.

Torque

Torque table,
$$f_tq_nl - Lookup table$$
 [L x N] array

For the simple torque lookup table model, the SI engine uses a lookup table map that is a function of engine speed and load, $T_{brake} = f_{TnL}(L, N)$, where:

- T_{brake} is engine brake torque after accounting for spark advance, AFR, and friction effects, in N·m.
- *L* is engine load, as a normalized cylinder air mass, dimensionless.
- *N* is engine speed, in rpm.

The simple torque lookup model assumes that the calibration has negative torque values to indicate the non-firing engine load (L) versus speed (N) condition. The calibrated table (L-by-N) contains the non-firing data in the first table row (1-by-N). When the fuel delivered to the engine is zero, the model uses the data in the first table row (1-by-N) at or above 100 AFR. 100 AFR results from fuel cutoff or very lean operation where combustion cannot occur.

Dependencies

To enable this parameter, for the **Torque model** parameter, select Simple Torque Lookup.

Torque table load breakpoints, f_tq_nl_l_bpt — Breakpoints[0.2 0.275 0.35 0.425 0.5 0.575 0.65 0.725 0.8 0.875 0.95 1.025 1.1 1.175 1.25] (default) | vector | [1 x L] vector

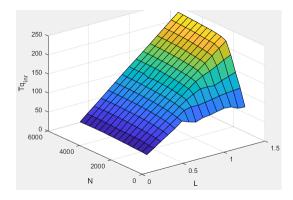
Engine load breakpoints, L, dimensionless.

Dependencies

To enable this parameter, for the **Torque model** parameter, select Simple Torque Lookup.

Torque table speed breakpoints, f_tq_nl_n_bpt — Breakpoints
[750 1053.57142857143 1357.14285714286 1660.71428571429 1964.28571428571
2267.85714285714 2571.42857142857 2875 3178.57142857143 3482.14285714286
3785.71428571429 4089.28571428571 4392.85714285714 4696.42857142857 5000]
(default) | vector | [1 x N] vector

Engine speed breakpoints, N, in rpm.

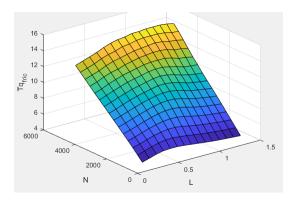

Dependencies

To enable this parameter, for the **Torque model** parameter, select Simple Torque Lookup.

Inner torque table, f_tq_inr — Lookup table array

The inner torque lookup table, f_{Tqinr} , is a function of engine speed and engine load, $Tq_{inr} = f_{Tqinr}(L, N)$, where:

- Tq_{inr} is inner torque based on gross indicated mean effective pressure, in N·m.
- *L* is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- *N* is engine speed, in rpm.



To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Friction torque table, f_tq_fric — Lookup table array

The friction torque lookup table, f_{Tfric} , is a function of engine speed and engine load, $T_{fric} = f_{Tfric}(L, N)$, where:

- T_{fric} is friction torque offset to inner torque, in N·m.
- ullet L is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

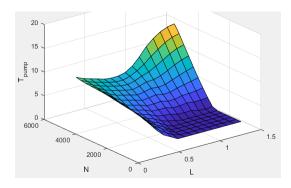
Engine temperature modifier on friction torque, f_fric_temp_mod — Lookup table [3.96 3.22 2.56 2.26 2.11 2 1.9 1.83 1.76 1.7 1.65 1.6 1.55 1.49 1.44 1.41 1.38 1.35 1.32 1.3 1.27 1.25 1.24 1.21 1.2 1.18 1.16 1.15 1.13 1.12 1.11 1.1 1.09 1.08 1.07 1.06 1.05 1.05 1.04 1.03 1.02 1.02 1.01 1.01 1 1 0.999 0.997 0.995 0.993 0.991 0.989 0.987] (default) | vector | vector

Engine temperature modifier on friction torque, $f_{fric.temp}$, dimensionless.

Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Engine temperature modifier breakpoints, f_fric_temp_bpt — Breakpoints
[274 276 278 280 282 284 286 288 290 292 294 296 298 300 302 304 306 308 310
312 314 316 318 320 322 324 326 328 330 332 334 336 338 340 342 344 346 348
350 352 354 356 358 360 362 364 366 368 370 372 374 376 378 380] (default) |
vector | vector

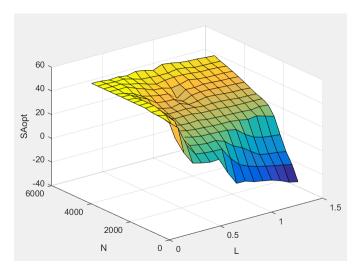

Engine temperature modifier breakpoints, in K.

Dependencies

Pumping torque table, f_tq_pump — Lookup table array

The pumping torque lookup table, f_{Tpump} , is a function of engine speed and injected fuel mass, $T_{pump} = f_{Tpump} (L, N)$, where:

- T_{pump} is pumping torque, in N·m.
- ullet L is engine load, as a normalized cylinder air mass, dimensionless.
- *N* is engine speed, in rpm.


Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Optimal spark table, f_sa_opt — Lookup table array

The optimal spark lookup table, f_{SAopt} , is a function of engine speed and engine load, $SA_{opt} = f_{SAopt}(L, N)$, where:

- SA_{opt} is optimal spark advance timing for maximum inner torque at stoichiometric air-fuel ratio (AFR), in deg.
- *L* is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- *N* is engine speed, in rpm.

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Inner torque load breakpoints, f_tq_inr_l_bpt — Breakpoints
[0.2 0.28571 0.37143 0.45714 0.54286 0.62857 0.71429 0.8 0.88571 0.97143
1.0571 1.1429 1.2286 1.3143 1.4] (default) | vector

Inner torque load breakpoints, dimensionless.

Dependencies

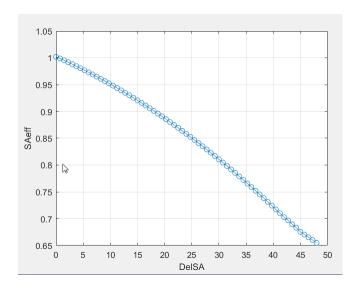
To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Inner torque speed breakpoints, f_tq_inr_n_bpt — Breakpoints
[750 1053.5714 1357.1429 1660.7143 1964.2857 2267.8571 2571.4286 2875
3178.5714 3482.1429 3785.7143 4089.2857 4392.8571 4696.4286 5000] (default) |
vector

Inner torque speed breakpoints, in rpm.

Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.


Spark efficiency table, f_m_sa — Lookup table array

The spark efficiency lookup table, f_{Msa} , is a function of the spark retard from optimal

$$M_{Sa} = f_{MSa}(\Delta SA)$$

$$\Delta SA = SA_{opt} - SA$$

where:

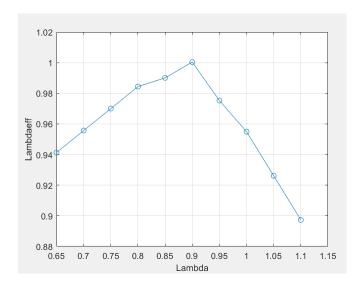
- M_{sa} is the spark retard efficiency multiplier, dimensionless.
- ΔSAis the spark retard timing distance from optimal spark advance, in deg.

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Spark retard from optimal, f_del_sa_bpt — Breakpoints

[0 0.75 1.5 2.25 3 3.75 4.5 5.25 6 6.75 7.5 8.25 9 9.75 10.5 11.25 12 12.75 13.5 14.25 15 15.75 16.5 17.25 18 18.75 19.5 20.25 21 21.75 22.5 23.25 24 24.75 25.5 26.25 27 27.75 28.5 29.25 30 30.75 31.5 32.25 33 33.75 34.5 35.25 36 36.75 37.5 38.25 39 39.75 40.5 41.25 42 42.75 43.5 44.25 45 45.75 46.5 47.25 48] (default) | vector

Spark retard from optimal inner torque timing breakpoints, in deg.


Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Lambda efficiency, f_m_lam — Lookup table array

The lambda efficiency lookup table, $f_{M\lambda}$, is a function of lambda, $M_{\lambda} = f_{M\lambda}(\lambda)$, where:

- M_{λ} is the lambda multiplier on inner torque to account for the air-fuel ratio (AFR) effect, dimensionless.
- λ is lambda, AFR normalized to stoichiometric fuel AFR, dimensionless.

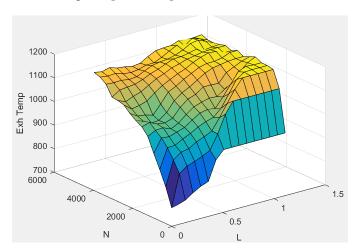
Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Lambda effect on inner torque lambda breakpoints, dimensionless.

Dependencies

Exhaust


Exhaust temperature table, f_t_exh — **Lookup table** array

The exhaust temperature lookup table, f_{Texh} , is a function of engine load and engine speed

$$T_{exh} = f_{Texh}(L, N)$$

where:

- T_{exh} is engine exhaust temperature, in K.
- *L* is normalized cylinder air mass or engine load, dimensionless.
- *N* is engine speed, in rpm.

Load breakpoints, f t exh l bpt — Breakpoints

[0.2 0.275 0.35 0.425 0.5 0.575 0.65 0.725 0.8 0.875 0.95 1.025 1.1 1.175 1.25] (default) | vector

Engine load breakpoints used for exhaust temperature lookup table.

Speed breakpoints, f_t_exh_n_bpt — Breakpoints

[750 1054 1357 1661 1964 2268 2571 2875 3179 3482 3786 4089 4393 4696 5000] (default) | vector

Engine speed breakpoints used for exhaust temperature lookup table, in rpm.

References

- [1] Gerhardt, J., Hönninger, H., and Bischof, H., A New Approach to Functional and Software Structure for Engine Management Systems BOSCH ME7. SAE Technical Paper 980801, 1998.
- [2] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.
- [3] Leone, T. Christenson, E., Stein, R., Comparison of Variable Camshaft Timing Strategies at Part Load. SAE Technical Paper 960584, 1996, doi:10.4271/960584.

[4] Liu, F. and Pfeiffer, J., Estimation Algorithms for Low Pressure Cooled EGR in Spark-Ignition Engines. SAE Int. J. Engines 8(4):2015, doi:10.4271/2015-01-1620.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also

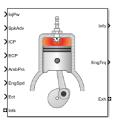
Mapped SI Engine | SI Core Engine

Topics

"Engine Calibration Maps"

External Websites

Developing a Period-Based Air-Fuel Ratio Controller Using a Low-Cost Switching Sensor


Introduced in R2017a

SI Core Engine

Spark-ignition engine from intake to exhaust port

Library: Powertrain Blockset / Propulsion / Combustion Engine

Components / Core Engine

Description

The SI Core Engine block implements a spark-ignition (SI) engine from intake to exhaust port. You can use the block in larger vehicle models, hardware-in-the-loop (HIL) engine control design, or vehicle-level fuel economy and performance simulations.

The SI Core Engine block calculates:

- · Brake torque
- · Fuel flow
- Port gas mass flow, including exhaust gas recirculation (EGR)
- Air-fuel ratio (AFR)
- Exhaust temperature and exhaust mass flow rate
- Engine-out (EO) exhaust emissions
 - Hydrocarbon (HC)
 - Carbon monoxide (CO)
 - Nitric oxide and nitrogen dioxide (NOx)
 - Carbon dioxide (CO₂)
 - Particulate matter (PM)

Air Mass Flow

To calculate engine air mass flow, configure the SI engine to use either of these air mass flow models.

Air Mass Flow Model	Description
Flow Model"	Uses the speed-density equation to calculate the engine air mass flow, relating the engine air mass flow to the intake manifold pressure and engine speed. Consider using this air mass flow model in engines with fixed valvetrain designs.

Air Mass Flow Model	Description
"SI Engine Dual-Independent Cam Phaser Air Mass Flow Model"	To calculate the engine air mass flow, the dual-independent cam phaser model uses:
	Empirical calibration parameters developed from engine mapping measurements
	Desktop calibration parameters derived from engine computer-aided design (CAD) data
	In contrast to typical embedded air mass flow calculations based on direct air mass flow measurement with an air mass flow (MAF) sensor, this air mass flow model offers:
	Elimination of MAF sensors in dual cam-phased valvetrain applications
	Reasonable accuracy with changes in altitude
	Semiphysical modeling approach
	Bounded behavior
	Suitable execution time for electronic control unit (ECU) implementation
	Systematic development of a relatively small number of calibration parameters

Brake Torque

To calculate the brake torque, configure the SI engine to use either of these torque models.

Brake Torque Model	Description
"SI Engine Torque Structure Model"	For the structured brake torque calculation, the SI engine uses tables for the inner torque, friction torque, optimal spark, spark efficiency, and lambda efficiency.
"SI Engine Simple Torque Model"	For the simple brake torque calculation, the SI engine block uses a torque lookup table map that is a function of engine speed and load.

Fuel Flow

To calculate the fuel flow, the SI Core Engine block uses fuel injector characteristics and fuel injector pulse-width.

$$\dot{m}_{fuel} = \frac{NS_{inj}Pw_{inj}N_{cyl}}{Cps\left(\frac{60s}{\min}\right)\left(\frac{1000mg}{g}\right)}$$

To calculate the fuel economy for high-fidelity models, the block uses the volumetric fuel flow.

$$Q_{fuel} = \frac{\dot{m}_{fuel}}{\left(\frac{1000kg}{m^3}\right) Sg_{fuel}}$$

The equation uses these variables.

 \dot{m}_{fuel} Fuel mass flow, g/s

 ω Engine rotational speed, rad/s

Cps Crankshaft revolutions per power stroke, rev/stroke

 S_{inj} Fuel injector slope, mg/ms Pw_{inj} Fuel injector pulse-width, ms N_{cyl} Number of engine cylinders

 $egin{array}{ll} N & & ext{Engine speed, rpm} \ Sg_{ ext{fuel}} & ext{Specific gravity of fuel} \ Q_{ ext{fuel}} & ext{Volumetric fuel flow} \ \end{array}$

The block uses the internal signal FlwDir to track the direction of the flow.

Air-Fuel Ratio

To calculate the air-fuel (AFR) ratio, the CI Core Engine and SI Core Engine blocks implement this equation.

$$AFR = \frac{\dot{m}_{air}}{\dot{m}_{fuel}}$$

The CI Core Engine uses this equation to calculate the relative AFR.

$$\lambda = \frac{AFR}{AFR_S}$$

To calculate the exhaust gas recirculation (EGR), the blocks implement this equation. The calculation expresses the EGR as a percent of the total intake port flow.

$$EGR_{pct} = 100 \frac{\dot{m}_{intk,\,b}}{\dot{m}_{intk}} = 100 y_{intk,\,b}$$

The equations use these variables.

AFR Air-fuel ratio

AFR_s Stoichiometric air-fuel ratio

 \dot{m}_{intk} Engine air mass flow

 \dot{m}_{fuel} Fuel mass flow λ Relative AFR

 $y_{intk,b}$ Intake burned mass fraction

 EGR_{nct} EGR percent

 $\dot{m}_{intk,\,b}$ Recirculated burned gas mass flow rate

Exhaust

The block calculates the:

Exhaust gas temperature

- · Exhaust gas-specific enthalpy
- · Exhaust gas mass flow rate
- Engine-out (EO) exhaust emissions:
 - Hydrocarbon (HC)
 - Carbon monoxide (CO)
 - Nitric oxide and nitrogen dioxide (NOx)
 - Carbon dioxide (CO₂)
 - Particulate matter (PM)

The exhaust temperature determines the specific enthalpy.

$$h_{exh} = Cp_{exh}T_{exh}$$

The exhaust mass flow rate is the sum of the intake port air mass flow and the fuel mass flow.

$$\dot{m}_{exh} = \dot{m}_{intake} + \dot{m}_{fuel}$$

To calculate the exhaust emissions, the block multiplies the emission mass fraction by the exhaust mass flow rate. To determine the emission mass fractions, the block uses lookup tables that are functions of the engine torque and speed.

$$y_{exh, i} = f_{i_frac}(T_{brake}, N)$$

 $\dot{m}_{exh, i} = \dot{m}_{exh}y_{exh, i}$

The fraction of air and fuel entering the intake port, injected fuel, and stoichiometric AFR determine the air mass fraction that exits the exhaust.

$$y_{exh,\,air} = \max \left[y_{in,\,air} - \frac{\dot{m}_{fuel} + y_{in,\,fuel} \dot{m}_{intake}}{\dot{m}_{fuel} + \dot{m}_{intake}} AFR_s \right]$$

If the engine is operating at the stoichiometric or fuel rich AFR, no air exits the exhaust. Unburned hydrocarbons and burned gas comprise the remainder of the exhaust gas. This equation determines the exhaust burned gas mass fraction.

$$y_{exh,\,b} = \max\bigl[(1-y_{exh,\,air}-y_{exh,\,HC}),0\bigr]$$

The equations use these variables.

 T_{exh} Engine exhaust temperature

 h_{exh} Exhaust manifold inlet-specific enthalpy

 Cp_{exh} Exhaust gas specific heat

 \dot{m}_{intk} Intake port air mass flow rate

 \dot{m}_{fuel} Fuel mass flow rate

 \dot{m}_{exh} Exhaust mass flow rate

y_{in, fuel} Intake fuel mass fraction

 $y_{exh,i}$ Exhaust mass fraction for $i = CO_2$, CO, HC, NOx, air, burned gas, and PM

 $\dot{m}_{exh,i}$ Exhaust mass flow rate for i = CO₂, CO, HC, NOx, air, burned gas, and PM

 T_{brake} Engine brake torque

N Engine speed

 $y_{exh,air}$ Exhaust air mass fraction

 $y_{exh,b}$ Exhaust air burned mass fraction

Power Accounting

For the power accounting, the block implements equations that depend on **Torque model**.

When you set **Torque model** to Simple Torque Lookup, the block implements these equations.

Bus Sign	Bus Signal		Description	Equations
— Po	— Power	PwrIntk HeatFlw	Intake heat flow	$\dot{m}_{intk}h_{intk}$
	transferred between blocks	PwrExhH eatFlw	Exhaust heat flow	$-\dot{m}_{exh}h_{exh}$
• Positive signals indicate flow into block	Positive signals indicate flow into block	PwrCrks hft	Crankshaft power	$-T_{brake}\omega$
	Negative signals indicate flow out of block			
	PwrNotTrns	PwrFuel	Fuel input power	$\dot{m}_{fuel}LHV$
	frd — Power crossing the block boundary, but not transferred • Positive	PwrLoss	All losses	$T_{brake}\omega - \dot{m}_{fuel}LHV - \dot{m}_{intk}h_{intk} + \dot{m}_{exh}h_{exh}$
	signals indicate an input			
	Negative signals indicate a loss			

Bus Sign	al	Description	Equations
	PwrStored — Stored energy rate of change • Positive signals indicate an increase		
	 Negative signals indicate a decrease 		

When you set **Torque model** to **Torque Structure**, the block implements these equations.

Bus Sign	Bus Signal		Description	Equations
PwrInfo	PwrTrnsfrd — Power	PwrIntk HeatFlw	Intake heat flow	$\dot{m}_{intk}h_{intk}$
	transferred between blocks	PwrExhH eatFlw	Exhaust heat flow	$-\dot{m}_{exh}h_{exh}$
	Positive signals indicate flow into block	PwrCrks hft	Crankshaft power	$-T_{brake}\omega$
	Negative signals indicate flow out of block			
	PwrNotTrns frd — Power crossing the block boundary, but not	PwrFuel	Fuel input power	$\dot{m}_{fuel}LHV$
		PwrFric Loss	Friction loss	$-T_{fric}\omega$
		PwrPump Loss	Pumping loss	$-T_{pump}\omega$
	transferredPositive signals indicate an input	PwrHeat TrnsfrL oss	Heat transfer loss	$T_{brake}\omega - \dot{m}_{fuel}LHV - \dot{m}_{intk}h_{intk} + \dot{m}_{exh}h_{exh} + T_{fric}\omega + T_{pump}\omega$
	• Negative signals indicate a loss			

Bus Signal	Bus Signal		Equations
PwrStored — Stored energy rate of change • Positive signals indicate an increase			
Negative signals indicate a decrease			

 h_{exh} Exhaust manifold inlet-specific enthalpy

 h_{intk} Intake port specific enthalpy \dot{m}_{intk} Intake port air mass flow rate

 \dot{m}_{fuel} Fuel mass flow rate \dot{m}_{exh} Exhaust mass flow rate

 ω Engine speed T_{brake} Brake torque

 T_{pump} Engine pumping torque offset to inner torque

 T_{fric} Engine friction torque LHV Fuel lower heating value

Ports

Input

InjPw — Fuel injector pulse-width

scalar

Fuel injector pulse-width, Pw_{ini} , in ms.

SpkAdv — Spark advance

scalar

Spark advance, SA, in degrees crank angle before top dead center (degBTDC).

Dependencies

To create this port, for the **Torque model** parameter, select **Torque Structure**.

ICP — Intake cam phase angle command

scalar

Intake cam phase angle command, φ_{ICPCMD} , in degCrkAdv, or degrees crank advance.

To create this port, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

ECP — Exhaust cam phase angle command

scalar

Exhaust cam phase angle command, φ_{ECPCMD} , in degCrkRet, or degrees crank retard.

Dependencies

To create this port, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

AmbPrs — Ambient pressure

scalar

Ambient pressure, P_{Amb} , in Pa.

Dependencies

To create this port, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

EngSpd — Engine speed

scalar

Engine speed, N, in rpm.

Ect — Engine cooling temperature

scalar

Engine cooling temperature, $T_{coolant}$, in K.

Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Intk — Intake port pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the upstream:

- Prs Pressure, in Pa
- Temp Temperature, in K
- Enth Specific enthalpy, in J/kg
- MassFrac Intake port mass fractions, dimensionless. EGR mass flow at the intake port is burned gas.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen

- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Exh — Exhaust port pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the exhaust:

- Prs Pressure, in Pa
- Temp Temperature, in K
- Enth Specific enthalpy, in J/kg
- MassFrac Exhaust port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Variable	Units
IntkGasMassFlw	Engine intake air mass flow.	\dot{m}_{air}	kg/s
IntkAirMassFlw	Engine intake port mass flow.	\dot{m}_{intk}	kg/s
NrmlzdAirChrg	Engine load (that is, normalized cylinder air mass) corrected for final steady-state cam phase angles	L	N/A
Afr	Air-fuel ratio at engine exhaust port	AFR	N/A
FuelMassFlw	Fuel flow into engine	\dot{m}_{fuel}	kg/s
FuelVolFlw	Volumetric fuel flow	Q_{fuel}	m³/s
ExhManGasTemp	Exhaust gas temperature at exhaust manifold inlet	T_{exh}	K
EngTrq	Engine brake torque	T _{brake}	N·m
EngSpd	Engine speed	N	rpm
IntkCamPhase	Intake cam phaser angle	$arphi_{ICP}$ i	degrees crank advance
ExhCamPhase	Exhaust cam phaser angle	$arphi$ $arphi_{ECP}$	degrees crank retard
CrkAng	Engine crankshaft absolute angle	$\int\limits_{0}^{(360)Cps} EngSpd\frac{180}{30}d\theta$ where Cps is crankshaft revolutions per power stroke	degrees crank angle
EgrPct	EGR percent	EGR_{pct}	N/A
EoAir	EO air mass flow rate	\dot{m}_{exh}	kg/s
EoBrndGas	EO burned gas mass flow rate	Yexh,b	kg/s
ЕоНС	EO hydrocarbon emission mass flow rate	Yexh,HC	kg/s
EoC0	EO carbon monoxide emission mass flow rate	Yexh,CO	kg/s
EoN0x	EO nitric oxide and nitrogen dioxide emissions mass flow rate	Yexh,NOx	kg/s
EoC02	EO carbon dioxide emission mass flow rate	Yexh,CO2	kg/s

Signal			Description	Variable	Units
EoPm			EO particulate matter emission mass flow rate	y _{exh,PM}	kg/s
PwrIn fo	PwrTrns frd	PwrIntkHea tFlw	Intake heat flow	$\dot{m}_{intk}h_{intk}$	W
		PwrExhHeat Flw	Exhaust heat flow	$-\dot{m}_{exh}h_{exh}$	W
		PwrCrkshft	Crankshaft power	$-T_{brake}\omega$	W
	PwrNotT	PwrFuel	Fuel input power	$\dot{m}_{fuel}LHV$	W
	rnsfrd	PwrLoss	For Torque model set to Simple Torque Lookup:	$T_{brake}\omega - \dot{m}_{fuel}LHV - \dot{m}_{intk}h_{intk} + \dot{m}_{exh}h_{exh}$	W
		D	All losses		TAT
			PWTFTICLOS S	For Torque model set to Torque Structure: Friction loss	$-T_{fric}\omega$
		PwrPumpLos s	For Torque model set to Torque Structure: Pumping loss	$-T_{pump}\omega$	W
		PwrHeatTrn sfrLoss	For Torque model set to Torque Structure: Heat transfer loss	$T_{brake}\omega - \dot{m}_{fuel}LHV \\ - \dot{m}_{intk}h_{intk} + \dot{m}_{exh}h_{exh} \\ + T_{fric}\omega + T_{pump}\omega$	W
	PwrStor ed	Not used		'	

EngTrq — Engine brake torque

scalar

Engine brake torque, T_{brake} , in N·m.

Intk — Intake port mass flow rate, heat flow rate, temperature, mass fraction

two-way connector port

Bus containing:

- MassFlwRate Intake port mass flow rate, in kg/s
- HeatFlwRate Intake port heat flow rate, in J/s
- Temp Intake port temperature, in K
- MassFrac Intake port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen

- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Exh — Exhaust port mass flow rate, heat flow rate, temperature, mass fraction

two-way connector port

Bus containing:

- MassFlwRate Exhaust port mass flow rate, in kg/s
- HeatFlwRate Exhaust heat flow rate, in J/s
- Temp Exhaust temperature, in K
- MassFrac Exhaust port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Parameters

Block Options

Air mass flow model — Select air mass flow model

Dual-Independent Variable Cam Phasing (default) | Simple Speed-Density

To calculate engine air mass flow, configure the SI engine to use either of these air mass flow models.

Air Mass Flow Model	Description
"SI Engine Speed-Density Air Mass Flow Model"	Uses the speed-density equation to calculate the engine air mass flow, relating the engine air mass flow to the intake manifold pressure and engine speed. Consider using this air mass flow model in engines with fixed valvetrain designs.
"SI Engine Dual-Independent Cam Phaser Air Mass Flow Model"	To calculate the engine air mass flow, the dual-independent cam phaser model uses:
	Empirical calibration parameters developed from engine mapping measurements
	Desktop calibration parameters derived from engine computer-aided design (CAD) data
	In contrast to typical embedded air mass flow calculations based on direct air mass flow measurement with an air mass flow (MAF) sensor, this air mass flow model offers:
	Elimination of MAF sensors in dual cam-phased valvetrain applications
	Reasonable accuracy with changes in altitude
	Semiphysical modeling approach
	Bounded behavior
	• Suitable execution time for electronic control unit (ECU) implementation
	Systematic development of a relatively small number of calibration parameters

The table summarizes the parameter dependencies.

Air Mass Flow Model	Enables Parameters
Dual-	Cylinder volume at intake valve close table, f_vivc
Independent Variable Cam	Cylinder volume intake cam phase breakpoints, f_vivc_icp_bpt
Phasing	Cylinder trapped mass correction factor, f_tm_corr
	Normalized density breakpoints, f_tm_corr_nd_bpt
	Engine speed breakpoints, f_tm_corr_n_bpt
	Air mass flow, f_mdot_air
	Exhaust cam phase breakpoints, f_mdot_air_ecp_bpt
	Trapped mass flow breakpoints, f_mdot_trpd_bpt
	Air mass flow correction factor, f_mdot_air_corr
	Engine load breakpoints for air mass flow correction, f_mdot_air_corr_ld_bpt
	Engine speed breakpoints for air mass flow correction, f_mdot_air_n_bpt
Simple Speed Density	Speed-density volumetric efficiency, f_nv
	Speed-density intake manifold pressure breakpoints, f_nv_prs_bpt
	Speed-density engine speed breakpoints, f_nv_n_bpt

Torque model — Select torque model

Torque Structure (default) | Simple Torque Lookup

To calculate the brake torque, configure the SI engine to use either of these torque models.

Brake Torque Model	Description
"SI Engine Torque Structure Model"	For the structured brake torque calculation, the SI engine uses tables for the inner torque, friction torque, optimal spark, spark efficiency, and lambda efficiency.
"SI Engine Simple Torque Model"	For the simple brake torque calculation, the SI engine block uses a torque lookup table map that is a function of engine speed and load.

Dependencies

The table summarizes the parameter dependencies.

Torque Model	Enables Parameters
Torque Structure	Inner torque table, f_tq_inr
	Friction torque table, f_tq_fric
	Engine temperature modifier on friction torque, f_fric_temp_mod
	Engine temperature modifier breakpoints, f_fric_temp_bpt
	Pumping torque table, f_tq_pump
	Optimal spark table, f_sa_opt
	Inner torque load breakpoints, f_tq_inr_l_bpt
	Inner torque speed breakpoints, f_tq_inr_n_bpt
	Spark efficiency table, f_m_sa
	Spark retard from optimal, f_del_sa_bpt
	Lambda efficiency, f_m_lam
	Lambda breakpoints, f_m_lam_bpt
Simple Torque Lookup	Torque table, f_tq_nl
	Torque table load breakpoints, f_tq_nl_l_bpt
	Torque table speed breakpoints, f_tq_nl_n_bpt

Air

Number of cylinders, NCyl — Engine cylinders 4 (default) | scalar

Number of engine cylinders, N_{cyl} .

Crank revolutions per power stroke, Cps — Revolutions per stroke $2 (default) \mid scalar$

Crankshaft revolutions per power stroke, Cps, in rev/stroke.

Total displaced volume, Vd — Volume

0.0015 (default) | scalar

Displaced volume, V_d , in m³.

Ideal gas constant air, Rair — Constant 287 (default) | scalar

Ideal gas constant, R_{air} , in J/(kg·K).

Air standard pressure, Pstd — Pressure

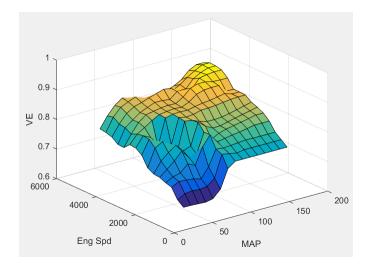
101325 (default) | scalar

Standard air pressure, P_{std} , in Pa.

Air standard temperature, Tstd — Temperature

293.15 (default) | scalar

Standard air temperature, T_{std} , in K.


Speed-density volumetric efficiency, $f_nv - Lookup$ table array

The engine volumetric efficiency lookup table, $f_{\eta_{v}}$, is a function of intake manifold absolute pressure and engine speed

$$\eta_{v} = f_{\eta_{v}}(MAP, N)$$

where:

- η_{V} is engine volumetric efficiency, dimensionless.
- *MAP* is intake manifold absolute pressure, in KPa.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, for the Air mass flow model parameter, select Simple Speed-Density.

Speed-density intake manifold pressure breakpoints, f_nv_prs_bpt — Breakpoints
[31 40.6428571428571 50.2857142857143 59.9285714285714 69.5714285714286
79.2142857142857 88.8571428571429 98.5 108.142857142857 117.785714285714
127.428571428571 137.071428571429 146.714285714286 156.357142857143 166]
(default) | array

Intake manifold pressure breakpoints for speed-density volumetric efficiency lookup table, in KPa.

Dependencies

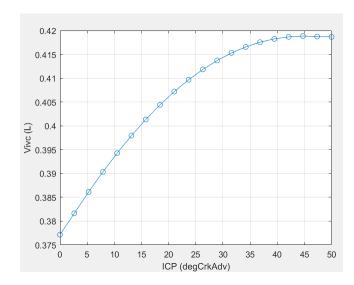
To enable this parameter, for the **Air mass flow model** parameter, select Simple Speed-Density.

Speed-density engine speed breakpoints, f_nv_n_bpt — Breakpoints
[750 1053.57142857143 1357.14285714286 1660.71428571429 1964.28571428571
2267.85714285714 2571.42857142857 2875 3178.57142857143 3482.14285714286
3785.71428571429 4089.28571428571 4392.85714285714 4696.42857142857 5000]
(default) | array

Engine speed breakpoints for speed-density volumetric efficiency lookup table, in rpm.

Dependencies

To enable this parameter, for the **Air mass flow model** parameter, select Simple Speed-Density.


Cylinder volume at intake valve close table, $f_{vivc} - 2-D$ lookup table array

The cylinder volume at intake valve close table (IVC), f_{Vivc} is a function of the intake cam phaser angle

$$V_{IVC} = f_{Vivc}(\varphi_{ICP})$$

where:

- V_{IVC} is cylinder volume at IVC, in L.
- φ_{ICP} is intake cam phaser angle, in crank advance degrees.

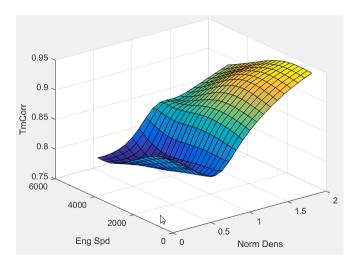
Dependencies

To enable this parameter, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

Cylinder volume intake cam phase breakpoints, f_vivc_icp_bpt — Breakpoints [0 2.6316 5.2632 7.8947 10.5263 13.1579 15.7895 18.4211 21.0526 23.6842 26.3158 28.9474 31.5789 34.2105 36.8421 39.4737 42.1053 44.7368 47.3684 50] (default) | vector

Cylinder volume intake cam phase breakpoints, in L.

To enable this parameter, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.


Cylinder trapped mass correction factor, f_tm_corr — Lookup table array

The trapped mass correction factor table, f_{TMcorr} , is a function of the normalized density and engine speed

$$TM_{corr} = f_{TM_{corr}}(\rho_{norm}, N)$$

where:

- TM_{corr} , is trapped mass correction multiplier, dimensionless.
- ρ_{norm} is normalized density, dimensionless.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

Normalized density breakpoints, f_tm_corr_nd_bpt — Breakpoints [0.3 0.38947 0.47895 0.56842 0.65789 0.74737 0.83684 0.92632 1.0158 1.1053 1.1947 1.2842 1.3737 1.4632 1.5526 1.6421 1.7316 1.8211 1.9105 2] (default) | vector

Normalized density breakpoints, dimensionless.

Dependencies

To enable this parameter, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

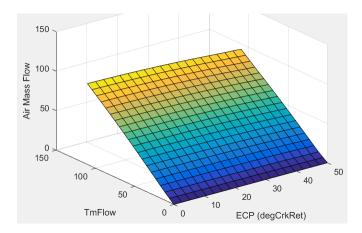
Engine speed breakpoints, f_tm_corr_n_bpt — Breakpoints

[750 973.6842 1197.3684 1421.0526 1644.7368 1868.4211 2092.1053 2315.7895 2539.4737 2763.1579 2986.8421 3210.5263 3434.2105 3657.8947 3881.5789 4105.2632 4328.9474 4552.6316 4776.3158 5000] (default) | vector

Engine speed breakpoints, in rpm.

Dependencies

To enable this parameter, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.


Intake mass flow, f_mdot_intk — Lookup table array

The phaser intake mass flow model lookup table is a function of exhaust cam phaser angles and trapped air mass flow

$$\dot{m}_{intkideal} = f_{intkideal}(\varphi_{ECP}, TM_{flow})$$

where:

- $\dot{m}_{intkideal}$ is engine intake port mass flow at arbitrary cam phaser angles, in g/s.
- φ_{ECP} is exhaust cam phaser angle, in degrees crank retard.
- TM_{flow} is flow rate equivalent to corrected trapped mass at the current engine speed, in g/s.

Dependencies

To enable this parameter, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

Exhaust cam phase breakpoints, f_mdot_air_ecp_bpt — Breakpoints

[0 2.6316 5.2632 7.8947 10.5263 13.1579 15.7895 18.4211 21.0526 23.6842 26.3158 28.9474 31.5789 34.2105 36.8421 39.4737 42.1053 44.7368 47.3684 50] (default) | vector

Exhaust cam phaser breakpoints for air mass flow lookup table, in degrees crank retard.

To enable this parameter, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

Trapped mass flow breakpoints, f_mdot_trpd_bpt — Breakpoints

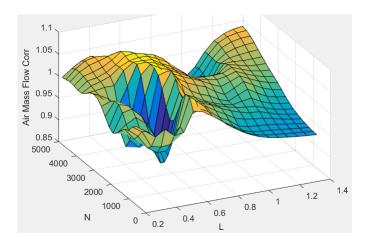
[0 5.7895 11.5789 17.3684 23.1579 28.9474 34.7368 40.5263 46.3158 52.1053 57.8947 63.6842 69.4737 75.2632 81.0526 86.8421 92.6316 98.4211 104.2105 110] (default) | vector

Trapped mass flow breakpoints for air mass flow lookup table, in g/s.

Dependencies

To enable this parameter, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

Air mass flow correction factor, f_mdot_air_corr — Lookup table array


The intake air mass flow correction lookup table, $f_{aircorr}$, is a function of ideal load and engine speed

$$\dot{m}_{air} = \dot{m}_{intkideal} f_{aircorr}(L_{ideal}, N)$$

where:

- L_{ideal} is engine load (normalized cylinder air mass) at arbitrary cam phaser angles, uncorrected for final steady-state cam phaser angles, dimensionless.
- *N* is engine speed, in rpm.
- \dot{m}_{air} is engine intake air mass flow final correction at steady-state cam phaser angles, in g/s.
- m

 intkideal is engine intake port mass flow at arbitrary cam phaser angles, in g/s.

Dependencies

To enable this parameter, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

Engine load breakpoints for air mass flow correction, f_mdot_air_corr_ld_bpt — Breakpoints

vector

Engine load breakpoints for air mass flow final correction, dimensionless.

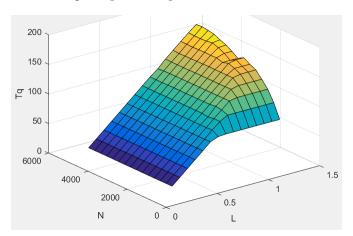
Dependencies

To enable this parameter, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

Engine speed breakpoints for air mass flow correction, f_mdot_air_n_bpt — Breakpoints

vector

Engine speed breakpoints for air mass flow final correction, in rpm.


Dependencies

To enable this parameter, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

Torque

For the simple torque lookup table model, the SI engine uses a lookup table map that is a function of engine speed and load, $T_{brake} = f_{TnL}(L, N)$, where:

- T_{brake} is engine brake torque after accounting for spark advance, AFR, and friction effects, in N·m.
- *L* is engine load, as a normalized cylinder air mass, dimensionless.
- *N* is engine speed, in rpm.

The simple torque lookup model assumes that the calibration has negative torque values to indicate the non-firing engine load (L) versus speed (N) condition. The calibrated table (L-by-N) contains the non-firing data in the first table row (1-by-N). When the fuel delivered to the engine is zero, the model uses the data in the first table row (1-by-N) at or above 100 AFR. 100 AFR results from fuel cutoff or very lean operation where combustion cannot occur.

To enable this parameter, for the **Torque model** parameter, select **Simple Torque Lookup**.

Torque table load breakpoints, f_tq_nl_l_bpt — Breakpoints [0.2 0.275 0.35 0.425 0.5 0.575 0.65 0.725 0.8 0.875 0.95 1.025 1.1 1.175 1.25] (default) | vector | [1 x L] vector

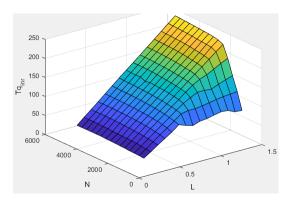
Engine load breakpoints, *L*, dimensionless.

Dependencies

To enable this parameter, for the **Torque model** parameter, select Simple Torque Lookup.

Torque table speed breakpoints, $f_{q_nl_n_bpt}$ Breakpoints [750 1053.57142857143 1357.14285714286 1660.71428571429 1964.28571428571 2267.85714285714 2571.42857142857 2875 3178.57142857143 3482.14285714286 3785.71428571429 4089.28571428571 4392.85714285714 4696.42857142857 5000] (default) | vector | [1 x N] vector

Engine speed breakpoints, N, in rpm.

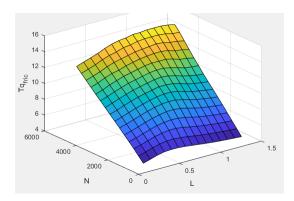

Dependencies

To enable this parameter, for the **Torque model** parameter, select Simple Torque Lookup.

Inner torque table, f_tq_inr — Lookup table array

The inner torque lookup table, f_{Tqinr} , is a function of engine speed and engine load, $Tq_{inr} = f_{Tqinr}(L, N)$, where:

- Tq_{inr} is inner torque based on gross indicated mean effective pressure, in N·m.
- ullet L is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- *N* is engine speed, in rpm.


Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Friction torque table, f_tq_fric — Lookup table array

The friction torque lookup table, f_{Tfric} , is a function of engine speed and engine load, $T_{fric} = f_{Tfric}(L, N)$, where:

- T_{fric} is friction torque offset to inner torque, in N·m.
- *L* is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Engine temperature modifier on friction torque, f_fric_temp_mod — Lookup table [3.96 3.22 2.56 2.26 2.11 2 1.9 1.83 1.76 1.7 1.65 1.6 1.55 1.49 1.44 1.41 1.38 1.35 1.32 1.3 1.27 1.25 1.24 1.21 1.2 1.18 1.16 1.15 1.13 1.12 1.11 1.1 1.09 1.08 1.07 1.06 1.05 1.05 1.04 1.03 1.02 1.02 1.01 1.01 1 1 0.999 0.997 0.995 0.993 0.991 0.989 0.987] (default) | vector | vector

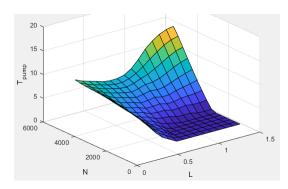
Engine temperature modifier on friction torque, $f_{fric.temp}$, dimensionless.

Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Engine temperature modifier breakpoints, f_fric_temp_bpt — Breakpoints
[274 276 278 280 282 284 286 288 290 292 294 296 298 300 302 304 306 308 310
312 314 316 318 320 322 324 326 328 330 332 334 336 338 340 342 344 346 348
350 352 354 356 358 360 362 364 366 368 370 372 374 376 378 380] (default) |
vector | vector

Engine temperature modifier breakpoints, in K.

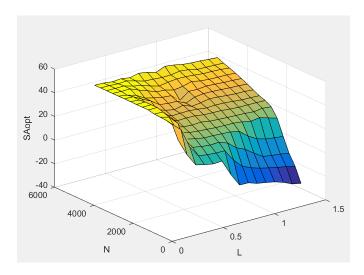

Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Pumping torque table, f_tq_pump — Lookup table array

The pumping torque lookup table, f_{Tpump} , is a function of engine speed and injected fuel mass, $T_{pump} = f_{Tpump} (L, N)$, where:

- T_{pump} is pumping torque, in N·m.
- ullet L is engine load, as a normalized cylinder air mass, dimensionless.
- *N* is engine speed, in rpm.



To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Optimal spark table, f_sa_opt — Lookup table array

The optimal spark lookup table, f_{SAopt} , is a function of engine speed and engine load, $SA_{opt} = f_{SAopt}(L, N)$, where:

- SA_{opt} is optimal spark advance timing for maximum inner torque at stoichiometric air-fuel ratio (AFR), in deg.
- *L* is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- *N* is engine speed, in rpm.

Dependencies

Inner torque load breakpoints, f_tq_inr_l_bpt — Breakpoints

[0.2 0.28571 0.37143 0.45714 0.54286 0.62857 0.71429 0.8 0.88571 0.97143 1.0571 1.1429 1.2286 1.3143 1.4] (default) | vector

Inner torque load breakpoints, dimensionless.

Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

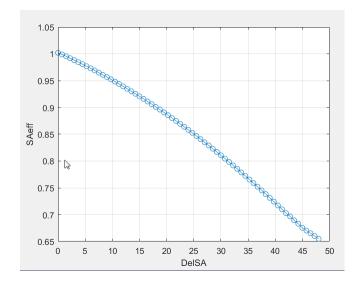
Inner torque speed breakpoints, f_tq_inr_n_bpt — Breakpoints

[750 1053.5714 1357.1429 1660.7143 1964.2857 2267.8571 2571.4286 2875 3178.5714 3482.1429 3785.7143 4089.2857 4392.8571 4696.4286 5000] (default) | vector

Inner torque speed breakpoints, in rpm.

Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.


Spark efficiency table, f_m_sa — Lookup table array

The spark efficiency lookup table, f_{Msa} , is a function of the spark retard from optimal

$$M_{Sa} = f_{MSa}(\Delta SA)$$

$$\Delta SA = SA_{opt} - SA$$

where:

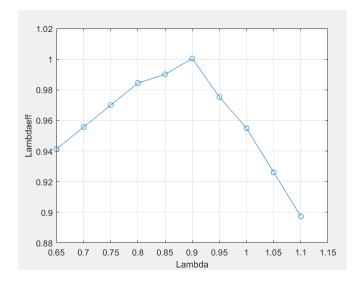
- M_{sa} is the spark retard efficiency multiplier, dimensionless.
- ΔSA is the spark retard timing distance from optimal spark advance, in deg.

Dependencies

Spark retard from optimal, f_del_sa_bpt — Breakpoints

[0 0.75 1.5 2.25 3 3.75 4.5 5.25 6 6.75 7.5 8.25 9 9.75 10.5 11.25 12 12.75 13.5 14.25 15 15.75 16.5 17.25 18 18.75 19.5 20.25 21 21.75 22.5 23.25 24 24.75 25.5 26.25 27 27.75 28.5 29.25 30 30.75 31.5 32.25 33 33.75 34.5 35.25 36 36.75 37.5 38.25 39 39.75 40.5 41.25 42 42.75 43.5 44.25 45 45.75 46.5 47.25 48] (default) | vector

Spark retard from optimal inner torque timing breakpoints, in deg.


Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Lambda efficiency, f_m_lam — Lookup table array

The lambda efficiency lookup table, $f_{M\lambda}$, is a function of lambda, $M_{\lambda} = f_{M\lambda}(\lambda)$, where:

- M_{λ} is the lambda multiplier on inner torque to account for the air-fuel ratio (AFR) effect, dimensionless.
- λ is lambda, AFR normalized to stoichiometric fuel AFR, dimensionless.

Dependencies

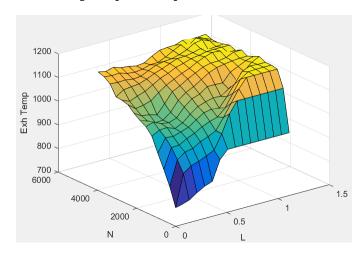
To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

Lambda breakpoints, f_m_lam_bpt — Breakpoints[0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1] (default) | vector

Lambda effect on inner torque lambda breakpoints, dimensionless.

Dependencies

Exhaust


Exhaust temperature table, f_t_exh — **Lookup table** array

The exhaust temperature lookup table, f_{Texh} , is a function of engine load and engine speed

$$T_{exh} = f_{Texh}(L, N)$$

where:

- T_{exh} is engine exhaust temperature, in K.
- *L* is normalized cylinder air mass or engine load, dimensionless.
- *N* is engine speed, in rpm.

Load breakpoints, f_t_exh_l_bpt — Breakpoints

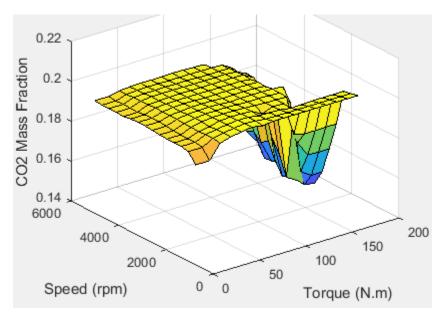
[0.2 0.275 0.35 0.425 0.5 0.575 0.65 0.725 0.8 0.875 0.95 1.025 1.1 1.175 1.25] (default) | vector

Engine load breakpoints used for exhaust temperature lookup table, dimensionless.

Speed breakpoints, f_t_exh_n_bpt — Breakpoints

[750 1053.57142857143 1357.14285714286 1660.71428571429 1964.28571428571 2267.85714285714 2571.42857142857 2875 3178.57142857143 3482.14285714286 3785.71428571429 4089.28571428571 4392.85714285714 4696.42857142857 5000] (default) | vector

Engine speed breakpoints used for exhaust temperature lookup table, in rpm.

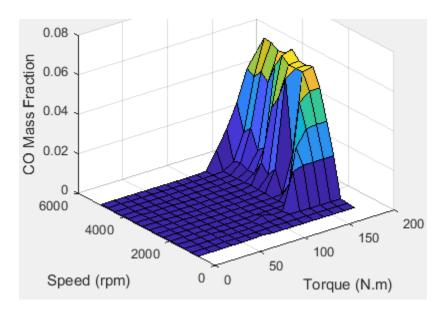

Exhaust gas specific heat at constant pressure, cp_exh — Specific heat 1005 (default) | scalar

Exhaust gas-specific heat, Cp_{exh} , in J/(kg·K).

CO2 mass fraction table, f_{CO2} frac — Carbon dioxide (CO_{2}) emission lookup table array

The SI Core Engine CO_2 emission mass fraction lookup table is a function of engine torque and engine speed, CO2 Mass Fraction = f(Speed, Torque), where:

- $CO2\ Mass\ Fraction$ is the CO_2 emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- *Torque* is engine torque, in $N \cdot m$.

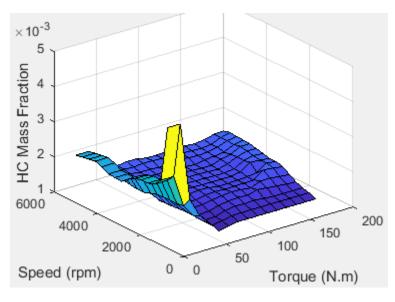


To enable this parameter, on the **Exhaust** tab, select **CO2**.

CO mass fraction table, f_CO_frac — Carbon monoxide (CO) emission lookup table array

The SI Core Engine CO emission mass fraction lookup table is a function of engine torque and engine speed, CO Mass Fraction = f(Speed, Torque), where:

- CO Mass Fraction is the CO emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- *Torque* is engine torque, in N·m.



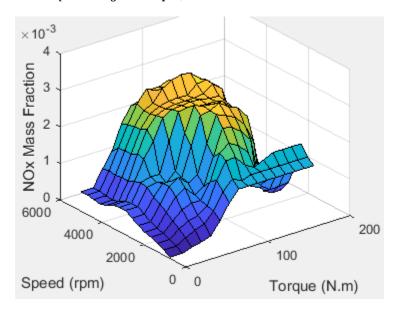
To enable this parameter, on the **Exhaust** tab, select **CO**.

HC mass fraction table, f_HC_frac — Hydrocarbon (HC) emission lookup table array

The SI Core Engine HC emission mass fraction lookup table is a function of engine torque and engine speed, HC Mass Fraction = f(Speed, Torque), where:

- HC Mass Fraction is the HC emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- *Torque* is engine torque, in N·m.

Dependencies


To enable this parameter, on the **Exhaust** tab, select **HC**.

NOx mass fraction table, $f_NOx_frac - Nitric oxide and nitrogen dioxide (NOx) emission lookup table$

array

The SI Core Engine NOx emission mass fraction lookup table is a function of engine torque and engine speed, NOx Mass Fraction = f(Speed, Torque), where:

- *NOx Mass Fraction* is the NOx emission mass fraction, dimensionless.
- *Speed* is engine speed, in rpm.
- *Torque* is engine torque, in N·m.

Dependencies

To enable this parameter, on the **Exhaust** tab, select **NOx**.

PM mass fraction table, f_PM_frac — Particulate matter (PM) emission lookup table array

The SI Core Engine PM emission mass fraction lookup table is a function of engine torque and engine speed where:

- *PM* is the PM emission mass fraction, dimensionless.
- *Speed* is engine speed, in rpm.
- *Torque* is engine torque, in N·m.

Dependencies

To enable this parameter, on the **Exhaust** tab, select **PM**.

Engine speed breakpoints, f_exhfrac_n_bpt — Breakpoints

[750 1053.57142857143 1357.14285714286 1660.71428571429 1964.28571428571 2267.85714285714 2571.42857142857 2875 3178.57142857143 3482.14285714286 3785.71428571429 4089.28571428571 4392.85714285714 4696.42857142857 5000] (default) | vector

Engine speed breakpoints used for the emission mass fractions lookup tables, in rpm.

Dependencies

To enable this parameter, on the Exhaust tab, select CO2, CO, NOx, HC, or PM.

Engine torque breakpoints, f_exhfrac_trq_bpt — Breakpoints

[0 15 26.4285714285714 37.8571428571429 49.2857142857143 60.7142857142857 72.1428571428571 83.5714285714286 95 106.428571428571 117.857142857143 129.285714285714 140.714285714286 152.142857142857 163.571428571429 175] (default) | vector

Engine torque breakpoints used for the emission mass fractions lookup tables, in N·m.

Dependencies

To enable this parameter, on the **Exhaust** tab, select **CO2**, **CO**, **NOx**, **HC**, or **PM**.

Fuel

Injector slope, Sinj — Slope

6.45161290322581 (default) | scalar

Fuel injector slope, S_{ini} , mg/ms.

Stoichiometric air-fuel ratio, afr stoich — Air-fuel ratio

14.6 (default) | scalar

Air-fuel ratio, AFR.

Fuel lower heating value, fuel lhv — Heating value

46e6 (default) | scalar

Fuel lower heating value, *LHV*, in J/kg.

Fuel specific gravity, fuel_sg — Specific gravity

0.745 (default) | scalar

Specific gravity of fuel, Sg_{fuel} , dimensionless.

References

- [1] Gerhardt, J., Hönninger, H., and Bischof, H., A New Approach to Functional and Software Structure for Engine Management Systems — BOSCH ME7. SAE Technical Paper 980801, 1998.
- [2] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.

Extended Capabilities

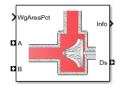
C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also

Mapped SI Engine | SI Controller

Topics"SI Core Engine Air Mass Flow and Torque Production"
"Engine Calibration Maps"

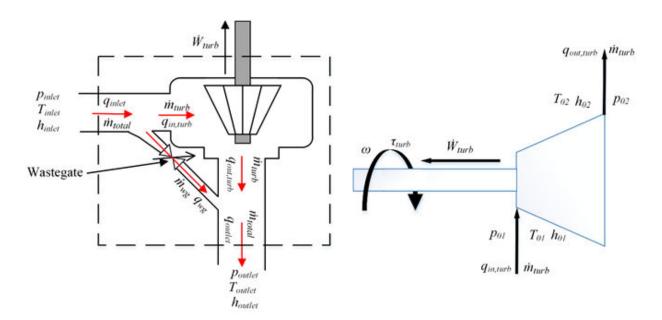

Introduced in R2017a

Turbine

Turbine for boosted engines

Library: Powertrain Blockset / Propulsion / Combustion Engine

Components / Boost



Description

The Turbine block uses the conservation of mass and energy to calculate mass and heat flow rates for turbines with either fixed or variable geometry. You can configure the block with a wastegate valve to bypass the turbine. The block uses two-way ports to connect to the inlet and outlet control volumes and the drive shaft. You can specify the lookup tables to calculate the mass flow rate and turbine efficiency. Typically, turbine manufacturers provide the mass flow rate and efficiency tables as a function of corrected speed and pressure ratio. The block does not support reverse mass flow.

If you have Model-Based Calibration Toolbox, click **Calibrate Performance Maps** to virtually calibrate the mass flow rate and turbine efficiency lookup tables using measured data.

The mass flows from the inlet control volume to outlet control volume.

The Turbine block implements equations to model the performance, wastegate flow, and combined flow.

Virtual Calibration

If you have Model-Based Calibration Toolbox, click **Calibrate Performance Maps** to virtually calibrate the corrected mass flow rate and turbine efficiency lookup tables using measured data. The dialog box steps through these tasks.

Task	Description						
Import turbine data	Import this turbine data from a file. For more information, see "Using Data" (Model-Based Calibration Toolbox).						
	Turbine type	Data					
	Fixed geometry	• Speed	, Spd, in r	ad/s			
		• Correc	cted mass	flow rate,	MassFlw	Rate, in k	g/s
		• Pressu	ire ratio, I	PrsRatio, d	imension	ıless	
		Efficie	ncy, Eff, d	imensionle	ess		
		efficiency respective	are in the ely. The fir ne variable	ed mass flo e 2nd-5th c est and sec e names ar	columns of ond rows	of the data s of the da	n file, ta file
		Name:	Spd	MassI ate	FlwR Prs	Ratio	Eff
		Unit:	rad/s	kg/s			
		Data:	8373.3	0.02	1.3	21 0	. 44
							•
	Variable geometry	Speed, Spd, in rad/s					
		Corrected mass flow rate, MassFlwRate, kg/s					
		Rack position, RackPos, dimensionless					
		Pressure ratio, PrsRatio, dimensionless					
		Efficiency, Eff, dimensionless					
		Include data for several test points at each rack position operating point.					
		pressure of the dat	ratio, and a file, resp ile provide	ed mass flo efficiency pectively. T e the varia ormat.	are in th The first a	e 2nd-6th and secon	columns d rows of
		Name:	Spd	MassFlw Rate	RackPos	PrsRatio	Eff
		Unit:	rad/s	kg/s			
		Data:	8373.3	0.02	1	1.21	0.44
	Model-Based Calibra breakpoint values to					sure ratio	

Task	Description					
	To filter or edit the data, select Edit in Application . The Model-Based Calibration Toolbox Data Editor opens.					
Generate response models	Model-Based Calibration Toolbox fits the imported data and generates response models.					
	Turbine type	Description				
	Fixed geometry	Data	Response Model			
		Corrected mass flow rate	Square root turbine flow model described in Modeling and Control of Engines and Drivelines ²			
		Efficiency	Blade speed ratio (BSR) model described in Modeling and Control of Engines and Drivelines ²			
	Variable geometry	Model-Based Calibration Toolbox uses a point-by-point test plan to fit the data. For each rack position, the block uses these response models to fit the corrected mass flow rate and efficiency data.				
		Data	Response Model			
		Corrected mass flow rate	Square root turbine flow model described in Modeling and Control of Engines and Drivelines ²			
		Efficiency	Blade speed ratio (BSR) model described in Modeling and Control of Engines and Drivelines ²			
	To assess or adjust the response model fit, select Edit in Application . The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).					
Generate calibration	Model-Based Calibrated tables.	Calibration Toolbox calibrates the response model and generates les.				
	Turbine type	Description				
	Fixed geometry	Model-Based Calibration Toolbox uses the response models for the corrected mass flow rate and efficiency tables.				
	Variable geometry	Model-Based Calibration Toolbox fills the corrected mass flow rate and efficiency tables for each rack position. Model-Based Calibration Toolbox then combines the rack position-dependent tables into 3D lookup tables for corrected mass flow rate and efficiency.				
	To assess or adjust the calibration, select Edit in Application . The Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Lookup Tables" (Model-Based Calibration Toolbox).					

Task	Description				
Update block parameters	Update these corrected mass flow rate and efficiency parameters with the calibration.				
	Turbine type Parameters				
	Fixed geometry	Corrected mass flow rate table, mdot_corrfx_tbl			
		 Efficiency table, eta_turbfx_tbl Corrected speed breakpoints, w_corrfx_bpts1 Pressure ratio breakpoints, Pr_fx_bpts2 			
	Variable	Corrected mass flow rate table, mdot_corrvr_tbl			
	geometry	Efficiency table, eta_turbvr_tbl			
		Corrected speed breakpoints, w_corrvr_bpts2			
		Pressure ratio breakpoints, Pr_vr_bpts2			
		Rack breakpoints, L_rack_bpts3			

Thermodynamics

The block uses these equations to model the thermodynamics.

Calculation	Equations
Forward mass flow	$\dot{m}_{turb} > 0$
	$p_{01} = p_{inlet}$
	$p_{02} = p_{outlet}$
	$T_{01} = T_{inlet}$
	$h_{01} = h_{inlet}$
First law of thermodynamics	$\dot{W}_{turb} = \dot{m}_{turb}c_p(T_{01} - T_{02})$
Isentropic efficiency	$\eta_{turb} = \frac{h_{01} - h_{02}}{h_{01} - h_{02s}} = \frac{T_{01} - T_{02}}{T_{01} - T_{02s}}$
Isentropic outlet temperature, assuming ideal gas, and constant specific heats	$T_{02s} = T_{01} \left(\frac{p_{02}}{p_{01}}\right)^{\frac{\gamma - 1}{\gamma}}$
Specific heat ratio	$\gamma = \frac{c_p}{c_p - R}$
Outlet temperature	$T_{02} = T_{01} + \eta_{turb} T_{01} \left\{ 1 - \left(\frac{p_{02}}{p_{01}} \right)^{\frac{\gamma - 1}{\gamma}} \right\}$
Heat flows	$q_{in,turb} = \dot{m}_{turb} c_p T_{01}$
	$q_{out,turb} = \dot{m}_{turb}c_p T_{02}$

Calculation	Equations
Drive shaft torque	$\tau_{turb} = \frac{\dot{W}_{turb}}{\omega}$

The equations use these variables.

$p_{ m inlet}$, p_{01}	Inlet control volume total pressure
T_{inlet} , T_{01}	Inlet control volume total temperature
h _{inlet} , h ₀₁	Inlet control volume total specific enthalpy
p_{outlet} , p_{02}	Outlet control volume total pressure
T_{outlet}	Outlet control volume total temperature
h _{outlet}	Outlet control volume total specific enthalpy
\dot{W}_{turb}	Drive shaft power
T_{02}	Temperature exiting the turbine
h_{02}	Outlet total specific enthalpy
\dot{m}_{turb}	Turbine mass flow rate
q _{in, turb}	Turbine inlet heat flow rate
q _{out, turb}	Turbine outlet heat flow rate
η_{turb}	Turbine isentropic efficiency
T_{02s}	Isentropic outlet total temperature
h_{02s}	Isentropic outlet total specific enthalpy
R	Ideal gas constant
c_p	Specific heat at constant pressure
γ	Specific heat ratio
$ au_{turb}$	Drive shaft torque

Performance Lookup Tables

The block implements lookup tables based on these equations.

Calculation	Equation		
Corrected mass flow rate	$\dot{m}_{corr} = \dot{m}_{turb} \frac{\sqrt{T_{01}/T_{ref}}}{p_{01}/p_{ref}}$		
Corrected speed	$\omega_{corr} = \frac{\omega}{\sqrt{T_{01}/T_{ref}}}$		
Pressure expansion ratio	$p_r = \frac{p_{01}}{p_{02}}$		
Efficiency lookup	Fixed geometry (3-D table)	$ \eta_{turbfx, tbl} = f(\omega_{corr}, p_r) $	
table	Variable geometry (3-D table)	$ \eta_{turbvr, tbl} = f(\omega_{corr}, p_r, L_{rack}) $	

Calculation	Equation	
	Fixed geometry (3-D table)	$\dot{m}_{corrfx,tbl} = f(\omega_{corr}, p_r)$
lookup table	Variable geometry (3-D table)	$\dot{m}_{corrvr,tbl} = f(\omega_{corr}, p_r, L_{rack})$

The equations use these variables.

Inlet control volume total pressure p_{01} Pressure expansion ratio p_r Outlet control volume total pressure p_{02} P_{ref} Lookup table reference pressure T_{01} Inlet control volume total temperature Lookup table reference temperature T_{ref} Turbine mass flow rate \dot{m}_{turb} ω Drive shaft speed Corrected drive shaft speed ω_{corr} Variable geometry turbine rack position L_{rack} Efficiency 3-D lookup table for fixed geometry $\eta_{turbfx,tbl}$ Corrected mass flow rate 3-D lookup table for fixed geometry $\dot{m}_{corrfx.\,tbl}$ Efficiency 3-D lookup table for variable geometry $\eta_{turbvr,tbl}$ Corrected mass flow rate 3-D lookup table for variable geometry $\dot{m}_{corrvr,\,tbl}$

Wastegate

To calculate the wastegate heat and mass flow rates, the Turbine block uses a Flow Restriction block. The Flow Restriction block uses the wastegate flow area.

$$A_{wg} = A_{wgpctcmd} \frac{A_{wgopen}}{100}$$

The equation uses these variables.

 $A_{wqpctcmd}$ Wastegate valve area percent command

 A_{wq} Wastegate valve area

 A_{wqopen} Wastegate valve area when fully open

Combined Flow

To represent flow through the wastegate valve and turbine, the block uses these equations.

Calculation	Equations
Blocks not configured with a wastegate valve	$\dot{m}_{wg} = q_{wg} = 0$
Total mass flow rate	$\dot{m}_{total} = \dot{m}_{turb} + \dot{m}_{wg}$

Calculation	Equations
Total heat flow rate	$q_{inlet} = q_{in,turb} + q_{wg}$
	$q_{outlet} = q_{out,turb} + q_{wg}$
Combined temperature exiting the wastegate valve and turbine	$T_{\text{outfly}} = \begin{cases} \frac{q_{\text{outlet}}}{\dot{m}_{\text{total}}c_p} & \dot{m}_{\text{total}} > \dot{m}_{\text{thresh}} \end{cases}$
and turbine	$\frac{T_{02} + T_{outflw, wg}}{2} \qquad else$

The block uses the internal signal FlwDir to track the direction of the flow.

The equations use these variables.

\dot{m}_{total}	Total mass flow rate through the wastegate valve and turbine
\dot{m}_{turb}	Turbine mass flow rate
\dot{m}_{wg}	Mass flow rate through the wastegate valve
<i>Qinlet</i>	Total inlet heat flow rate
<i>q</i> outlet	Total outlet heat flow rate
q _{in, turb}	Turbine inlet heat flow rate
q _{out, turb}	Turbine outlet heat flow rate
q_{wg}	Wastegate valve heat flow rate
T_{02}	Temperature exiting the turbine
T_{outflw}	Total temperature exiting the block
$T_{outflw,wg}$	Temperature exiting the wastegate valve
\dot{m}_{thresh}	Mass flow rate threshold to prevent dividing by zero
c_p	Specific heat at constant pressure

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal		Description	Equations	
	between blocks	PwrDriveshft	Power transmitted from the shaft	$-\dot{W}_{turb}$
	Positive signals indicate flow into block Negative signals indicate flow out	PwrHeatFlwIn	Heat flow rate at port A	<i>q</i> _{outlet}
	Negative signals indicate flow out of block	PwrHeatFlwOut	Heat flow rate at port B	<i>q</i> _{outlet}

Bus Signa	1		Description	Equations
th	wrNotTrnsfrd — Power crossing the block boundary, but not ransferred Positive signals indicate an input Negative signals indicate a loss	PwrLoss	Power loss	- q _{inlet} - q _{outlet} + W _{turb}
_	wrStored — Stored energy rate of nange	Not used		
•	Positive signals indicate an increase			
•	Negative signals indicate a decrease			

The equations use these variables.

 $egin{array}{ll} \dot{W}_{turb} & ext{Drive shaft power} \\ q_{outlet} & ext{Total outlet heat flow rate} \\ q_{inlet} & ext{Total inlet heat flow rate} \end{array}$

Ports

Input

Ds — Drive shaft speed

two-way connector port

ShaftSpd — Signal containing the drive shaft angular speed, ω , in rad/s.

A — Inlet pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the inlet control volume:

- InPrs Pressure, p_{inlet}, in Pa
- InTemp Temperature, T_{inlet} , in K
- InEnth Specific enthalpy, h_{inlet}, in J/kg

B — Outlet pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the outlet control volume:

- OutPrs Pressure, *poutlet*, in Pa
- OutTemp Temperature, *Toutlet*, in K
- OutEnth Specific enthalpy, houtlet, in J/kg

RackPos — Rack position

scalar

Variable geometry turbine rack position, L_{rack} .

Dependencies

To create this port, select Variable geometry for the **Turbine type** parameter.

WgAreaPct — Wastegate area percent

scalar

Wastegate valve area percent, $A_{wgpctcmd}$.

Dependencies

To create this port, select **Include wastegate**.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal			Description	Units
TurbOutletTemp			Temperature exiting the turbine	K
Driveshft	Pwr		Drive shaft power	W
Driveshft	Trq		Drive shaft torque	N·m
TurbMassF	lw		Turbine mass flow rate	kg/s
PrsRatio			Pressure ratio	N/A
Driveshft	CorrSpd		Corrected drive shaft speed	rad/s
TurbEff			Turbine isentropic efficiency	N/A
CorrMassF	lw		Corrected mass flow rate	kg/s
WgArea			Wastegate valve area	m^2
WgMassFlw			Mass flow rate through the wastegate valve	kg/s
Wg0utletT	emp		Temperature exiting the wastegate valve	K
PwrInfo PwrTrnsfr PwrDriveshf d			Power transmitted from the shaft	W
		PwrHeatFlwI n	Heat flow rate at port A	W
		PwrHeatFlw0 ut	Heat flow rate at port B	W
	PwrNotTrn sfrd	PwrLoss	Power loss	W
	PwrStored		Not used	•

Ds — Drive shaft torque

two-way connector port

Trq — Signal containing the drive shaft torque, τ_{turb} , in N·m.

A — Inlet mass flow rate, heat flow rate, temperature, mass fractions

two-way connector port

Bus containing:

- MassFlwRate Total mass flow rate through wastegate valve and turbine, $-\dot{m}_{total}$, in kg/s
- HeatFlwRate Total inlet heat flow rate, -q_{inlet}, in J/s
- Temp Total inlet temperature, *T_{inlet}*, in K
- MassFrac Mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

B — Outlet mass flow rate, heat flow rate, temperature, mass fractions

two-way connector port

Bus containing:

- MassFlwRate Turbine mass flow rate through wastegate valve and turbine, \dot{m}_{turb} , in kg/s
- HeatFlwRate Total outlet heat flow rate, q_{outlet}, in J/s
- Temp Total outlet temperature, *T_{outflw}*, in K
- MassFrac Mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide

- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Parameters

Block Options

Turbine type — Select turbine type

Fixed geometry (default) | Variable geometry

Turbine type.

Dependencies

The table summarizes the parameter and port dependencies.

Value	Enables Parameters	Creates Ports
Fixed geometry	Corrected mass flow rate table, mdot_corrfx_tbl	None
	Efficiency table, eta_turbfx_tbl	
	Corrected speed breakpoints, w_corrfx_bpts1	
	Pressure ratio breakpoints, Pr_fx_bpts2	
Variable geometry	Corrected mass flow rate table, mdot_corrvr_tbl	RP
	Efficiency table, eta_turbvr_tbl	
	Corrected speed breakpoints, w_corrvr_bpts2	
	Pressure ratio breakpoints, Pr_vr_bpts2	
	Rack breakpoints, L_rack_bpts3	

Include wastegate — Select

on (default) | off

Dependencies

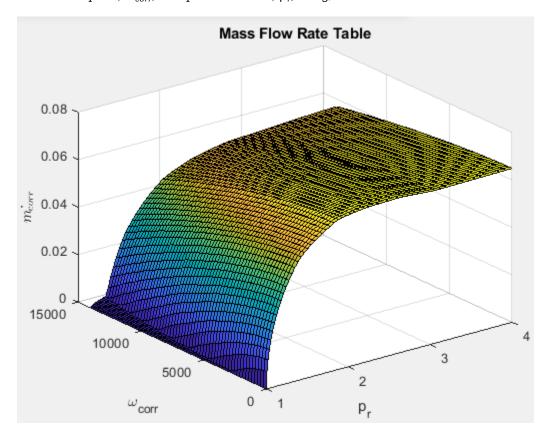
Selecting the **Include wastegate** parameter enables:

- Wastegate flow area, A_wgopen
- Pressure ratio linearize limit, Plim_wg

Performance Tables

Calibrate Performance Maps — Calibrate tables with measured data selection

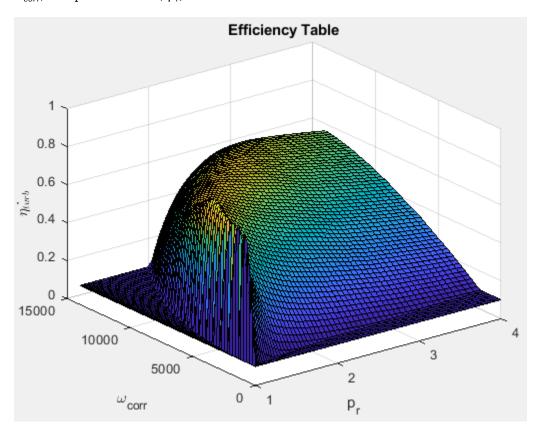
If you have Model-Based Calibration Toolbox, click **Calibrate Performance Maps** to virtually calibrate the corrected mass flow rate and turbine efficiency lookup tables using measured data. The dialog box steps through these tasks.


Task	Description						
Import turbine data	Import this turbine data from a file. For more information, see "Using Data" (Model-Based Calibration Toolbox).						
	Turbine type	Data					
	Fixed geometry	• Speed	, Spd, in r	ad/s			
		Corrected mass flow rate, MassFlwRate, in kg/s					
		• Pressu	ire ratio, I	PrsRatio, d	imension	less	
		Efficie	ncy, Eff, d	imensionle	ess		
		The speed, corrected mass flow rate, pressure ratio, and efficiency are in the 2nd-5th columns of the data file, respectively. The first and second rows of the data file provide the variable names and units. For example, use this format.				file, a file	
		Name:	Spd	MassI ate	FlwR Prs	Ratio E	ff
		Unit:	rad/s	kg/s			
		Data:	8373.3	0.02	1.2	21 0	. 44
	Variable	Speed, Spd, in rad/s					
	geometry	Corrected mass flow rate, MassFlwRate, kg/s					
		Rack position, RackPos, dimensionless					
		Pressure ratio, PrsRatio, dimensionless					
		Efficiency, Eff, dimensionless					
		Include data for several test points at each rack position operating point.					
		pressure of the dat	ratio, and a file, resp ile provide	ed mass flo efficiency pectively. T e the varia ormat.	are in the The first a	e 2nd-6th nd second	columns I rows of
		Name:	Spd	MassFlw Rate	RackPos	PrsRatio	Eff
		Unit:	rad/s	kg/s			
		Data:	8373.3	0.02	1	1.21	0.44
	Model-Based Calibra breakpoint values to					ure ratio	

Task	Description			
	To filter or edit the data, select Edit in Application . The Model-Based Calibration Toolbox Data Editor opens.			
Generate response models	Model-Based Calibration Toolbox fits the imported data and generates response models.			
	Turbine type	Description		
	Fixed geometry	Data	Response Model	
		Corrected mass flow rate	Square root turbine flow model described in Modeling and Control of Engines and Drivelines ²	
		Efficiency	Blade speed ratio (BSR) model described in Modeling and Control of Engines and Drivelines ²	
	Variable geometry	Model-Based Calibration Toolbox uses a point-by-point test plan to fit the data. For each rack position, the block uses these response models to fit the corrected mass flow rate and efficiency data.		
		Data	Response Model	
		Corrected mass flow rate	Square root turbine flow model described in Modeling and Control of Engines and Drivelines ²	
		Efficiency	Blade speed ratio (BSR) model described in Modeling and Control of Engines and Drivelines ²	
	Model-Based Calibra	ation Toolbox N	odel fit, select Edit in Application . The Model Browser opens. For more information, ased Calibration Toolbox).	
Generate calibration Model-Based Calibration Toolbox calibrates the response model and calibration calibrated tables.				
	Turbine type	Description		
	Fixed geometry	Model-Based Calibration Toolbox uses the response models for the corrected mass flow rate and efficiency tables.		
	Variable geometry	Model-Based Calibration Toolbox fills the corrected mass flow rate and efficiency tables for each rack position. Model-Based Calibration Toolbox then combines the rack position-dependent tables into 3D lookup tables for corrected mass flow rate and efficiency.		
	To assess or adjust the calibration, select Edit in Application . The Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Lookup Tables" (Model-Based Calibration Toolbox).			

Task	Description		
Update block parameters	Update these corrected mass flow rate and efficiency parameters with the calibration.		
	Turbine type Parameters		
	Fixed geometry	Corrected mass flow rate table, mdot_corrfx_tbl	
		Efficiency table, eta_turbfx_tbl	
		Corrected speed breakpoints, w_corrfx_bpts1	
		Pressure ratio breakpoints, Pr_fx_bpts2	
	Variable	Corrected mass flow rate table, mdot_corrvr_tbl	
	geometry	Efficiency table, eta_turbvr_tbl	
		Corrected speed breakpoints, w_corrvr_bpts2	
		Pressure ratio breakpoints, Pr_vr_bpts2	
		Rack breakpoints, L_rack_bpts3	

Corrected mass flow rate table, $mdot_corrfx_tbl - Lookup table$ array


Corrected mass flow rate lookup table for fixed geometry, $\dot{m}_{corrfx,\,tbl}$, as a function of corrected driveshaft speed, ω_{corr} , and pressure ratio, p_r , in kg/s.

To enable this parameter, select Fixed geometry for the **Turbine type** parameter.

Efficiency table, eta_turbfx_tb — Lookup table array

Efficiency lookup table for fixed geometry, $\eta_{turbfx,tbl}$, as a function of corrected driveshaft speed, ω_{corr} , and pressure ratio, p_r , dimensionless.

Dependencies

To enable this parameter, select Fixed geometry for the **Turbine type** parameter.

Corrected speed breakpoints, w_corrfx_bpts1 — Fixed geometry

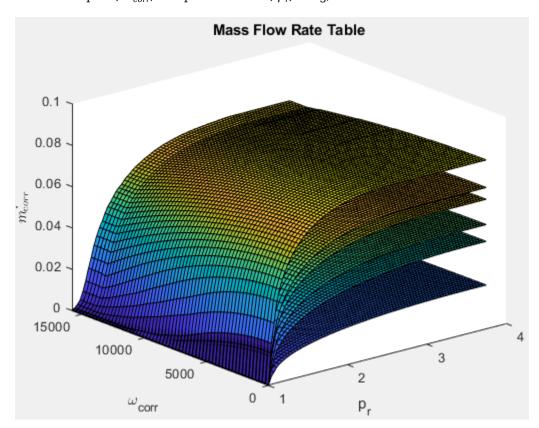
[0 1552 3104 4657 6209 7761 9313 1.087e+04 1.242e+04 1.397e+04] (default) | vector

Corrected drive shaft speed breakpoints for fixed geometry, $\omega_{corrfx,\,bpts1}$, in rad/s.

Dependencies

To enable this parameter, select Fixed geometry for the **Turbine type** parameter.

Pressure ratio breakpoints, Pr_fx_bpts2 — Fixed geometry

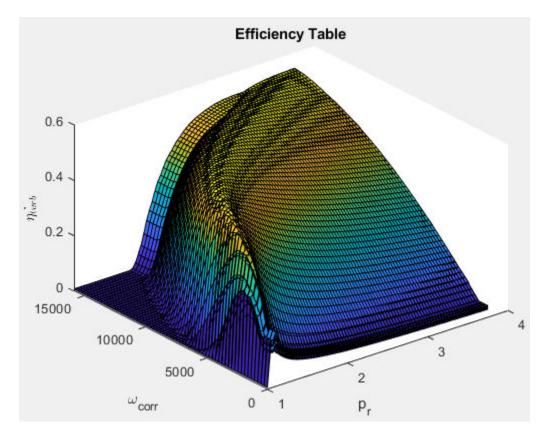

[1 1.333 1.667 2 2.333 2.667 3 3.333 3.667 4] (default) | vector

Pressure ratio breakpoints for fixed geometry, $p_{rfx,bpts2}$.

To enable this parameter, select Fixed geometry for the **Turbine type** parameter.

Corrected mass flow rate table, mdot_corrvr_tbl — Lookup table array

Corrected mass flow rate lookup table for variable geometry, $\dot{m}_{corrvr,\,tbl}$, as a function of corrected driveshaft speed, ω_{corr} , and pressure ratio, p_r , in kg/s.



Dependencies

To enable this parameter, select Variable geometry for the **Turbine type** parameter.

Efficiency table, eta_turbvr_tbl — Lookup table array

Efficiency lookup table for variable geometry, $\eta_{turbvr, tbl}$, as a function of corrected driveshaft speed, ω_{corr} , and pressure ratio, p_r , dimensionless.

To enable this parameter, select Variable geometry for the **Turbine type** parameter.

Corrected speed breakpoints, w_corrvr_bpts2 — Variable geometry [0 1752 3504 5257 7009 8761 1.051e+04 1.227e+04 1.402e+04 1.577e+04] (default) | vector

Corrected drive shaft speed breakpoints for variable geometry, $\omega_{corrvr, bpts1}$, in rad/s.

Dependencies

To enable this parameter, select Variable geometry for the Turbine type parameter.

Pressure ratio breakpoints, Pr_vr_bpts2 — Variable geometry [1 1.306 1.611 1.917 2.222 2.528 2.833 3.139 3.444 3.75] (default) | vector

Pressure ratio breakpoints for variable geometry.

Dependencies

To enable this parameter, select Variable geometry for the Turbine type parameter.

Rack breakpoints, L_rack_bpts3 — Variable geometry [0 0.2 0.3 0.5 0.7 1] (default) | vector

Rack position breakpoints for variable geometry, $L_{rack, bpts3}$.

To enable this parameter, select Variable geometry for the **Turbine type** parameter.

Reference temperature, T_ref — Temperature

293.15 (default) | scalar

Performance map reference temperature, T_{ref} , in K.

Reference pressure, P_ref — Pressure

101325 (default) | scalar

Performance map reference pressure, P_{ref} , in Pa.

Wastegate

Wastegate flow area, A_wgopen — Area

0.0003 (default) | scalar

Area of fully opened wastegate valve, A_{waopen} , in m².

Dependencies

To enable Wastegate flow area, A wgopen, select the Include wastegate parameter.

Pressure ratio linearize limit, Plim_wg — Area, m^2

0.95 (default) | scalar

Dependencies

Flow restriction linearization limit, $p_{lim,wa}$.

To enable Pressure ratio linearize limit, Plim wg, select the Include wastegate parameter.

Properties

Ideal gas constant, R — Constant

287 (default) | scalar

Ideal gas constant R, in $J/(kg \cdot K)$.

Specific heat at constant pressure, cp — Specific heat

1005 (default) | scalar

Specific heat at constant pressure, c_p , in J/(kg·K).

References

- [1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.
- [2] Eriksson, Lars and Lars Nielsen. *Modeling and Control of Engines and Drivelines*. Chichester, West Sussex, United Kingdom: John Wiley & Sons Ltd, 2014.

Extended Capabilities

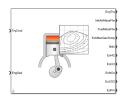
C/C++ Code Generation

Generate C and C++ code using Simulink® Coder $^{\text{\tiny TM}}$.

See Also

Boost Drive Shaft | Compressor

Topics


"Model-Based Calibration Toolbox"

Introduced in R2017a

Mapped Core Engine

Steady-state core engine model using lookup tables

Library: Powertrain Blockset / Propulsion / Combustion Engine Components / Core Engine

Description

The Mapped Core Engine block implements a steady-state core engine model using power, air mass flow, fuel flow, exhaust temperature, efficiency, and emission performance lookup tables. You can use the block for:

- Hardware-in-the-loop (HIL) engine control design.
- Vehicle-level fuel economy and performance simulations.

The block enables you to specify lookup tables for these engine characteristics. The lookup tables are functions of engine load, L, and engine speed N. If you select **Input engine temperature**, the tables are also a function of engine temperature, T.

- Power
- Air
- Fuel
- Temperature
- Efficiency
- Emissions
 - Hydrocarbon (HC)
 - Carbon monoxide (CO)
 - Nitric oxide and nitrogen dioxide (NOx)
 - Carbon dioxide (CO₂)
 - · Particulate matter (PM) emissions

To bound the Mapped Core Engine block output, the block does not extrapolate the lookup table data.

Ports

Input

<TrqCmd> — Engine load

TrqCmd (default)

Engine load, L. Examples of engine load include:

Commanded torque

- Commanded indicated mean effective pressure (IMEP) in the engine cylinder
- Normalized cylinder air mass
- · Injected fuel mass

To specify an engine load port name, on the **Configuration** tab, enter a name in the **Load input port name** parameter field.

<EngSpd> — Engine speed

EngSpd (default)

Engine speed, N.

Dependencies

To specify an engine load port name, on the **Configuration** tab, enter a name in the **Speed input port name** parameter field.

< EngTemp> — Engine temperature

EngTemp (default)

Engine temperature, T.

Dependencies

To create the engine temperature input port name, select **Input engine temperature** parameter field.

To specify an engine load port name, on the **Configuration** tab, enter a name in the **Temperature** input port name parameter field.

Output

<EngTrq> — Power

EngTrq (default)

Engine power, T_{brake} .

Dependencies

- To create this port, on the **Configuration** tab, select **Power**.
- To specify the port name, on the **Power** tab, enter a name in the **Power output port name** parameter field.

<IntkAirMassFlw> — Air mass flow

IntkAirMassFlw (default)

Engine air mass flow, \dot{m}_{intk} .

Dependencies

- To create this port, on the **Configuration** tab, select **Air**.
- To specify the port name, on the Air tab, enter a name in the Air output port name parameter field.

<FuelMassFlw> — Fuel flow

FuelMassFlw (default)

Engine fuel flow, \dot{m}_{fuel} .

Dependencies

- To create this port, on the **Configuration** tab, select **Fuel**.
- To specify the port name, on the **Fuel** tab, enter a name in the **Fuel output port name** parameter field.

< ExhManGasTemp> — Exhaust temperature

ExhManGasTemp (default)

Engine exhaust temperature, T_{exh} .

Dependencies

- To create this port, on the **Configuration** tab, select **Temperature**.
- To specify the port name, on the **Temperature** tab, enter a name in the **Temperature output port name** parameter field.

<Bsfc> — Efficiency

Bsfc (default)

Brake-specific fuel consumption (BSFC), Eff.

Dependencies

- To create this port, on the **Configuration** tab, select **Efficiency**.
- To specify the port name, on the Efficiency tab, enter a name in the Efficiency output port name parameter field.

< EoHC > — Hydrocarbon emissions

EoHC (default)

Hydrocarbon emissions, HC.

Dependencies

- To create this port, on the **Configuration** tab, select **HC**.
- To specify the port name, on the HC tab, enter a name in the HC output port name parameter field.

< EoCO > — Carbon monoxide emissions

EoCO (default)

Carbon monoxide emissions, CO.

Dependencies

- To create this port, on the **Configuration** tab, select **CO**.
- To specify the port name, on the CO tab, enter a name in the CO output port name parameter field.

< EoNOx> — Nitric oxide and nitrogen dioxide emissions

EoNOx (default)

Nitric oxide and nitrogen dioxide emissions, *NOx*.

Dependencies

- To create this port, on the **Configuration** tab, select **NO**x.
- To specify the port name, on the NOx tab, enter a name in the NOx output port name parameter field.

< EoCO2 > - Carbon dioxide emissions

EoC02 (default)

Carbon dioxide emissions, CO2.

Dependencies

- To create this port, on the **Configuration** tab, select **CO2**.
- To specify the port name, on the **CO2** tab, enter a name in the **CO2 output port name** parameter field.

< EoPm> — Particulate matter emissions

EoPm (default)

Particulate matter emissions, PM.

Dependencies

- To create this port, on the **Configuration** tab, select **PM**.
- To specify the port name, on the **PM** tab, enter a name in the **PM output port name** parameter field.

Parameters

Configuration

Engine Type — Type of engine image

Compression-ignition (CI) (default) | Spark-ignition (SI)

Type of mapped internal combustion engine image to use in the block.

Load input port name — Name

TrqCmd (default)

Engine load input port name.

Breakpoints for load input — Breakpoints

vector

Breakpoints for engine load input.

Speed input port name — Name

EngSpd (default)

Speed input port name.

Breakpoints for speed input — Breakpoints

vector

Breakpoints for engine speed input.

Temperature input port name — Name

EngTemp (default)

Temperature input port name.

Dependencies

To enable this parameter, select **Input engine temperature**.

Breakpoints for temperature input — Breakpoints

[233.15 273.15 373.15] (default) | vector

Breakpoints for engine temperature input.

Dependencies

To enable this parameter, select **Input engine temperature**.

Output Configuration — Create output ports

on (default)

Create the output ports.

Dependencies

The table summarizes the output ports that are created for each **Output** parameter selection.

Output Selection	Creates Port	Creates Tab
Power	EngTrq	Power
Air	IntkAirMassFlw	Air
Fuel	FuelMassFlw	Fuel
Temperature	ExhManGasTemp	Temperature
Efficiency	Bsfc	Efficiency
НС	ЕоНС	нс
CO	EoC0	СО
NOx	EoN0x	NOx
CO2	EoC02	CO2
PM	EoPm	PM

Power

Power output port name — Power

EngTrq (default)

Power output port name.

To create this parameter, on the **Configuration** tab, select **Power**.

Power table — Power

array

Power table.

Dependencies

To create this parameter, on the **Configuration** tab, select **Power**.

Air

Air output port name — Air

IntkAirMassFlw (default)

Air mass flow output port name.

Dependencies

To create this parameter, on the **Configuration** tab, select **Air**.

Air table — Air

array

Air mass flow table.

Dependencies

To create this parameter, on the **Configuration** tab, select **Air**.

Fuel

Fuel output port name - Fuel

FuelMassFlw (default)

Fuel output port name.

Dependencies

To create this parameter, on the **Configuration** tab, select **Fuel**.

Fuel table — Fuel

array

Fuel table.

Dependencies

To create this parameter, on the **Configuration** tab, select **Fuel**.

Temperature

Temperature output port name — Temperature

ExhManGasTemp (default)

Temperature output port name.

To create this parameter, on the **Configuration** tab, select **Temperature**.

Temperature table — Temperature

array

Temperature table.

Dependencies

To create this parameter, on the **Configuration** tab, select **Temperature**.

Efficiency

Efficiency output port name — Efficiency

Bsfc (default)

Efficiency output port name.

Dependencies

To create this parameter, on the **Configuration** tab, select **Efficiency**.

Efficiency table — Efficiency

array

Efficiency table.

Dependencies

To create this parameter, on the **Configuration** tab, select **Efficiency**.

HC

HC output port name — Hydrocarbon

EoHC (default)

Hydrocarbon output port name.

Dependencies

To create this parameter, on the **Configuration** tab, select **HC**.

HC table — Hydrocarbon

array

Hydrocarbon table.

Dependencies

To create this parameter, on the **Configuration** tab, select **HC**.

CO

CO output port name — Carbon dioxide

EoCO (default)

Carbon monoxide output port name.

To create this parameter, on the **Configuration** tab, select **CO**.

CO table — Carbon dioxide

array

Carbon dioxide table.

Dependencies

To create this parameter, on the **Configuration** tab, select **CO**.

NOx

NOx output port name — Nitric oxide NO and nitrogen dioxide NO₂ EoNOx (default)

NOx output port name. NOx is nitric oxide NO and nitrogen dioxide NO_2 .

Dependencies

To create this parameter, on the **Configuration** tab, select **NOx**.

NOx table — Nitric oxide NO and nitrogen dioxide NO_2 array

NOx emissions table. NOx is nitric oxide NO and nitrogen dioxide NO_2 .

Dependencies

To create this parameter, on the **Configuration** tab, select **NOx**.

CO2

CO2 output port name — Carbon dioxide

EoCO2 (default)

Carbon dioxide output port name.

Dependencies

To create this parameter, on the **Configuration** tab, select **CO2**.

CO2 table — Carbon dioxide

array

Carbon dioxide table.

Dependencies

To create this parameter, on the **Configuration** tab, select **CO2**.

РΜ

PM output port name — Particulate matter

EoPm (default)

Particulate matter output port name.

To create this parameter, on the **Configuration** tab, select **PM**.

PM table — Particulate matter

array

Particulate matter table.

Dependencies

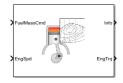
To create this parameter, on the **Configuration** tab, select **PM**.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also


CI Core Engine | SI Core Engine

Introduced in R2017a

Mapped CI Engine

Compression-ignition engine model using lookup tables

Library: Powertrain Blockset / Propulsion / Combustion Engines Vehicle Dynamics Blockset / Powertrain / Propulsion

Description

The Mapped CI Engine block implements a mapped compression-ignition (CI) engine model using power, air mass flow, fuel flow, exhaust temperature, efficiency, and emission performance lookup tables. You can use the block for:

- · Hardware-in-the-loop (HIL) engine control design
- · Vehicle-level fuel economy and performance simulations

The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of injected fuel mass, F, engine torque, T, engine speed, N, and engine temperature, $Temp_{Enq}$.

Input Command Setting	Input Engine Temperature Parameter Setting	Lookup Tables
Fuel mass	off	f(F,N)
	on	$f(F,N,Temp_{Eng})$
Torque	off	f(T,N)
	on	$f(T,N,Temp_{Eng})$

The block enables you to specify lookup tables for these engine characteristics:

- Power
- Air
- Fuel
- Temperature
- Efficiency
- · Hydrocarbon (HC) emissions
- Carbon monoxide (CO) emissions
- Nitric oxide and nitrogen dioxide (NOx) emissions
- Carbon dioxide (CO₂) emissions
- Particulate matter (PM) emissions

To bound the Mapped CI Engine block output, the block does not extrapolate the lookup table data.

Virtual Calibration

If you have Model-Based Calibration Toolbox, click **Calibrate Maps** to virtually calibrate the 2D lookup tables using measured data. The dialog box steps through these tasks.

Task	Description				
Import firing data	Import this loss data from a file. For example, open <matlabroot>/to autoblks/autodemos/projectsrc/CIDynamometer/CalMappedECiEngineData.xlsx.</matlabroot>				
	For more information, see "Using Data" (Model-Based Calibration Toolbox).				
	Input command	Required Data	Optional Data		
	Fuel mass	 Engine speed, rpm Commanded fuel mass per injection, mg Engine torque, N·m 	 Air mass flow rate, kg/s Brake specific fuel consumption, g/(kW·h) CO2 mass flow rate, kg/s 		
	Torque	 Engine speed, rpm Engine torque, N·m 	 CO mass flow rate, kg/s Exhaust temperature, K Fuel mass flow rate, kg/s HC mass flow rate, kg/s NOx mass flow rate, kg/s Particulate matter mass flow rate, kg/s 		
	the fuel. Data sl Model-Based Ca maximum torqu To filter or edit	nould cover the engine speed a alibration Toolbox uses the firin	g data boundary as the		
Import non-firing data	 Import this non-firing data from a file. For example, open <matlabroot>/toolbox/autoblks/autodemos/projectsrc/CIDynamometer/CalMappedEng/CiEngineData.xlsx.</matlabroot> Engine speed, rpm Engine torque, N·m Collect non-firing (motoring) data at steady-state operating conditions when fuel is cut off. All non-firing torque points must be less than zero. Non-firing data is a function of engine speed only. 				
Generate response models	For both firing and non-firing data, the Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs). To assess or adjust the response model fit, select Edit in Application . The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).				

Task	Description
Generate calibration	Model-Based Calibration Toolbox calibrates the firing and non-firing response models and generates calibrated tables.
	To assess or adjust the calibration, select Edit in Application . The Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Lookup Tables" (Model-Based Calibration Toolbox).
Update block parameters	Update the block lookup table and breakpoint parameters with the calibration.

Cylinder Air Mass

The block calculates the normalized cylinder air mass using these equations.

$$\begin{split} M_{Nom} &= \frac{P_{std}V_d}{N_{cyl}R_{air}T_{std}} \\ L &= \frac{\left(\frac{60s}{min}\right)Cps\cdot\dot{m}_{air}}{\left(\frac{1000g}{Kg}\right)N_{cyl}\cdot N\cdot M_{Nom}} \end{split}$$

The equations use these variables.

L	Normalized cylinder air mass
M_{Nom}	Nominal engine cylinder air mass at standard temperature and pressure, piston at bottom dead center (BDC) maximum volume, in kg
Cps	Crankshaft revolutions per power stroke, rev/stroke
P_{std}	Standard pressure
T_{std}	Standard temperature
R_{air}	Ideal gas constant for air and burned gas mixture
V_d	Displaced volume
N_{cyl}	Number of engine cylinders
N	Engine speed
\dot{m}_{intk}	Engine air mass flow, in g/s

Turbocharger Lag

To model turbocharger lag, select **Include turbocharger lag effect**. Turbocharger lag limits the maximum fuel mass per injection. To model the maximum fuel mass per injection, the block uses a first-order system with a time constant. At low torque, the engine does not require boost to provide sufficient air flow. When the requested fuel mass requires boost, the block uses a time constant to determine the maximum fuel mass per injection. The block uses these equations for the specified **Input command** setting.

Calculation	Input command Parameter Setting		
	Fuel mass	Torque	
Dynamic torque	$\frac{dF_{max}}{dt} = \frac{1}{\tau_{eng}} (F_{cmd} - F_{max})$	$\frac{dT_{max}}{dt} = \frac{1}{\tau_{eng}} (T_{cmd} - T_{max})$	
Fuel mass per injection or torque - with	F =	$T_{target} =$	
turbocharger lag	$\begin{cases} F_{cmd} & \text{when } F_{cmd} < F_{\text{max}} \\ F_{max} & \text{when } F_{cmd} \ge F_{\text{max}} \end{cases}$	$\begin{cases} T_{cmd} & \text{when } T_{cmd} < T_{\text{max}} \\ T_{max} & \text{when } T_{cmd} \ge T_{\text{max}} \end{cases}$	
	$\begin{cases} F_{max} & \text{when } F_{cmd} \ge F_{max} \end{cases}$	T_{max} when $T_{cmd} \ge T_{max}$	
Fuel mass per injection or torque- without turbocharger lag	$F = F_{cmd} = F_{max}$	$T_{target} = T_{cmd} = T_{max}$	
Boost time constant	$\tau_{bst} =$	$\tau_{bst} =$	
	$\int \tau_{bst, rising}$ when $F_{cmd} > F_{max}$	$\tau_{tx} = \left[\tau_{bst, rising} \text{when } T_{cmd} > T_{max} \right]$	
	$\left\{ \tau_{bst, falling} \text{when } F_{cmd} \le F_{max} \right\}$	$\tau_{bst, falling}$ when $T_{cmd} \le T_{max}$	
Final time constant	$\tau_{eng} = \begin{cases} \tau_{nat} & \text{when } T_{brake} < f \\ \tau_{bst} & \text{when } T_{brake} \ge f \end{cases}$		
	$\tau_{eng} - \tau_{bst}$ when $T_{brake} \ge f$	$f_{bst}(N)$	

The equations use these variables.

 T_{brake} Brake torque

F Fuel mass per injection

 F_{cmd} , F_{max} Commanded and maximum fuel mass per injection, respectively

 T_{target} , T_{cmd} , T_{max} Target, commanded, and maximum torque, respectively

 au_{bst} Boost time constant

 $\tau_{bst,rising}$, $\tau_{bst,falling}$ Boost rising and falling time constant, respectively

 au_{eng} Final time constant

 au_{nat} Time constant below the boost torque speed line

 $f_{bst}(N)$ Boost torque/speed line

N Engine speed

Fuel Flow

To calculate the fuel economy for high-fidelity models, the block uses the volumetric fuel flow.

$$Q_{fuel} = \frac{\dot{m}_{fuel}}{\left(\frac{1000kg}{m^3}\right) Sg_{fuel}}$$

The equation uses these variables.

 \dot{m}_{fuel} Fuel mass flow

 Sg_{fuel} Specific gravity of fuel

 Q_{fuel} Volumetric fuel flow

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Equations
PwrInf o	PwrTrnsfrd — Power transferred between blocks	PwrCrkshft	Crankshaft power	$- au_{eng}\omega$
	Positive signals indicate flow into block			
	Negative signals indicate flow out of block			
PwrNotTrnsfrd — Power crossing the block boundary, but not transferred		PwrFuel	Fuel input power	$\dot{m}_{fuel}LHV$
	Positive signals indicate an inputNegative signals indicate a loss	PwrLoss	Power loss	$ au_{eng}\omega$ - $m_{fuel}LHV$
PwrStored — Stored energy rate of change			Not used	
Positive signals indicate an increase				
	Negative signals indicate a decrease			

The equations use these variables.

 τ_{eng} Fuel mass per injection time constant

Ports

Input

FuelMassCmd — Injected fuel mass command

scalar

Injected fuel mass command, F, in mg/inj.

Dependencies

To enable this port, for **Input command**, select Fuel mass.

TrqCmd — Torque command

scalar

Torque command, T, in N·m.

Dependencies

To enable this port, for **Input command**, select **Torque**.

EngSpd — Engine speed

scalar

Engine speed, N, in rpm.

EngTemp — **Engine temperature**

scalar

Engine temperature, $Temp_{Eng}$, in K.

Dependencies

To enable this port, select **Input engine temperature**.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Units
IntkGasMassFlw	Engine air mass flow output	kg/s
NrmlzdAirChrg	Normalized engine cylinder air mass	N/A
Afr	Air-fuel ratio (AFR)	N/A
FuelMassFlw	Engine fuel flow output	kg/s
FuelVolFlw	Volumetric fuel flow	m ³ /s
ExhManGasTemp	Engine exhaust gas temperature	K
EngTrq	Engine torque output	N·m
EngSpd	Engine speed	rpm
CrkAng	Engine crankshaft absolute angle $\int_{0}^{(360)Cps} EngSpd\frac{180}{30}d\theta$ where Cps is crankshaft revolutions per power stroke.	degrees crank angle
Bsfc	Engine brake-specific fuel consumption (BSFC)	g/kWh
ЕоНС	Engine out hydrocarbon emission mass flow	kg/s
EoC0	Engine out carbon monoxide emission mass flow rate	kg/s
EoN0x	Engine out nitric oxide and nitrogen dioxide emissions mass flow	kg/s
EoC02	Engine out carbon dioxide emission mass flow	kg/s

Signal			Description	Units
EoPM			Engine out particulate matter emission mass flow	kg/s
PwrInfo	PwrTrnsfrd PwrCrkshft		Crankshaft power	W
	PwrNotTrnsfr	PwrFuel	Fuel input power	W
	d	PwrLoss	Power loss	W
	PwrStored		Not used	

EngTrq — Power

scalar

Engine power, T_{brake} , in N·m.

Parameters

Block Options

Input command — Table functions

Fuel mass (default) | Torque

The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of injected fuel mass, F, engine torque, T, engine speed, N, and engine temperature, $Temp_{Enq}$.

Input Command Setting	Input Engine Temperature Parameter Setting	Lookup Tables
Fuel mass	off	f(F,N)
	on	$f(F,N,Temp_{Eng})$
Torque	off	f(T,N)
	on	$f(T,N,Temp_{Eng})$

Dependencies

- Selecting Fuel mass enables Breakpoints for commanded fuel mass input, f tbrake f bpt.
- Selecting Torque enables Breakpoints for commanded torque input, f_tbrake_t_bpt.
- Selecting Input engine temperature enables Breakpoints for temperature input, f tbrake engtmp bpt.

Include turbocharger lag effect — Increase time constant off (default)

To model turbocharger lag, select **Include turbocharger lag effect**. Turbocharger lag limits the maximum fuel mass per injection. To model the maximum fuel mass per injection, the block uses a first-order system with a time constant. At low torque, the engine does not require boost to provide sufficient air flow. When the requested fuel mass requires boost, the block uses a time constant to determine the maximum fuel mass per injection. The block uses these equations for the specified **Input command** setting.

Calculation	Input command Parameter Setting		
	Fuel mass	Torque	
Dynamic torque	$\frac{dF_{max}}{dt} = \frac{1}{\tau_{eng}} (F_{cmd} - F_{max})$	$\frac{dT_{max}}{dt} = \frac{1}{\tau_{eng}} (T_{cmd} - T_{max})$	
Fuel mass per injection or torque - with	F =	$T_{target} =$	
turbocharger lag	$\begin{cases} F_{cmd} & \text{when } F_{cmd} < F_{\text{max}} \\ F_{max} & \text{when } F_{cmd} \ge F_{\text{max}} \end{cases}$	$\begin{cases} T_{cmd} & \text{when } T_{cmd} < T_{\text{max}} \\ T_{max} & \text{when } T_{cmd} \ge T_{\text{max}} \end{cases}$	
	$\int F_{max}$ when $F_{cmd} \ge F_{max}$	T_{max} when $T_{cmd} \ge T_{max}$	
Fuel mass per injection or torque- without turbocharger lag	$F = F_{cmd} = F_{max}$	$T_{target} = T_{cmd} = T_{max}$	
Boost time constant	$ au_{bst}$ =	$ au_{bst}$ =	
	$\tau_{bst, rising}$ when $F_{cmd} > F_{max}$		
	$\left \left\{ \tau_{bst, falling} \text{when } F_{cmd} \le F_{max} \right\} \right $	$\tau_{bst, falling}$ when $T_{cmd} \le T_{max}$	
Final time constant	$\tau = \int \tau_{nat}$ when $T_{brake} < f$		
	$\tau_{eng} = \begin{cases} \tau_{nat} & \text{when } T_{brake} < f \\ \tau_{bst} & \text{when } T_{brake} \ge f \end{cases}$	$f_{bst}(N)$	

The equations use these variables.

 T_{brake} Brake torque

F Fuel mass per injection

 F_{cmd} , F_{max} Commanded and maximum fuel mass per injection, respectively

 T_{target} , T_{cmd} , T_{max} Target, commanded, and maximum torque, respectively

 au_{bst} Boost time constant

 $\tau_{bst,rising}$, $\tau_{bst,falling}$ Boost rising and falling time constant, respectively

 au_{eng} Final time constant

 au_{nat} Time constant below the boost torque speed line

 $f_{bst}(N)$ Boost torque/speed line

N Engine speed

Dependencies

Selecting Include turbocharger lag effect enables these parameters:

- Boost torque line, f_tbrake_bst
- Time constant below boost line, tau_nat
- · Rising maximum fuel mass boost time constant, tau bst rising
- · Falling maximum fuel mass boost time constant, tau bst falling

Input engine temperature — Create input port

off (default) | on

Select this to create the EngTemp input port.

The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of injected fuel mass, F, engine torque, T, engine speed, N, and engine temperature, $Temp_{Enq}$.

Input Command Setting	Input Engine Temperature Parameter Setting	Lookup Tables
Fuel mass	off	f(F,N)
	on	$f(F,N,Temp_{Eng})$
Torque	off	f(T,N)
	on	$f(T,N,Temp_{Eng})$

Configuration

Calibrate Maps — Calibrate tables with measured data selection

If you have Model-Based Calibration Toolbox, click **Calibrate Maps** to virtually calibrate the 2D lookup tables using measured data. The dialog box steps through these tasks.

Task	Description			
Import firing data	Import this loss data from a file. For example, open <matlabroot>/toolboxautoblks/autodemos/projectsrc/CIDynamometer/CalMappedEng/CiEngineData.xlsx. For more information, see "Using Data" (Model-Based Calibration Toolbox).</matlabroot>			
	Input command	Required Data	Optional Data	
	Fuel mass	Engine speed, rpm	Air mass flow rate, kg/s	
		Commanded fuel mass per injection, mg	Brake specific fuel consumption, g/(kW·h)	
		• Engine torque, N·m	CO2 mass flow rate, kg/s	
	Torque	Engine speed, rpm	CO mass flow rate, kg/s	
		• Engine torque, N·m	Exhaust temperature, K	
			Fuel mass flow rate, kg/s	
			HC mass flow rate, kg/s	
			NOx mass flow rate, kg/s	
			Particulate matter mass flow rate, kg/s	
	Collect firing data at steady-state operating conditions when injectors deliver the fuel. Data should cover the engine speed and torque operating range. Model-Based Calibration Toolbox uses the firing data boundary as the maximum torque. To filter or edit the data, select Edit in Application . The Model-Based Calibration Toolbox Data Editor opens.			

Task	Description
Import non-firing data	Import this non-firing data from a file. For example, open <matlabroot>/ toolbox/autoblks/autodemos/projectsrc/CIDynamometer/ CalMappedEng/CiEngineData.xlsx.</matlabroot>
	Engine speed, rpm
	Engine torque, N·m
	Collect non-firing (motoring) data at steady-state operating conditions when fuel is cut off. All non-firing torque points must be less than zero. Non-firing data is a function of engine speed only.
Generate response models	For both firing and non-firing data, the Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs).
	To assess or adjust the response model fit, select Edit in Application . The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).
Generate calibration	Model-Based Calibration Toolbox calibrates the firing and non-firing response models and generates calibrated tables.
	To assess or adjust the calibration, select Edit in Application . The Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Lookup Tables" (Model-Based Calibration Toolbox).
Update block parameters	Update the block lookup table and breakpoint parameters with the calibration.

To enable this parameter, clear **Input engine temperature**.

Breakpoints for commanded fuel mass input, f_tbrake_f_bpt — Breakpoints 1-by-M vector

Breakpoints, in mg/inj.

Dependencies

Setting **Input command** to Fuel mass enables this parameter.

Breakpoints for commanded torque input, f_tbrake_t_bpt — Breakpoints 1-by-M vector

Breakpoints, in $N \cdot m$.

Dependencies

Setting **Input command** to **Torque** enables this parameter.

Breakpoints for engine speed input, f_tbrake_n_bpt — Breakpoints 1-by-N vector

Breakpoints, in rpm.

Breakpoints for temperature input, f_tbrake_engtmp_bpt — Breakpoints

[233.15 273.15 373.15] (default) | 1-by-L vector

Breakpoints, in K.

Dependencies

To enable this parameter, select **Input engine temperature**.

Number of cylinders, NCyl — Number

4 (default) | scalar

Number of cylinders.

Crank revolutions per power stroke, Cps — Crank revolutions

2 (default) | scalar

Crank revolutions per power stroke.

Total displaced volume, Vd — Volume

0.0015 (default) | scalar

Volume displaced by engine, in m³.

Fuel lower heating value, Lhv — Heating value

45e6 (default) | scalar

Fuel lower heating value, LHV, in J/kg.

Fuel specific gravity, Sg — Specific gravity

0.832 (default) | scalar

Specific gravity of fuel, Sg_{fuel} , dimensionless.

Ideal gas constant air, Rair — Constant

287 (default) | scalar

Ideal gas constant of air and residual gas entering the engine intake port, in J/(kg·K).

Air standard pressure, Pstd — Pressure

101325 (default) | scalar

Standard air pressure, in Pa.

Air standard temperature, Tstd — Temperature

293.15 (default) | scalar

Standard air temperature, in K.

Boost torque line, f_tbrake_bst — Boost lag

[90,95,95,95,96,100,104,104,104,100,95,85,75,67,60,55] (default) | 1-by-M vector

Boost torque line, $f_{bst}(N)$, in N·m.

Dependencies

To enable this parameter, select **Include turbocharger lag effect**.

Time constant below boost line — Time constant below

0.1 (default) | scalar

Time constant below boost line, τ_{nat} , in s.

Dependencies

To enable this parameter, select **Include turbocharger lag effect**.

Rising maximum fuel mass boost time constant, tau_bst_rising — Rising time constant

1.0 (default) | scalar

Rising maximum fuel mass boost time constant, $\tau_{bst,rising}$, in s.

Dependencies

To enable this parameter, select Include turbocharger lag effect.

Falling maximum fuel mass boost time constant, tau_bst_falling — Falling time constant

0.7 (default) | scalar

Falling maximum fuel mass boost time constant, $\tau_{bst.falling}$, in s.

Dependencies

To enable this parameter, select Include turbocharger lag effect.

Turbocharger time constant blend fuel mass fraction, f_blend_frac — Time constant

0.01 (default) | scalar

Turbocharger time constant blend fuel mass fraction, in s.

Dependencies

To enable this parameter, select **Include turbocharger lag effect**.

Power

Brake torque map, f_tbrake — 2D lookup table

M-by-N matrix

Input Command Setting	Description
Fuel mass	The engine brake torque lookup table is a function of commanded fuel mass and engine speed, $T_{brake} = f(F, N)$, where: • T_{brake} is engine torque, in N·m. • F is commanded fuel mass, in mg per injection. • N is engine speed, in rpm.
Torque	The engine brake torque lookup table is a function of target torque and engine speed, $T_{brake} = f(T_{target}, N)$, where: • T_{brake} is engine torque, in N·m. • T_{target} is target torque, in N·m. • N is engine speed, in rpm.

To enable this parameter, clear **Input engine temperature**.

Plot brake torque map — Plot table

button

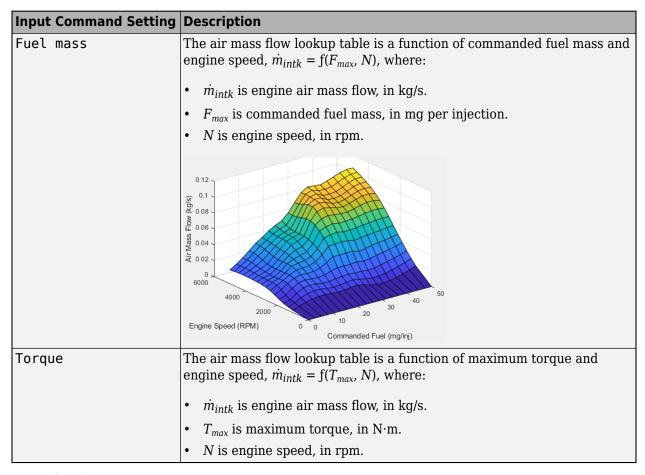
Click to plot table.

Dependencies

To enable this parameter, clear **Input engine temperature**.

Brake torque map, f_tbrake_3d — 3D lookup table M-by-N-by-L array

Input Command Setting	Description
Fuel mass	The engine brake torque lookup table is a function of commanded fuel mass and engine speed, $T_{brake} = f(F, N, Temp_{Eng})$, where:
	• T_{brake} is engine torque, in N·m.
	F is commanded fuel mass, in mg per injection.
	• $Temp_{Eng}$ is engine temperature, in K.


Input Command Setting	Description
Torque	The engine brake torque lookup table is a function of target torque and engine speed, $T_{brake} = f(T_{target}, N, Temp_{Eng})$, where:
	• T_{brake} is engine torque, in N·m.
	• T_{target} is target torque, in N·m.
	ullet N is engine speed, in rpm.
	• $Temp_{Eng}$ is engine temperature, in K.

To enable this parameter, select **Input engine temperature**.

Air

Air mass flow map, f_air — 2D lookup table

M-by-N matrix

Dependencies

To enable this parameter, clear **Input engine temperature**.

Plot air mass map — Plot table

button

Click to plot table.

Dependencies

To enable this parameter, clear **Input engine temperature**.

Air mass flow map, f_air_3d — 3D lookup table M-by-N-by-L array

Input Command Setting	Description
Fuel mass	The air mass flow lookup table is a function of commanded fuel mass and engine speed, $\dot{m}_{intk} = f(F_{max}, N, Temp_{Eng})$, where:
	• \dot{m}_{intk} is engine air mass flow, in kg/s.
	• F_{max} is commanded fuel mass, in mg per injection.
	• N is engine speed, in rpm.
	• $Temp_{Eng}$ is engine temperature, in K.
Torque	The air mass flow lookup table is a function of maximum torque and engine speed, $\dot{m}_{intk} = f(T_{max}, N, Temp_{Eng})$, where:
	• \dot{m}_{intk} is engine air mass flow, in kg/s.
	• T_{max} is maximum torque, in N·m.
	• N is engine speed, in rpm.
	• $Temp_{Eng}$ is engine temperature, in K.

Dependencies

To enable this parameter, select **Input engine temperature**.

Fuel

Fuel flow map, f_fuel — 2D lookup table M-by-N matrix

Input Command Setting	Description
Fuel mass	The engine fuel flow lookup table is a function of commanded fuel mass and engine speed, $MassFlow = f(F, N)$, where: • $MassFlow$ is engine fuel mass flow, in kg/s. • F is commanded fuel mass, in mg per injection. • N is engine speed, in rpm.
Torque	The engine fuel flow lookup table is a function of target torque and engine speed, $MassFlow = f(T_{target}, N)$, where: • $MassFlow$ is engine fuel mass flow, in kg/s. • T_{target} is target torque, in N·m. • N is engine speed, in rpm.

To enable this parameter, clear **Input engine temperature**.

Plot fuel flow map — Plot table

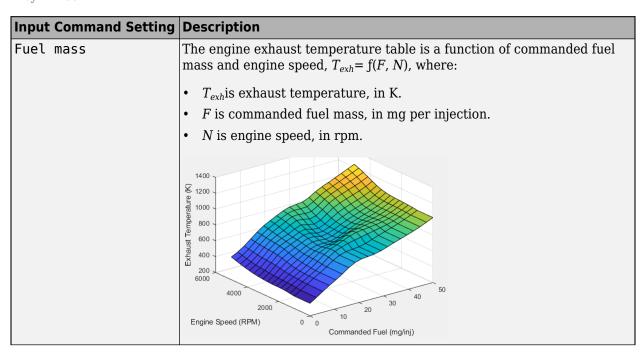
button

Click to plot table.

Dependencies

To enable this parameter, clear **Input engine temperature**.

Fuel flow map, f_fuel_3d — 3D lookup table


M-by-N-by-L array

Input Command Setting	Description
Fuel mass	The engine fuel flow lookup table is a function of commanded fuel mass, engine speed, and engine temperature, $MassFlow = f(F, N, Temp_{Eng})$, where:
	MassFlow is engine fuel mass flow, in kg/s.
	ullet F is commanded fuel mass, in mg per injection.
	ullet N is engine speed, in rpm.
	• $Temp_{Eng}$ is engine temperature, in K.
Torque	The engine fuel flow lookup table is a function of target torque and engine speed, and engine temperature, $MassFlow = f(T_{target}, N, Temp_{Eng})$, where:
	MassFlow is engine fuel mass flow, in kg/s.
	• T_{target} is target torque, in N·m.
	• N is engine speed, in rpm.
	• $Temp_{Eng}$ is engine temperature, in K.

To enable this parameter, select **Input engine temperature**.

Temperature

Exhaust temperature map, $f_{\text{texh}} - 2D$ lookup table M-by-N matrix

Input Command Setting	Description
Torque	The engine exhaust temperature table is a function of target torque and engine speed, $T_{exh} = f(T_{target}, N)$, where:
	• T_{exh} is exhaust temperature, in K.
	• T_{target} is target torque, in N·m.
	ullet N is engine speed, in rpm.

To enable this parameter, clear **Input engine temperature**.

Plot exhaust temperature map — Plot table

button

Click to plot table.

Dependencies

To enable this parameter, clear **Input engine temperature**.

Exhaust temperature map, $f_{\text{texh}} = 3D \cdot 100 \text{ kup table}$

M-by-N-by-L array

Input Command Setting	Description
Fuel mass	The engine exhaust temperature table is a function of commanded fuel mass and engine speed, $T_{exh} = f(F, N, Temp_{Eng})$, where:
	• T_{exh} is exhaust temperature, in K.
	F is commanded fuel mass, in mg per injection.
	ullet N is engine speed, in rpm.
	• $Temp_{Eng}$ is engine temperature, in K.
Torque	The engine exhaust temperature table is a function of target torque and engine speed, $T_{exh} = f(T_{target}, N, Temp_{Eng})$, where:
	• T_{exh} is exhaust temperature, in K.
	• T_{target} is target torque, in N·m.
	• N is engine speed, in rpm.
	• $Temp_{Eng}$ is engine temperature, in K.

Dependencies

To enable this parameter, select **Input engine temperature**.

Efficiency

BSFC map, f_eff — 2D lookup table

M-by-N matrix

Input Command Setting	Description
Fuel mass	The brake-specific fuel consumption (BSFC) efficiency is a function of commanded fuel mass and engine speed, BSFC = f(F, N), where: • BSFC is BSFC, in g/kWh. • F is commanded fuel mass, in mg per injection. • N is engine speed, in rpm.
Torque	The brake-specific fuel consumption (BSFC) efficiency is a function of target torque and engine speed, $BSFC = f(T_{target}, N)$, where: • $BSFC$ is BSFC, in g/kWh. • T_{target} is target torque, in N·m. • N is engine speed, in rpm.

To enable this parameter, clear **Input engine temperature**.

Plot BSFC map — Plot table

button

Click to plot table.

Dependencies

To enable this parameter, clear **Input engine temperature**.

BSFC map, f_eff_3d — 3D lookup table

M-by-N-by-L array

Input Command Setting	Description
Fuel mass	The brake-specific fuel consumption (BSFC) efficiency is a function of commanded fuel mass and engine speed, $BSFC = f(F, N, Temp_{Eng})$, where:
	BSFC is BSFC, in g/kWh.
	ullet F is commanded fuel mass, in mg per injection.
	ullet N is engine speed, in rpm.
	• $Temp_{Eng}$ is engine temperature, in K.

Input Command Setting	Description
Torque	The brake-specific fuel consumption (BSFC) efficiency is a function of target torque and engine speed, $BSFC = f(T_{target}, N, Temp_{Eng})$, where:
	• BSFC is BSFC, in g/kWh.
	• T_{target} is target torque, in N·m.
	ullet N is engine speed, in rpm.
	• $Temp_{Eng}$ is engine temperature, in K.

To enable this parameter, select **Input engine temperature**.

нс

EO HC map, f_hc — 2D lookup table M-by-N matrix

Input Command Setting	Description
Fuel mass	The engine-out hydrocarbon emissions are a function of commanded fuel mass and engine speed, $EO\ HC = f(F, N)$, where:
	• EO HC is engine-out hydrocarbon emissions, in kg/s.
	ullet F is commanded fuel mass, in mg per injection.
	N is engine speed, in rpm.
	×10 ⁻⁸ 5 4 9 9 3 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Torque	The engine-out hydrocarbon emissions are a function of target torque and engine speed, $EO\ HC = f(T_{target},\ N)$, where:
	• EO HC is engine-out hydrocarbon emissions, in kg/s.
	• T_{target} is target torque, in N·m.
	N is engine speed, in rpm.

Dependencies

To enable this parameter, clear **Input engine temperature**.

Plot E0 HC map — Plot table

button

Click to plot table.

Dependencies

To enable this parameter, clear **Input engine temperature**.

EO HC map, $f_hc_3d - 3D$ lookup table

M-by-N-by-L array

Input Command Setting	Description
Fuel mass	The engine-out hydrocarbon emissions are a function of commanded fuel mass and engine speed, $EO\ HC = f(F, N, Temp_{Eng})$, where:
	EO HC is engine-out hydrocarbon emissions, in kg/s.
	F is commanded fuel mass, in mg per injection.
	• N is engine speed, in rpm.
	• $Temp_{Eng}$ is engine temperature, in K.
Torque	The engine-out hydrocarbon emissions are a function of target torque and engine speed, $EO\ HC = f(T_{target}, N, Temp_{Eng})$, where:
	• EO HC is engine-out hydrocarbon emissions, in kg/s.
	• T_{target} is target torque, in N·m.
	• N is engine speed, in rpm.
	• $Temp_{Eng}$ is engine temperature, in K.

Dependencies

To enable this parameter, select **Input engine temperature**.

CO

E0 C0 map, $f_{co} - 2D$ lookup table

M-by-N matrix

Input Command Setting	Description
Fuel mass	The engine-out carbon monoxide emissions are a function of commanded fuel mass and engine speed, $EO\ CO = f(F,N)$, where: • $EO\ CO$ is engine-out carbon monoxide emissions, in kg/s. • F is commanded fuel mass, in mg per injection. • N is engine speed, in rpm.
Torque	The engine-out carbon monoxide emissions are a function of target torque and engine speed, $EO\ CO = f(T_{target}, N)$, where: • $EO\ CO$ is engine-out carbon monoxide emissions, in kg/s. • T_{target} is target torque, in N·m. • N is engine speed, in rpm.

To enable this parameter, clear **Input engine temperature**.

Plot E0 C0 map — Plot table

button

Click to plot table.

Dependencies

To enable this parameter, clear **Input engine temperature**.

E0 C0 map, f_co_3d — 3D lookup table

M-by-N-by-L array

Input Command Setting	Description	
Fuel mass	The engine-out carbon monoxide emissions are a function of commanded fuel mass and engine speed, $EO\ CO = f(F, N, Temp_{Eng})$, where:	
	EO CO is engine-out carbon monoxide emissions, in kg/s.	
	F is commanded fuel mass, in mg per injection.	
	ullet N is engine speed, in rpm.	
	• $Temp_{Eng}$ is engine temperature, in K.	
Torque	The engine-out carbon monoxide emissions are a function of target torque and engine speed, $EO\ CO = f(T_{target},\ N,\ Temp_{Eng})$, where:	
	• EO CO is engine-out carbon monoxide emissions, in kg/s.	
	• T_{target} is target torque, in N·m.	
	• N is engine speed, in rpm.	
	• $Temp_{Eng}$ is engine temperature, in K.	

To enable this parameter, select **Input engine temperature**.

NOx

EO NOx map, f_nox — 2D lookup table M-by-N matrix

Input Command Setting	Description	
Input Command Setting Fuel mass	 The engine-out nitric oxide and nitrogen dioxide emissions are a function of commanded fuel mass and engine speed, EO NOx= f(F, N), where: EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in kg/s. F is commanded fuel mass, in mg per injection. N is engine speed, in rpm. 	
	Engine Speed (RPM) 0 0 10 Commanded Fuel (mg/inj)	

Input Command Setting	Description	
Torque	The engine-out nitric oxide and nitrogen dioxide emissions are a function of target torque and engine speed, $EO\ NOx = f(T_{target},\ N)$, where:	
	EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in kg/s.	
	• T_{target} is target torque, in N·m.	
	• N is engine speed, in rpm.	

To enable this parameter, clear **Input engine temperature**.

Plot E0 NOx map — Plot table

button

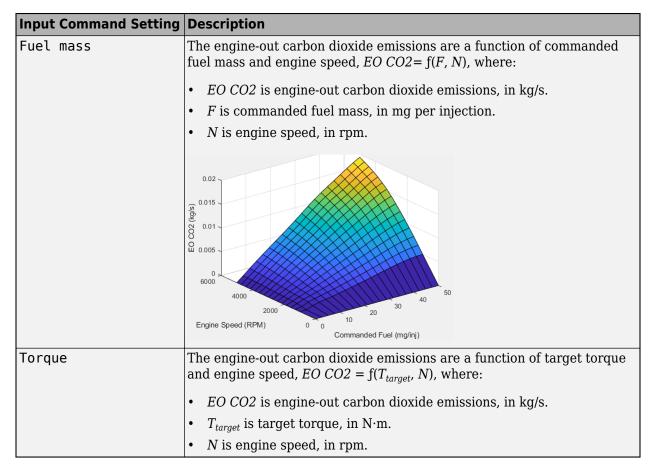
Click to plot table.

Dependencies

To enable this parameter, clear **Input engine temperature**.

EO NOx map, f_nox_3d — 3D lookup table

M-by-N-by-L array


Input Command Setting	Description	
Fuel mass	The engine-out nitric oxide and nitrogen dioxide emissions are a function of commanded fuel mass, engine speed, and engine temperature, EO $NOx = f(F, N, Temp_{Eng})$, where:	
	EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in kg/s.	
	F is commanded fuel mass, in mg per injection.	
	N is engine speed, in rpm.	
	• $Temp_{Eng}$ is engine temperature, in K.	
Torque	The engine-out nitric oxide and nitrogen dioxide emissions are a function of target torque, engine speed, and engine temperature, $EO\ NOx = f(T_{target}, N, Temp_{Eng})$, where:	
	• EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in kg/s.	
	• T_{target} is target torque, in N·m.	
	ullet N is engine speed, in rpm.	
	• $Temp_{Eng}$ is engine temperature, in K.	

Dependencies

To enable this parameter, select **Input engine temperature**.

CO₂

EO CO2 map, f_co2 — 2D lookup table M-by-N matrix

Dependencies

To enable this parameter, clear **Input engine temperature**.

Plot CO2 map — Plot table

button

Click to plot table.

Dependencies

To enable this parameter, clear **Input engine temperature**.

EO CO2 map, f_co2_3d — 3D lookup table

M-by-N-by-L array

Input Command Setting	Description	
Fuel mass	The engine-out carbon dioxide emissions are a function of commanded fuel mass, engine speed, and engine temperature, $EO\ CO2 = f(F, N, Temp_{Eng})$, where:	
	EO CO2 is engine-out carbon dioxide emissions, in kg/s.	
	ullet F is commanded fuel mass, in mg per injection.	
	ullet N is engine speed, in rpm.	
	• $Temp_{Eng}$ is engine temperature, in K.	
Torque	The engine-out carbon dioxide emissions are a function of target torque, engine speed, and engine temperature, $EO\ CO2 = f(T_{target},\ N,\ Temp_{Eng})$, where:	
	EO CO2 is engine-out carbon dioxide emissions, in kg/s.	
	• T_{target} is target torque, in N·m.	
	• N is engine speed, in rpm.	
	• $Temp_{Eng}$ is engine temperature, in K.	

To enable this parameter, select **Input engine temperature**.

РМ

EO PM map, f_pm — 2D lookup table

M-by-N matrix

Input Command Setting	Description	
Fuel mass	The engine-out PM emissions are a function of commanded fuel mass an engine speed, where:	
	• EO PM is engine-out PM emissions, in kg/s.	
	ullet F is commanded fuel mass, in mg per injection.	
	• N is engine speed, in rpm.	
Torque	The engine-out PM emissions are a function of target torque and engine speed, $EO\ PM = f(T_{target},\ N)$, where:	
	• EO PM is engine-out PM emissions, in kg/s.	
	• T_{target} is target torque, in N·m.	
	• N is engine speed, in rpm.	

Dependencies

To enable this parameter, clear Input engine temperature.

Plot EO PM map — Plot table

button

Click to plot table.

To enable this parameter, clear **Input engine temperature**.

EO PM map, f_pm_3d — 3D lookup table

M-by-N-by-L array

Input Command Setting	Description	
Fuel mass	The engine-out PM emissions are a function of commanded fuel mass, engine speed, and engine temperature, where:	
	EO PM is engine-out PM emissions, in kg/s.	
	F is commanded fuel mass, in mg per injection.	
	ullet N is engine speed, in rpm.	
	• $Temp_{Eng}$ is engine temperature, in K.	
Torque	The engine-out PM emissions are a function of target torque, engine speed, and engine temperature, $EO\ PM = f(T_{target},\ N,\ T)$, where:	
	• EO PM is engine-out PM emissions, in kg/s.	
	• T_{target} is target torque, in N·m.	
	ullet N is engine speed, in rpm.	
	• $Temp_{Eng}$ is engine temperature, in K.	

Dependencies

To enable this parameter, select **Input engine temperature**.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also

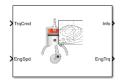
CI Core Engine | Mapped Motor | Mapped SI Engine

Topics

"Generate Mapped CI Engine from a Spreadsheet"

Introduced in R2017a

[&]quot;Engine Calibration Maps"


[&]quot;Model-Based Calibration Toolbox"

Mapped SI Engine

Spark-ignition engine model using lookup tables

Library: Powertrain Blockset / Propulsion / Combustion Engines

Vehicle Dynamics Blockset / Powertrain / Propulsion

Description

The Mapped SI Engine block implements a mapped spark-ignition (SI) engine model using power, air mass flow, fuel flow, exhaust temperature, efficiency, and emission performance lookup tables. You can use the block for:

- Hardware-in-the-loop (HIL) engine control design
- Vehicle-level fuel economy and performance simulations

The block enables you to specify lookup tables for these engine characteristics. The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of commanded torque, T_{cmd} , brake torque, T_{brake} , and engine speed, N. If you select **Input engine temperature**, the tables are also a function of engine temperature, T_{cmp} .

Table	Input Engine Temperature Parameter Setting	
	off	on
Power	$f(T_{cmd}, N)$	$f(T_{cmd}, N, Temp_{Eng})$
Air	$f(T_{brake},N)$	$f(T_{brake}, N, Temp_{Eng})$
Fuel		
Temperature		
Efficiency		
HC		
CO		
NOx		
CO2		
PM		

To bound the Mapped SI Engine block output, the block does not extrapolate the lookup table data.

Virtual Calibration

If you have Model-Based Calibration Toolbox, click **Calibrate Maps** to virtually calibrate the 2D lookup tables using measured data. The dialog box steps through these tasks.

Task	Description		
Import firing data	autoblks/autodemos/pro SiEngineData.xlsx.	ile. For example, open <matlabroot>/toolbox/jectsrc/SIDynamometer/CalMappedEng/</matlabroot>	
	For more information, see "Using Data" (Model-Based Calibration Toolbox).		
	Required Data	Optional Data	
	Engine speed, rpmEngine torque, N·m	 Air mass flow rate, kg/s Brake specific fuel consumption, g/(kW·h) CO2 mass flow rate, kg/s 	
		CO mass flow rate, kg/sExhaust temperature, K	
		Fuel mass flow rate, kg/sHC mass flow rate, kg/s	
		NOx mass flow rate, kg/s Particulate matter mass flow rate, kg/s	
	the fuel. Data should cover the Model-Based Calibration Too maximum torque.	state operating conditions when injectors deliver ne engine speed and torque operating range. Ibox uses the firing data boundary as the ct Edit in Application . The Model-Based tor opens.	
Import non-firing data		om a file. For example, open <matlabroot>/ emos/projectsrc/SIDynamometer/ ata.xlsx.</matlabroot>	
	Engine speed, rpm		
	• Engine torque, N·m		
	9 .	data at steady-state operating conditions when orque points must be less than zero. Non-firing peed only.	
Generate response models	For both firing and non-firing test plans to fit data to Gauss	data, the Model-Based Calibration Toolbox uses sian process models (GPMs).	
	Model-Based Calibration Too	nse model fit, select Edit in Application . The lbox Model Browser opens. For more information, del-Based Calibration Toolbox).	
Generate calibration	Model-Based Calibration Too models and generates calibra	lbox calibrates the firing and non-firing response ated tables.	
	Based Calibration Toolbox CA	ation, select Edit in Application . The Model-AGE Browser opens. For more information, see (Model-Based Calibration Toolbox).	

Task	Description
Update block parameters	Update the block lookup table and breakpoint parameters with the calibration.

Cylinder Air Mass

The block calculates the normalized cylinder air mass using these equations.

$$\begin{split} M_{Nom} &= \frac{P_{std}V_d}{N_{cyl}R_{air}T_{std}} \\ L &= \frac{\left(\frac{60s}{min}\right)Cps\cdot\dot{m}_{air}}{\left(\frac{1000g}{Kg}\right)N_{cyl}\cdot N\cdot M_{Nom}} \end{split}$$

The equations use these variables.

L	Normalized cylinder air mass
M_{Nom}	Nominal engine cylinder air mass at standard temperature and pressure, piston at bottom dead center (BDC) maximum volume, in kg
Cps	Crankshaft revolutions per power stroke, rev/stroke
P_{std}	Standard pressure
T_{std}	Standard temperature
R_{air}	Ideal gas constant for air and burned gas mixture
V_d	Displaced volume
N_{cyl}	Number of engine cylinders
N	Engine speed
\dot{m}_{intk}	Engine air mass flow, in g/s

Turbocharger Lag

To model turbocharger lag, select **Include turbocharger lag effect**. During throttle control, the time constant models the manifold filling and emptying dynamics. When the torque request requires a turbocharger boost, the block uses a larger time constant to represent the turbocharger lag. The block uses these equations.

Dynamic torque	$\frac{dT_{brake}}{dt} = \frac{1}{\tau_{eng}} (T_{stdy} - T_{brake})$	
Boost time constant	$\tau_{bst} = \begin{cases} \tau_{bst, rising} & \text{when } T_{stdy} > T_{brake} \\ \tau_{bst, falling} & \text{when } T_{stdy} \leq T_{brake} \end{cases}$	
Final time constant	$\tau_{eng} = \begin{cases} \tau_{thr} & \text{when } T_{brake} < f_{bst}(N) \\ \tau_{bst} & \text{when } T_{brake} \ge f_{bst}(N) \end{cases}$	

The equations use these variables.

 T_{brake} Brake torque

 T_{stdy} Steady-state target torque

 τ_{bst} Boost time constant

 $au_{bst,rising}$, Boost rising and falling time constant, respectively

 $au_{bst,falling}$

 au_{eng} Final time constant

 au_{thr} Time constant during throttle control

 $f_{bst}(N)$ Boost torque speed line

N Engine speed

Fuel Flow

To calculate the fuel economy for high-fidelity models, the block uses the volumetric fuel flow.

$$Q_{fuel} = \frac{\dot{m}_{fuel}}{\left(\frac{1000kg}{m^3}\right) Sg_{fuel}}$$

The equation uses these variables.

 \dot{m}_{fuel} Fuel mass flow

 Sg_{fuel} Specific gravity of fuel Q_{fuel} Volumetric fuel flow

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Equations
PwrInf o	PwrTrnsfrd — Power transferred between blocks • Positive signals indicate flow into	PwrCrkshft	Crankshaft power	$- au_{eng}\omega$
	blockNegative signals indicate flow out of block			
PwrNotTrnsfrd — Power crossing the block boundary, but not transferred		PwrFuel	Fuel input power	$\dot{m}_{fuel}LHV$
	Positive signals indicate an inputNegative signals indicate a loss	PwrLoss	Power loss	$\tau_{eng}\omega$ – $m_{fuel}LHV$
PwrStored — Stored energy rate of changePositive signals indicate an increase		Not used		
	Negative signals indicate a decrease			

The equations use these variables.

LHV Fuel lower heating value

ω Engine speed, rad/s

 \dot{m}_{fuel} Fuel mass flow

 au_{eng} Fuel mass per injection time constant

Ports

Input

TrqCmd — Commanded torque

scalar

Torque, T_{cmd} , in N·m.

EngSpd — Engine speed

scalar

Engine speed, N, in rpm.

EngTemp — **Engine temperature**

scalar

Engine temperature, $Temp_{Enq}$, in K.

Dependencies

To enable this port, select Input engine temperature.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Units
IntkGassMassFlw	Engine air mass flow output	kg/s
NrmlzdAirChrg	Normalized engine cylinder air mass	N/A
Afr	Air-fuel ratio (AFR)	N/A
FuelMassFlw	Engine fuel flow output	kg/s
FuelVolFlw	Volumetric fuel flow	m ³ /s
ExhManGasTemp	Engine exhaust gas temperature	K
EngTrq	Engine torque output	N·m
EngSpd	Engine speed	rpm

Signal			Description	Units
CrkAng			Engine crankshaft absolute angle $\int\limits_{0}^{(360)Cps} EngSpd\frac{180}{30}d\theta$	degrees crank angle
			where <i>Cps</i> is crankshaft revolutions per power stroke.	
Bsfc			Engine brake-specific fuel consumption (BSFC)	g/kWh
ЕоНС			Engine out hydrocarbon emission mass flow	kg/s
EoC0			Engine out carbon monoxide emission mass flow rate	kg/s
EoN0x			Engine out nitric oxide and nitrogen dioxide emissions mass flow	kg/s
EoC02			Engine out carbon dioxide emission mass flow	kg/s
ЕоРМ			Engine out particulate matter emission mass flow	kg/s
PwrInfo	PwrTrnsfrd	PwrCrkshft	Crankshaft power	W
	PwrNotTrnsfrd	PwrFuel	Fuel input power	W
		PwrLoss	Power loss	W
	PwrStored		Not used	•

EngTrq — Engine brake torque

scalar

Engine brake torque, T_{brake} , in N·m.

Parameters

Block Options

$\label{local_equation} \textbf{Include turbocharger lag effect-Increase time constant}$

off (default)

To model turbocharger lag, select **Include turbocharger lag effect**. During throttle control, the time constant models the manifold filling and emptying dynamics. When the torque request requires a turbocharger boost, the block uses a larger time constant to represent the turbocharger lag. The block uses these equations.

Dynamic torque	$\frac{dT_{brake}}{dt} = \frac{1}{\tau_{ena}} (T_{stdy} - T_{brake})$
	di t _{eng} s

Boost time constant	$\tau_{bst, rising}$ when $T_{stdy} > T_{brake}$	
	$ au_{bst} = \begin{cases} au_{bst, falling} & \text{when } T_{stdy} \le T_{brake} \end{cases}$	
Final time constant	τ_{thr} when $T_{brake} < f_{bst}(N)$	
	$ au_{eng} = \begin{cases} au_{bst} & \text{when } T_{brake} \ge f_{bst}(N) \end{cases}$	

The equations use these variables.

 T_{brake} Brake torque

 T_{stdy} Steady-state target torque

 τ_{bst} Boost time constant

 $\tau_{bst,rising}$, Boost rising and falling time constant, respectively

 $au_{bst,falling}$

 au_{eng} Final time constant

 au_{thr} Time constant during throttle control

 $f_{bst}(N)$ Boost torque speed line

N Engine speed

Dependencies

Selecting Include turbocharger lag effect enables these parameters:

- Boost torque line, f_tbrake_bst
- Time constant below boost line, tau_thr
- · Rising torque boost time constant, tau_bst_rising
- Falling torque boost time constant, tau_bst_falling

Input engine temperature — Create input port

off (default) | on

Select this to create the EngTemp input port.

The block enables you to specify lookup tables for these engine characteristics. The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of commanded torque, T_{cmd} , brake torque, T_{brake} , and engine speed, N. If you select **Input engine temperature**, the tables are also a function of engine temperature, T_{emp} .

Table	Input Engine Tempe	Input Engine Temperature Parameter Setting		
	off	on		
Power	$f(T_{cmd},N)$	$f(T_{cmd}, N, Temp_{Eng})$		
Air	$f(T_{brake},N)$	$f(T_{brake}, N, Temp_{Eng})$		
Fuel				
Temperature				
Efficiency				
HC				
CO				

Table	Input Engine Temperature Parameter Setting		
	off	on	
NOx			
CO2			
PM			

Configuration

Calibrate Maps — Calibrate tables with measured data

selection

If you have Model-Based Calibration Toolbox, click **Calibrate Maps** to virtually calibrate the 2D lookup tables using measured data. The dialog box steps through these tasks.

Task	Description		
Import firing data	Import this loss data from a file. For example, open <matlabroot>/toolbox/autoblks/autodemos/projectsrc/SIDynamometer/CalMappedEng/SiEngineData.xlsx. For more information, see "Using Data" (Model-Based Calibration Toolbox).</matlabroot>		
	Required Data	Optional Data	
	Engine speed, rpm	Air mass flow rate, kg/s	
	• Engine torque, N·m	Brake specific fuel consumption, g/(kW·h)	
		CO2 mass flow rate, kg/s	
		CO mass flow rate, kg/s	
		Exhaust temperature, K	
		Fuel mass flow rate, kg/s	
		HC mass flow rate, kg/s	
		NOx mass flow rate, kg/s	
		Particulate matter mass flow rate, kg/s	
	the fuel. Data should cover to Model-Based Calibration Too maximum torque.	-state operating conditions when injectors deliver the engine speed and torque operating range. olbox uses the firing data boundary as the ect Edit in Application . The Model-Based litor opens.	

Task	Description
Import non-firing data	Import this non-firing data from a file. For example, open <matlabroot>/ toolbox/autoblks/autodemos/projectsrc/SIDynamometer/ CalMappedEng/SiEngineData.xlsx.</matlabroot>
	Engine speed, rpm
	• Engine torque, N·m
	Collect non-firing (motoring) data at steady-state operating conditions when fuel is cut off. All non-firing torque points must be less than zero. Non-firing data is a function of engine speed only.
Generate response models	For both firing and non-firing data, the Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs).
	To assess or adjust the response model fit, select Edit in Application . The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).
Generate calibration	Model-Based Calibration Toolbox calibrates the firing and non-firing response models and generates calibrated tables.
	To assess or adjust the calibration, select Edit in Application . The Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Lookup Tables" (Model-Based Calibration Toolbox).
Update block parameters	Update the block lookup table and breakpoint parameters with the calibration.

To enable this parameter, clear **Input engine temperature**.

Breakpoints for commanded torque, f_tbrake_t_bpt — Breakpoints 1-by-M vector

Breakpoints, in $N \cdot m$.

Breakpoints for engine speed input, f_tbrake_n_bpt — Breakpoints 1-by-N vector

Breakpoints, in rpm.

Breakpoints for temperature input, f_tbrake_engtmp_bpt — Breakpoints [233.15 273.15 373.15] (default) | 1-by-L vector

Breakpoints, in K.

Dependencies

To enable this parameter, select **Input engine temperature**.

Number of cylinders, NCyl — Number 4 (default) | scalar

Number of cylinders.

Crank revolutions per power stroke, Cps — Crank revolutions

2 (default) | scalar

Crank revolutions per power stroke.

Total displaced volume, Vd — Volume

0.0015 (default) | scalar

Volume displaced by engine, in m³.

Fuel lower heating value, Lhv — Heating value

45e6 (default) | scalar

Fuel lower heating value, LHV, in J/kg.

Fuel specific gravity, Sq — Specific gravity

0.745 (default) | scalar

Specific gravity of fuel, Sg_{fuel} , dimensionless.

Ideal gas constant air, Rair — Constant

287 (default) | scalar

Ideal gas constant of air and residual gas entering the engine intake port, in J/(kg*K).

Air standard pressure, Pstd — Pressure

101325 (default) | scalar

Standard air pressure, in Pa.

Air standard temperature, Tstd — Temperature

293.15 (default) | scalar

Standard air temperature, in K.

Boost torque line, f_tbrake_bst — Boost lag

1-by-M vector

Boost torque line, $f_{bst}(N)$, in N·m.

Dependencies

To enable this parameter, select **Include turbocharger lag effect**.

Time constant below boost line — Time constant below

0.2 (default) | scalar

Time constant below boost line, τ_{thr} , in s.

Dependencies

To enable this parameter, select Include turbocharger lag effect.

Rising torque boost time constant, tau_bst_rising — Rising time constant

1.5 (default) | scalar

Rising torque boost time constant, $\tau_{bst,rising}$, in s.

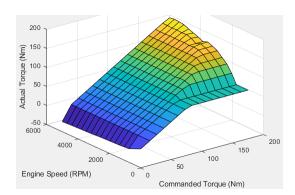
To enable this parameter, select Include turbocharger lag effect.

Falling torque boost time constant, tau_bst_falling — Falling time constant $1 (default) \mid scalar$

Falling torque boost time constant, $\tau_{bst,falling}$, in s.

Dependencies

To enable this parameter, select **Include turbocharger lag effect**.


Power

Brake torque map, f_tbrake — 2D lookup table

M-by-N matrix

The engine torque lookup table is a function of commanded engine torque and engine speed, $T = f(T_{cmd}, N)$, where:

- T is engine torque, in N·m.
- T_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.

Plot brake torque map — Plot table

button

Click to plot table.

Dependencies

To enable this parameter, clear **Input engine temperature**.

Brake torque map, f_tbrake_3d — 3D lookup table

M-by-N-by-L array

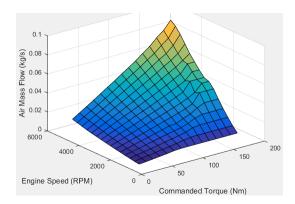
The engine torque lookup table is a function of commanded engine torque, engine speed, and engine temperature, $T = f(T_{cmd}, N, Temp_{End})$, where:

- T is engine torque, in N·m.
- T_{cmd} is commanded engine torque, in N·m.

- *N* is engine speed, in rpm.
- $Temp_{Eng}$ is engine temperature, in K.

Dependencies

To enable this parameter, select **Input engine temperature**.


Air

Air mass flow map, f_air — 2D lookup table

M-by-N matrix

The engine air mass flow lookup table is a function of commanded engine torque and engine speed, $\dot{m}_{intk} = f(T_{cmd}, N)$, where:

- \dot{m}_{intk} is engine air mass flow, in kg/s.
- T_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, clear **Input engine temperature**.

Plot air mass map — Plot table

button

Click to plot table.

Dependencies

To enable this parameter, clear **Input engine temperature**.

Air mass flow map, f_air_3d — 3D lookup table

M-by-N-by-L array

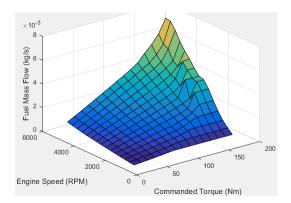
The engine air mass flow lookup table is a function of commanded engine torque, engine speed, and engine temperature, $\dot{m}_{intk} = f(T_{cmd}, N, Temp_{End})$, where:

- \dot{m}_{intk} is engine air mass flow, in kg/s.
- T_{cmd} is commanded engine torque, in N·m.

- *N* is engine speed, in rpm.
- $Temp_{Eng}$ is engine temperature, in K.

Dependencies

To enable this parameter, select **Input engine temperature**.


Fuel

Fuel flow map, f_fuel — 2D lookup table

M-by-N matrix

The engine fuel mass flow lookup table is a function of commanded engine torque and engine speed, $MassFlow = f(T_{cmd}, N)$, where:

- *MassFlow* is engine fuel mass flow, in kg/s.
- T_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, clear **Input engine temperature**.

Plot fuel flow map — Plot table

button

Click to plot table.

Dependencies

To enable this parameter, clear **Input engine temperature**.

Fuel flow map, f_fuel_3d — 3D lookup table

M-by-N-by-L array

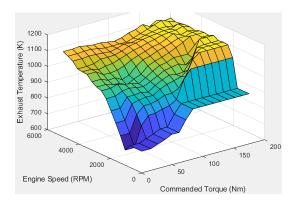
The engine fuel mass flow lookup table is a function of commanded engine torque, engine speed, and engine temperature, $MassFlow = f(T_{cmd}, N, Temp_{End})$, where:

- *MassFlow* is engine fuel mass flow, in kg/s.
- T_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.

• $Temp_{Eng}$ is engine temperature, in K.

Dependencies

To enable this parameter, select **Input engine temperature**.


Temperature

Exhaust temperature map, $f_{\text{texh}} - 2D$ lookup table

M-by-N matrix

The engine exhaust temperature lookup table is a function of commanded engine torque and engine speed, $T_{exh} = f(T_{cmd}, N)$, where:

- T_{exh} is exhaust temperature, in K.
- T_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, clear **Input engine temperature**.

Plot exhaust temperature map — Plot table

button

Click to plot table.

Dependencies

To enable this parameter, clear **Input engine temperature**.

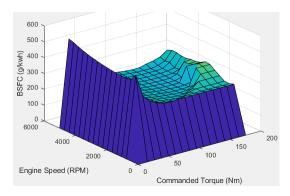
Exhaust temperature map, f_texh_3d — 3D lookup table array

The engine exhaust temperature lookup table is a function of commanded engine torque, engine speed, and engine temperature, $T_{exh} = f(T_{cmd}, N, Temp_{Eng})$, where:

- T_{exh} is exhaust temperature, in K.
- T_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.
- $Temp_{Eng}$ is engine temperature, in K.

Dependencies

To enable this parameter, select **Input engine temperature**.


Efficiency

BSFC map, f_eff — 2D lookup table

M-by-N-by-L array

The brake-specific fuel consumption (BSFC) efficiency is a function of commanded engine torque and engine speed, $BSFC = f(T_{cmd}, N)$, where:

- *BSFC* is BSFC, in g/kWh.
- T_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, clear **Input engine temperature**.

Plot BSFC map — Plot table

button

Click to plot table.

Dependencies

To enable this parameter, clear **Input engine temperature**.

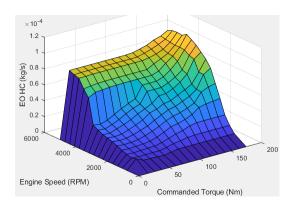
BSFC map, f_eff_3d — 3D lookup table

M-by-N-by-L array

The brake-specific fuel consumption (BSFC) efficiency is a function of commanded engine torque, engine speed, and engine temperature, $BSFC = f(T_{cmd}, N, Temp_{Eng})$, where:

- BSFC is BSFC, in g/kWh.
- T_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.
- $Temp_{Enq}$ is engine temperature, in K.

Dependencies


HC

EO HC map, f_hc — 2D lookup table

M-by-N matrix

The engine-out hydrocarbon emissions are a function of commanded engine torque and engine speed, $EO\ HC = f(T_{cmd}, N)$, where:

- *EO HC* is engine-out hydrocarbon emissions, in kg/s.
- T_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, clear **Input engine temperature**.

Plot EO HC map — Plot table

button

Click to plot table.

Dependencies

To enable this parameter, clear **Input engine temperature**.

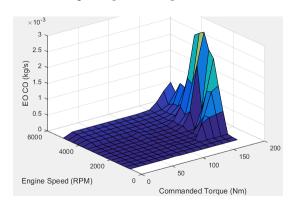
EO HC map, f_hc_3d — 3D lookup table

M-by-N-by-L array

The engine-out hydrocarbon emissions are a function of commanded engine torque, engine speed, and engine temperature, $EO\ HC = f(T_{cmd},\ N,\ Temp_{Eng})$, where:

- *EO HC* is engine-out hydrocarbon emissions, in kg/s.
- T_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.
- $Temp_{Eng}$ is engine temperature, in K.

Dependencies


CO

E0 C0 map, f_co — 2D lookup table

M-by-N matrix

The engine-out carbon monoxide emissions are a function of commanded engine torque and engine speed, $EO\ CO = f(T_{cmd},\ N)$, where:

- *EO CO* is engine-out carbon monoxide emissions, in kg/s.
- T_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, clear **Input engine temperature**.

Plot E0 C0 map — Plot table

button

Click to plot table.

Dependencies

To enable this parameter, clear **Input engine temperature**.

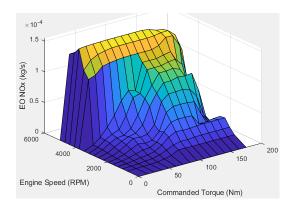
EO HC map, f_hc_3d — 3D lookup table

M-by-N-by-L array

The engine-out hydrocarbon emissions are a function of commanded engine torque, engine speed, and engine temperature, $EO\ HC = f(T_{cmd},\ N,\ Temp_{Eng})$, where:

- *EO HC* is engine-out hydrocarbon emissions, in kg/s.
- T_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.
- $Temp_{Eng}$ is engine temperature, in K.

Dependencies


NOx

E0 N0x map, $f_{nox} - 2D$ lookup table

M-by-N matrix

The engine-out nitric oxide and nitrogen dioxide emissions are a function of commanded engine torque and engine speed, $EO\ NOx = f(T_{cmd}, N)$, where:

- EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in kg/s.
- T_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, clear **Input engine temperature**.

Plot E0 N0x map — Plot table

button

Click to plot table.

Dependencies

To enable this parameter, clear **Input engine temperature**.

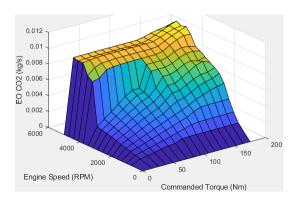
E0 N0x map, $f_{nox_3d} - 3D$ lookup table

M-by-N-by-L array

The engine-out nitric oxide and nitrogen dioxide emissions are a function of commanded engine torque, engine speed, and engine temperature, $EO\ NOx = f(T_{cmd},\ N,\ Temp_{Eng})$, where:

- EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in kg/s.
- T_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.
- $Temp_{Eng}$ is engine temperature, in K.

Dependencies


CO2

E0 C02 map, f_co2 — 2D lookup table

M-by-N matrix

The engine-out carbon dioxide emissions are a function of commanded engine torque and engine speed, $EO\ CO2 = f(T_{cmd},\ N)$, where:

- EO CO2 is engine-out carbon dioxide emissions, in kg/s.
- T_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, clear **Input engine temperature**.

Plot CO2 map — Plot table

button

Click to plot table.

Dependencies

To enable this parameter, clear **Input engine temperature**.

E0 C02 map, f_co2_3d — 3D lookup table

M-by-N-by-L array

The engine-out carbon dioxide emissions are a function of commanded engine torque, engine speed, and engine temperature, $EO\ CO2 = f(T_{cmd},\ N,\ Temp_{Eng})$, where:

- *EO CO2* is engine-out carbon dioxide emissions, in kg/s.
- T_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.
- $Temp_{Eng}$ is engine temperature, in K.

Dependencies

РМ

EO PM map, f_pm — 2D lookup table

M-by-N matrix

The engine-out particulate matter emissions are a function of commanded engine torque and engine speed, where:

- EO PM is engine-out PM emissions, in kg/s.
- T_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.

Dependencies

To enable this parameter, clear **Input engine temperature**.

Plot EO PM map — Plot table

button

Click to plot table.

Dependencies

To enable this parameter, clear **Input engine temperature**.

EO PM map, f_pm_3d — 3D lookup table

M-by-N-by-L array

The engine-out particulate matter emissions are a function of commanded engine torque, engine speed, and engine temperature, where:

- *EO PM* is engine-out PM emissions, in kg/s.
- T_{cmd} is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.
- $Temp_{Enq}$ is engine temperature, in K.

Dependencies

To enable this parameter, select **Input engine temperature**.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder $^{\text{\tiny TM}}$.

See Also

Mapped CI Engine | Mapped Motor | SI Core Engine

Topics

- "Generate Mapped SI Engine from a Spreadsheet"
- "Engine Calibration Maps"
- "Model-Based Calibration Toolbox"

Introduced in R2017a

Electric Motor, Converters, Inverter Blocks

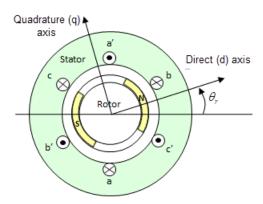
Interior PMSM

Three-phase interior permanent magnet synchronous motor with sinusoidal back electromotive force Library: Powertrain Blockset / Propulsion / Electric Motors

Motor Control Blockset / Electrical Systems / Motors

Description

The Interior PMSM block implements a three-phase interior permanent magnet synchronous motor (PMSM) with sinusoidal back electromotive force. The block uses the three-phase input voltages to regulate the individual phase currents, allowing control of the motor torque or speed.


By default, the block sets the **Simulation type** parameter to Continuous to use a continuous sample time during simulation. If you want to generate code for fixed-step double- and singleprecision targets, considering setting the parameter to Discrete. Then specify a Sample Time, Ts parameter.

On the **Parameters** tab, if you select Back-emf, the block implements this equation to calculate the permanent flux linkage constant.

$$\lambda_{pm} = \frac{1}{\sqrt{3}} \cdot \frac{K_e}{1000P} \cdot \frac{60}{2\pi}$$

Motor Construction

This figure shows the motor construction with a single pole pair on the motor.

The motor magnetic field due to the permanent magnets creates a sinusoidal rate of change of flux with motor angle.

For the axes convention, the a-phase and permanent magnet fluxes are aligned when motor angle θ_r is zero.

Three-Phase Sinusoidal Model Electrical System

The block implements these equations, expressed in the motor flux reference frame (dq frame). All quantities in the motor reference frame are referred to the stator.

$$\begin{split} &\omega_e = P\omega_m \\ &\frac{d}{dt}i_d = \frac{1}{L_d}v_d - \frac{R}{L_d}i_d + \frac{L_q}{L_d}P\omega_m i_q \\ &\frac{d}{dt}i_q = \frac{1}{L_q}v_q - \frac{R}{L_q}i_q - \frac{L_d}{L_q}P\omega_m i_d - \frac{\lambda_{pm}P\omega_m}{L_q} \\ &T_e = 1.5P[\lambda_{pm}i_q + (L_d - L_q)i_di_q] \end{split}$$

The L_q and L_d inductances represent the relation between the phase inductance and the motor position due to the saliency of the motor.

The equations use these variables.

L_q , L_d	q- and d-axis inductances
R	Resistance of the stator windings
i_q , i_d	q- and d-axis currents
v_q , v_d	q- and d-axis voltages
ω_m	Angular mechanical velocity of the motor
ω_e	Angular electrical velocity of the motor
λ_{pm}	Permanent flux linkage constant
K_e	Back electromotive force (EMF)
P	Number of pole pairs
T_e	Electromagnetic torque
Θ_e	Electrical angle

Mechanical System

The motor angular velocity is given by:

$$\frac{d}{dt}\omega_m = \frac{1}{J}(T_e - T_f - F\omega_m - T_m)$$
$$\frac{d\theta_m}{dt} = \omega_m$$

The equations use these variables.

J	Combined inertia of motor and load
F	Combined viscous friction of motor and load
θ_m	Motor mechanical angular position
T_m	Motor shaft torque
T_e	Electromagnetic torque

 T_f Motor shaft static friction torque

 ω_m Angular mechanical velocity of the motor

Power Accounting

For the power accounting, the block implements these equations.

Bus Sig	jnal		Description	Variab le	Equations
PwrIn fo	PwrTrnsfrd — Power transferred between blocks	PwrMtr	Mechanical power	P_{mot}	$P_{mot} = -\omega_m T_e$
	Positive signals indicate flow into block	PwrBus	Electrical power	P_{bus}	$P_{bus} = v_{an}i_a + v_{bn}i_b + v_{cn}i_c$
	 Negative signals indicate flow out of block 				
	PwrNotTrnsfrd — Power crossing the block boundary, but not transferred	PwrElec Loss	Resistive power loss	P_{elec}	$P_{elec} = -\frac{3}{2}(R_s i_{sd}^2 + R_s i_{sq}^2)$
	 Positive signals indicate an input Negative signals indicate a loss 	PwrMech Loss	Mechanical power loss	P_{mech}	When Port Configuration is set to Torque: $P_{mech} = -\left(\omega_m^2 F + \omega_m T_f\right)$ When Port Configuration is set to Speed: $P_{mech} = 0$
	 PwrStored — Stored energy rate of change Positive signals indicate an increase Negative signals indicate a decrease 	PwrMtrS tored	Stored motor power	P_{str}	$P_{str} = P_{bus} + P_{mot} + P_{elec} + P_{mech}$

The equations use these variables.

 $R_{\rm s}$ Stator resistance

 i_a, i_b, i_c Stator phase a, b, and c current i_{sq}, i_{sd} Stator q- and d-axis currents v_{an}, v_{bn}, v_{cn} Stator phase a, b, and c voltage

 ω_m Angular mechanical velocity of the rotor F Combined motor and load viscous damping

 T_e Electromagnetic torque

 T_f Combined motor and load friction torque

Ports

Input

LdTrq — Motor shaft torque

scalar

Motor shaft input torque, T_m , in N·m.

Dependencies

To create this port, select Torque for the **Port Configuration** parameter.

Spd — Motor shaft speed

scalar

Angular velocity of the motor, ω_m , in rad/s.

Dependencies

To create this port, select **Speed** for the **Port Configuration** parameter.

PhaseVolt — Stator terminal voltages

1-by-3 array

Stator terminal voltages, V_a , V_b , and V_c , in V.

Dependencies

To create this port, select **Speed** or **Torque** for the **Port Configuration** parameter.

Output

Info — Bus signal

bus

The bus signal contains these block calculations.

Signal	Description	Variable	Units
IaStator	Stator phase current A	i_a	A
IbStator	Stator phase current B	i_b	A
IcStator	Stator phase current C	i_c	A
IdSync	Direct axis current	i_d	A
IqSync	Quadrature axis current	i_q	A
VdSync	Direct axis voltage	ν_d	V
VqSync	Quadrature axis voltage	ν_q	V
MtrSpd	Angular mechanical velocity of the motor	ω_m	rad/s

Signal			Description	Variable	Units
MtrPos			Motor mechanical angular position	θ_m	rad
MtrTrq			Electromagnetic torque	T_e	N·m
PwrInfo	PwrTrnsfrd	PwrMtr	Mechanical power	P_{mot}	W
		PwrBus	Electrical power	P_{bus}	W
	PwrNotTrns frd	PwrElecL oss	Resistive power loss	P_{elec}	W
		PwrMechL oss	Mechanical power loss	P_{mech}	W
	PwrStored	PwrMtrSt ored	Stored motor power	P_{str}	W

PhaseCurr — Phase a, b, c current

1-by-3 array

Phase a, b, c current, i_a , i_b , and i_c , in A.

MtrTrq — Motor torque

scalar

Motor torque, T_{mtr} , in N·m.

Dependencies

To create this port, select **Speed** for the **Mechanical input configuration** parameter.

MtrSpd — Motor speed

scalar

Angular speed of the motor, ω_{mtr} , in rad/s.

Dependencies

To create this port, select Torque for the **Mechanical input configuration** parameter.

Parameters

Block Options

Mechanical input configuration — Select port configuration

Torque (default) | Speed

This table summarizes the port configurations.

Port Configuration	ation Creates Input Port Creates Output Port	
Torque	LdTrq	MtrSpd
Speed	Spd	MtrTrq

Simulation type — Select simulation type

Continuous (default) | Discrete

By default, the block uses a continuous sample time during simulation. If you want to generate code for single-precision targets, considering setting the parameter to Discrete.

Dependencies

Setting **Simulation type** to **Discrete** creates the **Sample Time**, **Ts** parameter.

Sample Time (Ts) — Sample time for discrete integration scalar

Integration sample time for discrete simulation, in s.

Dependencies

Setting **Simulation type** to **Discrete** creates the **Sample Time**, **Ts** parameter.

Parameters

Number of pole pairs (P) — Pole pairs scalar

Motor pole pairs, *P*.

Stator phase resistance per phase (Rs) — Resistance scalar

Stator phase resistance per phase, R_s , in ohm.

Stator d-axis and q-axis inductance (Ldq) — Inductance $\mbox{\ensuremath{\mathsf{vector}}}$

Stator d-axis and q-axis inductance, L_d , L_a , in H.

Permanent flux linkage constant (lambda_pm) — Flux scalar

Permanent flux linkage constant, λ_{nm} , in Wb.

Back-emf constant (Ke) — Back electromotive force scalar

Back electromotive force, EMF, K_e , in Vpk_LL/krpm. Vpk_LL is the peak voltage line-to-line measurement.

To calculate the permanent flux linkage constant, the block implements this equation.

$$\lambda_{pm} = \frac{1}{\sqrt{3}} \cdot \frac{K_e}{1000P} \cdot \frac{60}{2\pi}$$

Physical inertia, viscous damping, and static friction (mechanical) — Inertia, damping, friction

vector

Mechanical properties of the motor:

• Inertia, *J*, in kgm²

- Viscous damping, F, in N·m/(rad/s)
- Static friction, T_f , in N·m

Dependencies

To enable this parameter, select the Torque configuration parameter.

Initial Values

Initial d-axis and q-axis current (idq0) — Current vector

Initial q- and d-axis currents, i_a , i_d , in A.

Initial mechanical position (theta_init) — Angle scalar

Initial motor angular position, θ_{m0} , in rad.

Initial mechanical speed (omega_init) — Speed scalar

Initial angular velocity of the motor, ω_{m0} , in rad/s.

Dependencies

To enable this parameter, select the Torque configuration parameter.

References

- [1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
- [2] Anderson, P. M. Analysis of Faulted Power Systems. Hoboken, NJ: Wiley-IEEE Press, 1995.

Extended Capabilities

C/C++ Code Generation

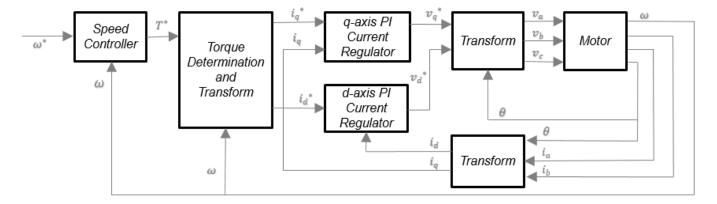
Generate C and C++ code using Simulink® Coder™.

See Also

Flux-Based PMSM | Induction Motor | Interior PM Controller | Mapped Motor | Surface Mount PMSM

Introduced in R2017a

Interior PM Controller


Torque-based, field-oriented controller for an internal permanent magnet synchronous motor **Library:** Powertrain Blockset / Propulsion / Electric Motor Controllers

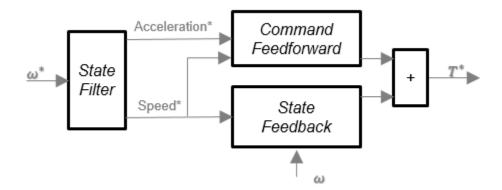
Description

The Interior PM Controller block implements a torque-based, field-oriented controller for an internal permanent magnet synchronous motor (PMSM) with an optional outer-loop speed controller. The internal torque control implements strategies for achieving maximum torque per ampere (MTPA) and weakening the magnetic flux. You can specify either the speed or torque control type.

The Interior PM Controller implements equations for speed control, torque determination, regulators, transforms, and motors.

The figure illustrates the information flow in the block.

The block implements equations that use these variables.


ω	Rotor speed
ω^*	Rotor speed command
<i>T</i> *	Torque command
i_d	d-axis current
$i*_d$	d-axis current command
i_q	q-axis current
i^*_a	q-axis current command

v_d ,	d-axis voltage
v^*_d v_q	d-axis voltage command q-axis voltage
v^*_q	q-axis voltage command
v_a , v_b , v_c	Stator phase a, b, c voltages
i_a , i_b , i_c	Stator phase a, b, c currents

Speed Controller

To implement the speed controller, select the **Control Type** parameter **Speed Control**. If you select the **Control Type** parameter **Torque Control**, the block does not implement the speed controller.

The speed controller determines the torque command by implementing a state filter, and calculating the feedforward and feedback commands. If you do not implement the speed controller, input a torque command to the Interior PM Controller block.

State Filter

The state filter is a low-pass filter that generates the acceleration command based on the speed command. On the **Speed Controller** tab:

- To make the speed-command lag time negligible, specify a Bandwidth of the state filter parameter.
- To calculate a Speed time constant, Ksf gain based on the state filter bandwidth, select Calculate Speed Regulator Gains.

The discrete form of characteristic equation is given by:

$$z + K_{sf}T_{sm} - 1$$

The filter calculates the gain using this equation.

$$K_{sf} = \frac{1 - \exp\left(-T_{sm} 2\pi E V_{sf}\right)}{T_{sm}}$$

The equations use these variables.

 EV_{sf} Bandwidth of the speed command filter

 T_{sm} Motion controller sample time K_{sf} Speed regulator time constant

State Feedback

To generate the state feedback torque, the block uses the filtered speed error signal from the state filter. The feedback torque calculation also requires gains for speed regulator.

On the **Speed Controller** tab, select **Calculate Speed Regulator Gains** to calculate:

- Proportional gain, ba
- · Angular gain, Ksa
- · Rotational gain, Kisa

For the gain calculations, the block uses the inertia from the **Physical inertia**, **viscous damping**, **static friction** parameter value on the **Motor Parameters** tab.

The gains for the state feedback are calculated using these equations.

Calculation	Equations
Discrete forms of characteristic equation	$z^{3} + \frac{\left(-3J_{p} + T_{s}b_{a} + T_{s}^{2}K_{sa} + T_{s}^{3}K_{isa}\right)}{J_{p}}z^{2} + \frac{\left(3J_{p} - 2T_{s}b_{a} - T_{s}^{2}K_{sa}\right)}{J_{p}}z + \frac{-J_{p} + T_{s}b_{a}}{J_{p}}$ $(z - p_{1})(z - p_{2})(z - p_{3}) = z^{3} + (p_{1} + p_{2} + p_{3})z^{2} + (p_{1}p_{2} + p_{2}p_{3} + p_{1}3)z^{2}$ $- p_{1}p_{2}p_{3}$
Speed regulator proportional gain	$b_a = \frac{J_p - J_p p_1 p_2 p_3}{T_{SM}}$
Speed regulator integral gain	$K_{sa} = \frac{J_p(p_1p_2 + p_2p_3 + p_3p_1) - 3J_p + 2b_aT_{sm}}{T_{sm}^2}$
Speed regulator double integral gain	$K_{isa} = \frac{-J_p(p_1 + p_2 + p_3) + 3J_p - b_a T_{sm} - K_{sa} T_{sm}^2}{T_{sm}^3}$

The equations use these variables.

P	Mo	tor po	le pairs	;
_	_	_	_	

 $egin{aligned} b_a & ext{Speed regulator proportional gain} \ K_{sa} & ext{Speed regulator integral gain} \end{aligned}$

 K_{isa} Speed regulator double integral gain

 J_p Motor inertia

 T_{sm} Motion controller sample time

Command Feedforward

To generate the state feedforward torque, the block uses the filtered speed and acceleration from the state filter. Also, the feedforward torque calculation uses the inertia, viscous damping, and static friction. To achieve zero tracking error, the torque command is the sum of the feedforward and feedback torque commands.

Selecting **Calculate Speed Regulator Gains** on the **Speed Controller** tab updates the inertia, viscous damping, and static friction with the **Physical inertia**, **viscous damping**, **static friction** parameter values on the **Motor Parameters** tab.

The feedforward torque command uses this equation.

$$T_{cmd_ff} = \quad J_p \dot{\omega}_m + F_v \omega_m + F_s \, \frac{\omega_m}{|\omega_m|} \label{eq:Tcmd_ff}$$

where:

J_p	Motor inertia
T_{cmd_ff}	Torque command feedforward
F_s	Static friction torque constant
$F_{ m u}$	Viscous friction torque constant
F_s	Static friction torque constant
ω_m	Rotor speed

Torque Determination

The block uses a maximum torque per ampere (MTPA) trajectory to calculate the base speed and the current commands. The available bus voltage determines the base speed. The direct (d) and quadrature (q) permanent magnet (PM) determines the induced voltage.

Calculation	Equations
Electrical base speed transition into field weakening	$\omega_{base} = \frac{v_{max}}{\sqrt{(L_{q}i_{q})^{2} + (L_{d}i_{d} + \lambda_{pm})^{2}}}$
d-axis voltage	$v_d = -\omega_e L_q i_{q_{max}}$
q-axis voltage	$v_q = \omega_e (L_d i_{d_max} + \lambda_{pm})$
Maximum phase current	$i_{max}^2 = i_{d_{\max}}^2 + i_{q_{\max}}^2$
Maximum line to neutral voltage	$v_{max} = \frac{v_{bus}}{\sqrt{3}}$
d-axis phase current MTPA table	$I_m = \frac{2T_{max}}{3P\lambda_{pm}}$
	$i_{d_{mtpa}} = \frac{\lambda_{pm}}{4(L_q - L_d)} - \sqrt{\frac{\lambda_{pm}^2}{16(L_q - L_d)^2} + \frac{I_m^2}{2}}$
q-axis phase current MTPA table	$i_{q_mtpa} = \sqrt{I_m^2 - \left(i_{mtpa}\right)^2}$
Torque MTPA breakpoints	$T_{mtpa} = \frac{3}{2}P(\lambda_{pm}i_q + (L_d - L_q)i_di_q)$

Calculation	Equations
Field weakening, using the speed-based voltage limits	$\left(L_q i_q\right)^2 + \left(L_d i_d + \lambda_{pm}\right)^2 \le \frac{v_{max}^2}{\omega_e^2}$
	$i_q = \sqrt{i_{max}^2 - i_d^2}$
	$\left \begin{pmatrix} L_d^2 - L_q^2 \end{pmatrix} i_d^2 + 2\lambda_{pm} L_d i_d + \lambda_{pm} + L_q^2 i_{max}^2 - \frac{v_{max}^2}{\omega_e^2} = 0 \right $
	$i_{dfw} = \begin{array}{ccccccccccccccccccccccccccccccccccc$
	$T_{fw} = \frac{3}{2}P(\lambda_{pm}i_{qfw} + (L_d - L_q)i_{dfw}i_{qfw})$
Current command	$\begin{aligned} If \omega_e &\leq & \omega_{base} \\ & i_{dref} = & i_{dmtpa}(T_{ref}) \end{aligned}$
	$i_{qref} = i_{q_{mtpa}}(T_{ref})$
	Else
	$i_{dfw} = \max(i_{dfw}, -i_{max})$
	$i_{qfw} = \sqrt{i_{max}^2 - i_d^2}$
	If $T_{fw} < T_{ref}$
	$i_{dref} = i_{dfw}$
	$i_{qref} = i_{qfw}$ Else
	$i_{dref} = i_{dfw}$
	$i_{qref} = \frac{T_{ref}}{\frac{3}{2}P(\lambda_{pm} + (L_d - L_q)i_{dfw})}$
	End End

The equations use these variables.

i_{max}	Maximum phase current
i_d	d-axis current
i_q	q-axis current
i_{d_max}	Maximum d-axis phase current
i_{q_max}	Maximum q-axis phase current
i_{d_mtpa}	d-axis phase current MTPA table
i_{q_mtpa}	q-axis phase current MTPA table
I_m	Estimated maximum current
i_{dfw}	d-axis field weakening current
i_{qfw}	q-axis field weakening current

ω_e	Rotor electrical speed
λ_{pm}	Permanent magnet flux linkage
v_d	d-axis voltage
v_q	q-axis voltage
v_{max}	Maximum line to neutral voltage
v_{bus}	DC bus voltage
L_d	d-axis winding inductance
L_q	q-axis winding inductance
P	Motor pole pairs
T_{fw}	Field weakening torque
T_{mtpa}	Torque MTPA breakpoints

Current Regulators

The block regulates the current with an anti-windup feature. Classic proportional-integrator (PI) current regulators do not consider the d-axis and q-axis coupling or the back-electromagnetic force (EMF) coupling. As a result, transient performance deteriorates. To account for the coupling, the block implements the complex vector current regulator (CVCR) in the scalar format of the rotor reference frame. The CVCR decouples:

- · d-axis and q-axis current cross-coupling
- · Back-EMF cross-coupling

The current frequency response is a first-order system, with a bandwidth of $EV_{current}$.

The block implements these equations.

Calculation	Equations
Motor voltage, in the rotor reference frame	$L_{d} \frac{di_{d}}{dt} = v_{d} - R_{s}i_{d} + p\omega_{m}L_{q}i_{q}$ $L_{d} \frac{di_{q}}{dt} = v_{q} - R_{s}i_{q} - p\omega_{m}L_{d}i_{d} - p\omega_{m}\lambda_{pm}$
Current regulator gains	$\begin{aligned} \omega_b &= 2\pi E V_{current} \\ K_{p_d} &= L_d \omega_b \\ K_{p_q} &= L_q \omega_b \\ K_i &= R_s \omega_b \end{aligned}$
	$K_{p_d} = L_d \omega_b$
	$K_{p_{-}q} = L_q \omega_b$
	$K_i = R_s \omega_b$
Transfer functions	$\frac{i_d}{i_{dref}} = \frac{\omega_b}{s + \omega_b}$
	$\frac{i_q}{i_{qref}} = \frac{\omega_b}{s + \omega_b}$

The equations use these variables.

 $EV_{current}$ Current regulator bandwidth

 i_d d-axis current

i_q	q-axis current
K_{p_d}	Current regulator d-axis gain
K_{p_q}	Current regulator q-axis gain
L_d	d-axis winding inductance
L_q	q-axis winding inductance
R_s	Stator phase winding resistance
ω_m	Rotor speed
v_d	d-axis voltage
v_q	q-axis voltage
λ_{pm}	Permanent magnet flux linkage
P	Motor pole pairs

Transforms

To calculate the voltages and currents in balanced three-phase (a,b) quantities, quadrature two-phase (α,β) quantities, and rotating (d,q) reference frames, the block uses the Clarke and Park Transforms.

In the transform equations.

$$\omega_e = P\omega_m$$

$$\frac{d\theta_e}{dt} = \omega_e$$

Transform	Description	Equations
Clarke	Converts balanced three-phase quantities (a, b) into balanced two-phase quadrature quantities (α, β) .	$x_{\alpha} = \frac{2}{3}x_a - \frac{1}{3}x_b - \frac{1}{3}x_c$ $x_{\beta} = \frac{\sqrt{3}}{2}x_b - \frac{\sqrt{3}}{2}x_c$
Park	Converts balanced two-phase orthogonal stationary quantities (α, β) into an orthogonal rotating reference frame (d, q) .	$x_d = x_\alpha \cos \theta_e + x_\beta \sin \theta_e$ $x_q = -x_\alpha \sin \theta_e + x_\beta \cos \theta_e$
Inverse Clarke	Converts balanced two-phase quadrature quantities (α, β) into balanced three-phase quantities (a, b) .	$x_a = x_a$ $x_b = -\frac{1}{2}x_\alpha + \frac{\sqrt{3}}{2}x_\beta$ $x_c = -\frac{1}{2}x_\alpha - \frac{\sqrt{3}}{2}x_\beta$
Inverse Park	Converts an orthogonal rotating reference frame (d, q) into balanced two-phase orthogonal stationary quantities (α, β) .	$x_{\alpha} = x_{d}\cos\theta_{e} - x_{q}\sin\theta_{e}$ $x_{\beta} = x_{d}\sin\theta_{e} + x_{q}\cos\theta_{e}$

The transforms use these variables.

ω_m	Rotor speed
P	Motor pole pairs

ω_e	Rotor electrical speed
Θ_e	Rotor electrical angle
X	Phase current or voltage

Motor

The block uses the phase currents and phase voltages to estimate the DC bus current. Positive current indicates battery discharge. Negative current indicates battery charge. The block uses these equations.

Load power	$Ld_{Pwr} = v_a i_a + v_b i_b + v_c i_c$
Source power	$Src_{Pwr} = Ld_{Pwr} + Pwr_{Loss}$
DC bus current	$i_{bus} = \frac{Srcp_{wr}}{v_{bus}}$
Estimated rotor torque	$MtrTrq_{est} = 1.5P[\lambda i_q + (L_d - L_q)i_d i_q]$
Power loss for single efficiency source to load	$Pwr_{Loss} = \frac{100 - Eff}{Eff} \cdot Ld_{Pwr}$
Power loss for single efficiency load to source	$Pwr_{Loss} = \frac{100 - Eff}{100} \cdot Ld_{Pwr} $
Power loss for tabulated efficiency	$Pwr_{Loss} = f(\omega_m, MtrTrq_{est})$

The equations use these variables.

v_a , v_b , v_c	Stator phase a, b, c voltages
v_{bus}	Estimated DC bus voltage
i_a , i_b , i_c	Stator phase a, b, c currents
i_{bus}	Estimated DC bus current
Eff	Overall inverter efficiency
ω_m	Rotor mechanical speed
L_q	q-axis winding inductance
L_d	d-axis winding inductance
i_q	q-axis current
i_d	d-axis current
λ	Permanent magnet flux linkage
P	Motor pole pairs

Electrical Losses

To specify the electrical losses, on the **Electrical Losses** tab, for **Parameterize losses by**, select one of these options.

Setting	Block Implementation
Single efficiency	Electrical loss calculated using a constant value for inverter
measurement	efficiency.

Setting	Block Implementation
Tabulated loss data	Electrical loss calculated as a function of motor speeds and load torques.
Tabulated efficiency data	Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques.
	Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.
	Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.
	Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions.
	Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Ports

Input

SpdReq — Rotor speed command

scalar

Rotor speed command, ω^*_m , in rad/s.

Dependencies

To create this port, select Speed Control for the Control Type parameter.

TrqCmd — Torque command

scalar

Torque command, T^* , in N·m.

Dependencies

To create this port, select Torque Control for the Control Type parameter.

BusVolt — **DC** bus voltage

scalar

DC bus voltage, v_{bus} , in V.

PhaseCurrA — Current

scalar

Stator current phase a, i_a , in A.

PhaseCurrB — Current

scalar

Stator current phase b, i_b , in A.

SpdFdbk — Rotor speed

scalar

Rotor speed, ω_m , in rad/s.

PosFdbk — Rotor electrical angle

scalar

Rotor electrical angle, Θ_m , in rad.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Units
SrcPwr	Source power	W
LdPwr	Load power	W
PwrLoss	Power loss	W
MtrTrqEst	Estimated motor torque	N·m

BusCurr — **Bus current**

scalar

Estimated DC bus current, i_{bus} , in A.

PhaseVolt — Stator terminal voltages

array

Stator terminal voltages, V_a , V_b , and V_c , in V.

Parameters

Block Options

Control Type — Select control

Speed Control (default) | Torque Control

If you select Torque Control, the block does not implement the speed controller.

This table summarizes the port configurations.

Port Configuration	Creates Ports
Speed Control	SpdReq

Port Configuration	Creates Ports
Torque Control	TrqCmd

Motor Parameters

Stator resistance, Rs — Resistance

0.02 (default) | scalar

Stator phase winding resistance, R_s , in ohm.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive		
	Parameter Tab		
Stator resistance, Rs	D and Q axis integral gain, Ki	Current Controller	

D-axis inductance, Ld — Inductance

1.7e-3 (default) | scalar

D-axis winding inductance, L_d , in H.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive		
	Parameter	Tab	
D-axis inductance, Ld	Torque Breakpoints, T_mtpa	Id and Iq Calculation	
	D-axis table data, id_mtpa		
	Q-axis table data, iq_mtpa		
	D, q, and max current limits, idq_limits		

${\tt Q-axis\ inductance,\ Lq-Inductance}$

3.2e-3 (default) | scalar

Q-axis winding inductance, L_q , in H.

Dependencies

Parameter	Used to Derive		
	Parameter	Tab	
Q-axis inductance, Lq	Torque Breakpoints, T_mtpa	Id and Iq Calculation	
	D-axis table data, id_mtpa		
	Q-axis table data, iq_mtpa		
	D, Q, and max current limits, idq_limits		

Permanent magnet flux, lambda_pm — Flux

0.2205 (default) | scalar

Permanent magnet flux, λ_{pm} , in Wb.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive		
	Parameter	Tab	
Permanent magnet flux, lambda_pm	Torque Breakpoints, T_mtpa D-axis table data, id_mtpa Q-axis table data, iq_mtpa	Id and Iq Calculation	
	D, Q, and max current limits, idq_limits		

Number of pole pairs, PolePairs — Poles 4 (default) | scalar

Motor pole pairs, P.

Dependencies

Parameter	Used to Derive		
	Parameter	Tab	
Number of pole pairs, PolePairs	Torque Breakpoints, T_mtpa D-axis table data, id_mtpa Q-axis table data, iq_mtpa D, Q, and max current limits, idq limits	Id and Iq Calculation	

Physical inertia, viscous damping, static friction, Mechanical — Inertia, damping, friction

[0.0027, 4.924e-4, 0] (default) | vector

Mechanical properties of the motor:

- Motor inertia, F_{yy} in kgm²
- Viscous friction torque constant, F_v , in N·m/(rad/s)
- Static friction torque constant, F_s , in N·m

Dependencies

To enable this parameter, set the **Control Type** parameter to **Speed Control**.

For the gain calculations, the block uses the inertia from the **Physical inertia**, **viscous damping**, **static friction** parameter value that is on the **Motor Parameters** tab.

This table summarizes the parameter dependencies.

Parameter	Used to Derive		
	Parameter	Tab	
Physical inertia, viscous damping, static friction, Mechanical	Proportional gain, ba Angular gain, Ksa Rotational gain, Kisa Inertia compensation, Jcomp Viscous damping compensation, Fv Static friction, Fs	Speed Controller	

Id and Iq Calculation

Maximum torque, T_max — Torque 60 (default) | scalar

oo (defadit) | 3ca ca i

Maximum torque, in N·m.

Dependencies

Parameter	Used to Derive		
	Parameter	Tab	
Maximum torque, T_max	Torque Breakpoints, T_mtpa D-axis table data, id_mtpa Q-axis table data, iq_mtpa D, Q, and max current limits, idq_limits	Id and Iq Calculation	

MTPA table breakpoints, bp — Number of breakpoints

10 (default) | scalar

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive		
	Parameter	Tab	
MTPA table breakpoints, pb	Torque Breakpoints, T_mtpa D-axis table data, id_mtpa Q-axis table data, iq_mtpa D, Q, and max current limits, idq_limits	Id and Iq Calculation	

Calculate MTPA Table Data — Derive parameters

button

Click to derive parameters.

Dependencies

On the **Id and Iq Calculation** tab, when you select **Calculate MPTA Table data**, the block calculates derived parameters. The table summarizes the derived parameter dependencies on other block parameters.

Derived Parameter on Id and Iq Calculation tab		Depends On			
				Parameter	Tab
Torque Breakpoints, T_mtpa	$T_{mtpa} =$	$\frac{3}{2}P(\lambda_{pm}i_q + (L_d -$	Lq)lalq)		Id and Iq Calculation

Derived Parameter on Id and Iq Calculation tab		Depends On	
		Parameter	Tab
D-axis table data, id_mtpa	$I_m = \frac{2T_{max}}{3P\lambda_{pm}}$	Permanent magnet flux, lambda_pm	Motor Parameters
	$i_{d_{mtpa}} = \frac{\lambda_{pm}}{4(L_q - L_d)} - \sqrt{\frac{\lambda_{pm}^2}{16(L_q - L_d)^2}} + $	h-axis inductance, Ld	
Q-axis table data, iq_mtpa	$i_{q_mtpa} = \sqrt{I_m^2 - \left(i_{mtpa}\right)^2}$	Q-axis inductance, Lq	
D, Q, and max current limits, idq_limits		Number of pole pairs, PolePairs	

The equations use these variables.

i_{max}	Maximum phase current
i_d	d-axis current
i_q	q-axis current
i_{d_max}	Maximum d-axis phase current
i_{q_max}	Maximum q-axis phase current
i_{d_mtpa}	d-axis phase current MTPA table
i_{q_mtpa}	$\ensuremath{\text{q-axis}}$ phase current MTPA table
λ_{pm}	Permanent magnet flux linkage
L_d	d-axis winding inductance
L_q	q-axis winding inductance
P	Motor pole pairs
T_{mtpa}	Torque MTPA breakpoints
I_m	Estimated maximum current

Torque Breakpoints, T_mtpa — Derived
[0 6.41323967543524 12.8472271930531 19.3221671098192 25.8572437875407 32.4702594835269 39.177408529382 45.9931820911486 52.930379967864 60.0001984561834] (default) | vector

Derived torque breakpoints, in $N \cdot m$.

Dependencies

Parameter	Dependency		
	Parameter	Tab	
Torque Breakpoints, T mtpa	Maximum torque, T_max	Id and Iq Calculation	
1pu	MTPA table breakpoints, pb		

Parameter	Dependency	Dependency	
	Parameter	Tab	
	Permanent magnet flux, lambda_pm	Motor Parameters	
	D-axis inductance, Ld		
	Q-axis inductance, Lq		
	Number of pole pairs, PolePairs		

D-axis table data, id_mtpa — Derived

[0 -0.159333276810563 -0.633258709677809 -1.41005695027301 -2.47173666500257 -3.79592548539108 -5.35786489234899 -7.13217478652462 -9.09420364751938 -11.2209236729158] (default) | vector

Derived d-axis table data, in A.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
D-axis table data, id_mtpa	Maximum torque, T_max MTPA table breakpoints, pb	Id and Iq Calculation
	Permanent magnet flux, lambda_pm	Motor Parameters
	D-axis inductance, Ld	
	Q-axis inductance, Lq	
	Number of pole pairs, PolePairs	

Q-axis table data, iq_mtpa — Derived

[0 4.84224935172196 9.66902512748937 14.4660510262181 19.2212063070062 23.9250934510846 28.5711892538614 33.1556572971289 37.6769488702032 42.1353166357157] (default) | vector

Derived q-axis table data, in A.

Dependencies

Parameter	Dependency	
	Parameter	Tab
D-axis table data, id_mtpa	Maximum torque, T_max MTPA table breakpoints, pb	Id and Iq Calculation
	Permanent magnet flux, lambda_pm	Motor Parameters
	D-axis inductance, Ld	
	Q-axis inductance, Lq	
	Number of pole pairs, PolePairs	

D, Q, and max current limits, idq_limits — Derived
[-11.2210468862948 42.1352838229553 43.6038305205566] (default) | array

Derived d, q, and maximum current limits, in A.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
D, Q, and max current limits, idq_limits	Maximum torque, T_max MTPA table breakpoints, pb	Id and Iq Calculation
	Permanent magnet flux, lambda_pm	Motor Parameters
	D-axis inductance, Ld	
	Q-axis inductance, Lq	
	Number of pole pairs, PolePairs	

Current Controller

Bandwidth of the current regulator, EV_current — Bandwidth 200 (default) | scalar

Derived current regulator bandwidth, in Hz.

Dependencies

Parameter	Used to Derive		
	Parameter	Tab	
Bandwidth of the current regulator, EV_current	D-axis proportional gain, Kp_d Q-axis proportional gain, Kp_q D and Q axis proportional gain, Ki		

Sample time for the torque control, Tst — Time

5e-5 (default) | scalar

Derived torque control sample time, in s.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive		
	Parameter	Tab	
Sample time for the torque control, Tst	Speed time constant, Ksf	Speed Controller	

Calculate Current Regulator Gains — Derive parameters

button

Click to derive parameters.

Dependencies

On the **Current Controller** tab, when you select **Calculate Current Regulator Gains**, the block calculates derived parameters. The table summarizes the derived parameter dependencies on other block parameters.

Derived Parameter	Dependency	
on Current Controller tab	Parameter	Tab
D-axis proportional gain, Kp_d	Bandwidth of the current regulator, EV_current	Current Controller
Q-axis proportional gain, Kp_q	Stator resistance, Rs	Motor Parameters
D and Q axis integral gain, Ki		

D-axis proportional gain, Kp_d — Derived

2.1363 (default) | scalar

Derived d-axis proportional gain, in V/A.

Dependencies

Parameter	Dependency		
	Parameter	Tab	
D-axis proportional gain, Kp_d	Bandwidth of the current regulator, EV_current	Current Controller	

Q-axis proportional gain, Kp_q — Derived

4.0212 (default) | scalar

Derived g-axis proportional gain, in V/A.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency		
	Parameter	Tab	
Q-axis proportional gain, Kp_q	Bandwidth of the current regulator, EV_current	Current Controller	

D and Q axis integral gain, Ki — Derived

25.1327 (default) | scalar

Derived d- and q- axis integral gains, in V/A·s.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency		
	Parameter	Tab	
D and Q axis integral gain, Ki	Stator resistance, Rs	Motor Parameters	

Speed Controller

Bandwidth of the motion controller, EV_motion — Bandwidth

[20, 4, 0.8] (default) | vector

Motion controller bandwidth, in Hz. Set the first element of the vector to the desired cutoff frequency. Set the second and third elements of the vector to the higher-order cut off frequencies. You can set the value of the next element to 1/5 the value of the previous element. For example, if the desired cutoff frequency is 20 Hz, specify [20 4 0.8].

Dependencies

The parameter is enabled when the **Control Type** parameter is set to **Speed Control**.

Parameter	Used to Derive	
	Parameter	Tab
Bandwidth of the motion controller,		Speed Controller
EV_motion	Angular gain, Ksa Rotational gain, Kisa	

Bandwidth of the state filter, EV_sf — Bandwidth

200 (default) | scalar

State filter bandwidth, in Hz.

Dependencies

The parameter is enabled when the **Control Type** parameter is set to **Speed Control**.

Parameter	Used to Derive		
	Parameter	Tab	
Bandwidth of the state filter, EV_sf	Speed time constant, Ksf	Speed Controller	

${\bf Calculate\ Speed\ Regulator\ Gains-Derive\ parameters}$

button

Click to derive parameters.

Dependencies

On the **Speed Controller** tab, when you select **Calculate Speed Regulator Gains**, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

Derived Parameter on Speed Controller tab		Depends On	
		Parameter	Tab
Proportional gain, ba	$b_a = \frac{J_p - J_p p_1 p_2 p_3}{T_{sm}}$	Bandwidth of the motion controller, EV_motion	Speed Controller
		Bandwidth of the state filter, EV_sf	
Angular gain, Ksa	K_{sa}	Sample time for the torque	Current Controller
	$= \frac{J_p(p_1p_2 + p_2p_3 + p_3p_1) - 3J_p + 2b_aT_{sm}}{T_{sm}^2}$	control, Tst	
Rotational gain, Kisa	K_{isa}	Physical inertia, viscous damping,	Motor Parameters
	$= \frac{-J_p(p_1 + p_2 + p_3) + 3J_p - b_a T_{sm} - K_{sa} T_{sm}^2}{T_{sm}^3}$	static friction, Mechanical	

Derived Parameter on Speed Controller tab		Depends On	
		Parameter	Tab
Speed time constant, Ksf	$K_{sf} = \frac{1 - \exp(-T_{sm}2\pi E V_{sf})}{T_{sm}}$		
Inertia compensation, Jcomp	$J_{comp} = J_p$	Physical inertia, viscous damping, static friction,	Motor Parameters
Viscous damping compensation, Fv	$F_{ m v}$	Mechanical	
Static friction, Fs	F_s		

The equations use these variables.

P	Motor pole pairs
b_a	Speed regulator proportional gain
K_{sa}	Speed regulator integral gain
K_{isa}	Speed regulator double integral gain
K_{sf}	Speed regulator time constant
J_p	Motor inertia
EV_{sf}	State filter bandwidth
EV_{motion}	Motion controller bandwidth

Proportional gain, ba — Derived 3.7477 (default) | scalar

Derived proportional gain, in $N \cdot m/(rad/s)$.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Proportional gain, ba	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters
	Bandwidth of the motion controller, EV_motion	Speed Controller

Angular gain, Ksa — Derived 94.0877 (default) | scalar

Derived angular gain, in $N \cdot m/rad$.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Angular gain, Ksa	Physical inertia, viscous damping, static friction, Mechanical Motor Parameters	Motor Parameters
	Bandwidth of the motion controller, EV_motion	Speed Controller

Rotational gain, Kisa — Derived

381.7822 (default) | scalar

Derived rotational gain, in $N \cdot m/(rad*s)$.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Rotational gain, Kisa	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters
	Bandwidth of the motion controller, EV_motion	Speed Controller

Speed time constant, Ksf — Derived

1217.9727 (default) | scalar

Derived speed time constant, in 1/s.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency		
	Parameter Tab		
Speed time constant, Ksf	Sample time for the torque control, Tst	Current Controller	
	Bandwidth of the state filter, EV_sf	Speed Controller	

Inertia compensation, Jcomp — Derived

0.025 (default) | scalar

Derived inertia compensation, in kg·m^2.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency Parameter Tab	
Inertia compensation, Jcomp	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters

Viscous damping compensation, Fv — Derived

0 (default) | scalar

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency		
	Parameter	Tab	
Viscous damping compensation, Fv	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters	

Static friction, Fs — Derived

0 (default) | scalar

Derived static friction, in $N \cdot m/(rad/s)$.

Dependencies

This table summarizes the parameter dependencies.

Parameter Dependency			
	Parameter	Tab	
Static friction, Fs	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters	

Electrical Losses

Parameterize losses by — Select type

Single efficiency measurement (default) | Tabulated loss data | Tabulated efficiency data

Setting	Block Implementation
Single efficiency measurement	Electrical loss calculated using a constant value for inverter efficiency.
Tabulated loss data	Electrical loss calculated as a function of motor speeds and load torques.

Setting	Block Implementation
Tabulated efficiency data	Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques.
	Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.
	Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.
	Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions.
	Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Overall inverter efficiency, eff — Constant 98 (default) | scalar

Overall inverter efficiency, Eff, in %.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

Vector of speeds (w) for tabulated loss, w_loss_bp — Breakpoints [0 200 400 600 800 1000] (default) | 1-by-M vector

Speed breakpoints for lookup table when calculating losses, in rad/s.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

```
Vector of torques (T) for tabulated loss, T_loss_bp — Breakpoints [0 25 50 75 100] (default) | 1-by-N vector
```

Torque breakpoints for lookup table when calculating losses, in N·m.

Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated loss data**.

Corresponding losses, losses_table — Table

```
[100 100 100 100 100;100 150 200 250 300;100 200 300 400 500;100 250 400 550 700;100 300 500 700 900;100 350 600 850 1100] (default) | M-by-N array
```

Array of values for electrical losses as a function of M speeds and N torques, in W. Each value specifies the losses for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated loss data.

Vector of speeds (w) for tabulated efficiency, w_eff_bp — Breakpoints [200 400 600 800 1000] (default) | 1-by-M vector

Speed breakpoints for lookup table when calculating efficiency, in rad/s.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated efficiency data.

Vector of torques (T) for tabulated efficiency, T_eff_bp — Breakpoints [25 50 75 100] (default) | 1-by-N vector

Torque breakpoints for lookup table when calculating efficiency, in N·m.

Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated efficiency data**.

Corresponding efficiency, efficiency_table — Table [96.2 98.1 98.7 99;98.1 99 99.4 99.5;98.7 99.4 99.6 99.7;99 99.5 99.7 99.8;99.2 99.6 99.7 99.8] (default) | M-by-N array

Array of efficiency as a function of M speeds and N torque, in %. Each value specifies the efficiency for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated efficiency data.

References

- [1] Lorenz, Robert D., Thomas Lipo, and Donald W. Novotny. "Motion control with induction motors." *Proceedings of the IEEE*, Vol. 82, Issue 8, August 1994, pp. 1215–1240.
- [2] Morimoto, Shigeo, Masayuka Sanada, and Yoji Takeda. "Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator." *IEEE Transactions on Industry Applications*, Vol. 30, Issue 4, July/August 1994, pp. 920–926.
- [3] Li, Muyang. "Flux-Weakening Control for Permanent-Magnet Synchronous Motors Based on Z-Source Inverters." Master's Thesis, Marquette University, e-Publications@Marquette, Fall 2014.
- [4] Briz, Fernando, Michael W. Degner, and Robert D. Lorenz. "Analysis and design of current regulators using complex vectors." *IEEE Transactions on Industry Applications*, Vol. 36, Issue 3, May/June 2000, pp. 817–825.

[5] Briz, Fernando, et al. "Current and flux regulation in field-weakening operation [of induction motors]." *IEEE Transactions on Industry Applications*, Vol. 37, Issue 1, Jan/Feb 2001, pp. 42–50.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also

Flux-Based PM Controller | IM Controller | Interior PMSM | Surface Mount PM Controller

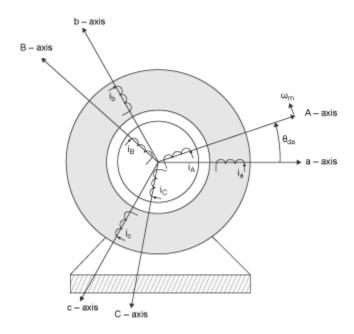
Introduced in R2017a

Flux-Based PMSM

Flux-based permanent magnet synchronous motor **Library:** Powertrain Blockset / Propulsion / Electric Motors

Description

The Flux-Based PMSM block implements a flux-based three-phase permanent magnet synchronous motor (PMSM) with a tabular-based electromotive force. The block uses the three-phase input voltages to regulate the individual phase currents, allowing control of the motor torque or speed.


Flux-based motor models take into account magnetic saturation and iron losses. To calculate the magnetic saturation and iron loss, the Flux-Based PMSM block uses the inverse of the flux linkages. To obtain the block parameters, you can use finite-element analysis (FEA) or measure phase voltages using a dynamometer.

By default, the block sets the **Simulation Type** parameter to **Continuous** to use a continuous sample time during simulation. If you want to generate code for fixed-step double- and single-precision targets, considering setting the parameter to **Discrete**. Then specify a **Sample Time, Ts** parameter.

To enable power loss calculations suitable for code generation targets that limit memory, select **Enable memory optimized 2D LUT**.

Three-Phase Sinusoidal Model Electrical System

The block implements equations that are expressed in a stationary rotor reference (dq) frame. The d-axis aligns with the a-axis. All quantities in the rotor reference frame are referred to the stator.

The block uses these equations.

Calculation	Equation
q- and d -axis voltage	$v_d = \frac{d\psi_d}{dt} + R_s i_d - \omega_e \psi_q$
	$v_q = \frac{d\psi_q}{dt} + R_s i_q + \omega_e \psi_d$
q- and d -axis current	$i_d = f(\psi_d, \psi_q)$ $i_q = g(\psi_d, \psi_q)$
	$i_q = g(\psi_d, \psi_q)$
Electromechanical torque	$T_e = 1.5P[\psi_d i_q - \psi_q i_d]$

The equations use these variables.

ω_m	Rotor mechanical speed
ω_e	Rotor electrical speed
Θ_{da}	dq stator electrical angle with respect to the rotor a-axis
R_s , R_r	Resistance of the stator and rotor windings, respectively
i_q , i_d	q- and d -axis current, respectively
v_q , v_d	q- and d -axis voltage, respectively
Ψ_q , Ψ_d	q- and d -axis magnet flux, respectively
P	Number of pole pairs
T_e	Electromagnetic torque

Transforms

To calculate the voltages and currents in balanced three-phase (a, b) quantities, quadrature two-phase (α, β) quantities, and rotating (d, q) reference frames, the block uses the Clarke and Park Transforms.

In the transform equations.

$$\omega_e = P\omega_m$$

$$\frac{d\theta_e}{dt} = \omega_e$$

Transform	Description	Equations		
Clarke	Converts balanced three-phase quantities (a, b) into balanced two-phase quadrature quantities (α, β) .	$x_{\alpha} = \frac{2}{3}x_{a} - \frac{1}{3}x_{b} - \frac{1}{3}x_{c}$ $x_{\beta} = \frac{\sqrt{3}}{2}x_{b} - \frac{\sqrt{3}}{2}x_{c}$		
Park	Converts balanced two-phase orthogonal stationary quantities (α, β) into an orthogonal rotating reference frame (d, q) .	$x_d = x_\alpha \cos\theta_e + x_\beta \sin\theta_e$ $x_q = -x_\alpha \sin\theta_e + x_\beta \cos\theta_e$		
Inverse Clarke	Converts balanced two-phase quadrature quantities (α, β) into balanced three-phase quantities (a, b) .	$x_{a} = x_{a}$ $x_{b} = -\frac{1}{2}x_{\alpha} + \frac{\sqrt{3}}{2}x_{\beta}$ $x_{c} = -\frac{1}{2}x_{\alpha} - \frac{\sqrt{3}}{2}x_{\beta}$		
Inverse Park	Converts an orthogonal rotating reference frame (d, q) into balanced two-phase orthogonal stationary quantities (α, β) .	$x_{\alpha} = x_{d}\cos\theta_{e} - x_{q}\sin\theta_{e}$ $x_{\beta} = x_{d}\sin\theta_{e} + x_{q}\cos\theta_{e}$		

The transforms use these variables.

ω_m	Rotor mechanical speed
P	Motor pole pairs
ω_e	Rotor electrical speed
Θ_e	Rotor electrical angle
X	Phase current or voltage

Mechanical System

The rotor angular velocity is given by:

$$\frac{d}{dt}\omega_m = \frac{1}{J}(T_e - T_f - F\omega_m - T_m)$$
$$\frac{d\theta_m}{dt} = \omega_m$$

The equations use these variables.

J	Combined inertia of rotor and load
F	Combined viscous friction of rotor and load
θ_m	Rotor mechanical angular position
T_m	Rotor shaft torque
T_e	Electromagnetic torque
T_f	Combined rotor and load friction torque
ω_m	Rotor mechanical speed

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal		Description	Variab le	Equations	
PwrIn fo	PwrTrnsfrd — Power transferred between blocks	PwrMtr	Mechanical power	P_{mot}	$P_{mot} = -\omega_m T_e$
	Positive signals indicate flow into block	PwrBus	Electrical power	P_{bus}	$P_{bus} = v_{an}i_a + v_{bn}i_b + v_{cn}i_c$
	Negative signals indicate flow out of block				
	PwrNotTrnsfrd — Power crossing the block boundary, but not transferred	PwrElec Loss	Resistive power loss	P_{elec}	$P_{elec} = -\frac{3}{2}(R_s i_{sd}^2 + R_s i_{sq}^2)$
	 Positive signals indicate an input Negative signals indicate a loss 	PwrMech Loss	Mechanical power loss	P_{mech}	When Port Configuration is set to Torque: $P_{mech} = - (\omega_m^2 F + \omega_m T_f)$ When Port Configuration is set to Speed: $P_{mech} = 0$
	PwrStored — Stored energy rate of change • Positive signals indicate an increase • Negative signals indicate a decrease	PwrMtrS tored	Stored motor power	P_{str}	$\begin{array}{ll} P_{str} = & P_{bus} + & P_{mot} + \\ P_{elec} & + & P_{mech} \end{array}$

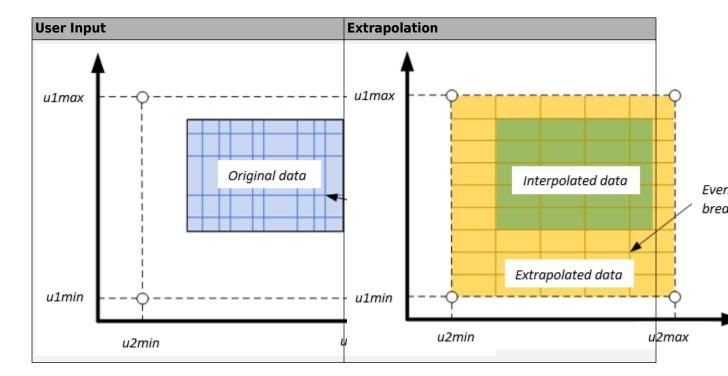
The equations use these variables.

 R_s Stator resistance

i_a , i_b , i_c	Stator phase a, b, and c current
i_{sq} , i_{sd}	Stator q- and d-axis currents
v_{an} , v_{bn} , v_{cn}	Stator phase a, b, and c voltage
ω_m	Angular mechanical velocity of the rotor
F	Combined motor and load viscous damping
T_e	Electromagnetic torque
T_f	Combined motor and load friction torque

Lookup Table Memory Optimization

The data for the **Corresponding d-axis current, id** and **Corresponding q-axis current, iq** lookup tables are functions of the d- and q-axis flux.


To enable current calculations suitable for code generation targets that limit memory, select **Enable memory optimized 2D LUT**. The block uses linear interpolation to optimize the current lookup table values for code generation. This table summarizes the optimization implementation.

Use Case	Implementation
d- and q -axis flux aligns with the lookup table breakpoint values.	Memory-optimized current is current lookup table value at intersection of flux values.
d- and q -axis flux does not align with the lookup table breakpoint values, but is within range.	Memory-optimized current is linear interpolation between corresponding flux values.
d- and q -axis flux does not align with the lookup table breakpoint values, and is out of range.	Cannot compute an memory-optimized current. Block uses extrapolated data.

Extrapolation

The lookup tables optimized for code generation do not support extrapolation for data that is out of range. However, you can include pre-calculated extrapolation values in the power loss lookup table by selecting **Specify Extrapolation**.

The block uses the endpoint parameters to resize the table data.

Ports

Input

LdTrq — Rotor shaft torque

scalar

Rotor shaft input torque, T_m , in N·m.

Dependencies

To create this port, select Torque for the **Port Configuration** parameter.

Spd — Rotor shaft speed

scalar

Angular velocity of the rotor, ω_m , in rad/s.

Dependencies

To create this port, select **Speed** for the **Port Configuration** parameter.

PhaseVolt — Stator terminal voltages

1-by-3 array

Stator terminal voltages, V_a , V_b , and V_c , in V.

Dependencies

To create this port, select Speed or Torque for the **Port Configuration** parameter.

Output

Info — Bus signal

bus

The bus signal contains these block calculations.

Signal			Description	Variable	Units
IaStato	r		Stator phase current A	i_a	A
IbStato	r		Stator phase current B	i_b	A
IcStato	r		Stator phase current C	i_c	A
IdSync			Direct axis current	i_d	A
IqSync			Quadrature axis current	i_q	A
VdSync			Direct axis voltage	ν_d	V
VqSync			Quadrature axis voltage	v_q	V
MtrSpd			Angular mechanical velocity of the rotor	ω_m	rad/s
MtrPos			Rotor mechanical angular position	θ_m	rad
MtrTrq			Electromagnetic torque	T_e	N⋅m
PwrInfo	PwrTrnsfrd	PwrMtr	Mechanical power	P_{mot}	W
		PwrBus	Electrical power	P_{bus}	W
		PwrElecLoss	Resistive power loss	P_{elec}	W
	frd	PwrMechLoss	Mechanical power loss	P_{mech}	W
	PwrStored	PwrMtrStored	Stored motor power	P_{str}	W

PhaseCurr — Phase a, b, c current

1-by-3 array

Phase a, b, c current, i_a , i_b , and i_c , in A.

MtrTrq — Motor torque

scalar

Motor torque, T_{mtr} , in N·m.

Dependencies

To create this port, select **Speed** for the **Port configuration** parameter.

MtrSpd — Motor speed

scalar

Angular speed of the motor, ω_{mtr} , in rad/s.

Dependencies

To create this port, select Torque for the **Port configuration** parameter.

Parameters

Block Options

Simulation Type — Select simulation type

Continuous (default) | Discrete

By default, the block uses a continuous sample time during simulation. If you want to generate code for single-precision targets, considering setting the parameter to Discrete.

Dependencies

Setting **Simulation Type** to **Discrete** creates the **Sample Time**, **Ts** parameter.

Sample Time, Ts — Sample time for discrete integration

0.001 (default) | scalar

Integration sample time for discrete simulation, in s.

Dependencies

Setting **Simulation Type** to **Discrete** creates the **Sample Time**, **Ts** parameter.

Port Configuration — Select port configuration

Torque (default) | Speed

This table summarizes the port configurations.

Port Configuration	Creates Input Port	Creates Output Port
Torque	LdTrq	MtrSpd
Speed	Spd	MtrTrq

Enable memory optimized 2D LUT — Selection

off (default) | on

Enable generation of optimized lookup tables, suitable code generation targets that limit memory.

Vector of d-axis flux, flux_d — Flux breakpoints

1-by-M vector

d-axis flux, Ψ_d , breakpoints, in Wb.

Resample storage size for flux_d, n1 — Flux bit size

2 (default) | 4 | 8 | 16 | 32 | 64 | 128 | 256

Flux breakpoint storage size, n1, dimensionless. The block resamples the **Corresponding d-axis current**, **id** and **Corresponding q-axis current**, **iq** data based on the storage size.

Dependencies

To create this parameter, select **Enable memory optimized 2D LUT**.

Vector of q-axis flux, flux_q — Flux breakpoints

1-by-N vector

q-axis flux, Ψ_q , breakpoints, in Wb.

Resample storage size for flux_q, n2 — Flux bit size

2 (default) | 4 | 8 | 16 | 32 | 64 | 128 | 256

Flux breakpoint storage size, n2, dimensionless. The block resamples the **Corresponding d-axis current**, **id** and **Corresponding q-axis current**, **iq** data based on the storage size.

Dependencies

To create this parameter, select **Enable memory optimized 2D LUT**.

Corresponding d-axis current, id — 2D lookup table

M-by-N array

Array of values for d-axis current, i_d , as a function of M d-fluxes, Ψ_d , and N q-fluxes, Ψ_q , in A. Each value specifies the current for a specific combination of d- and q-axis flux. The array size must match the dimensions defined by the flux vectors.

If you set **Enable memory optimized 2D LUT**, the block converts the data to single precision.

Corresponding q-axis current, iq — 2D lookup table

M-by-N array

Array of values for q-axis current, i_d , as a function of M d-fluxes, Ψ_d , and N q-fluxes, Ψ_q , in A. Each value specifies the current for a specific combination of d- and q-axis flux. The array size must match the dimensions defined by the flux vectors.

If you set **Enable memory optimized 2D LUT**, the block converts the data to single precision.

flux_d max endpoint, u1max — Flux breakpoint

0.22457 (default) | scalar

Flux breakpoint maximum extrapolation endpoint, *u1max*, in Wb.

Dependencies

To create this parameter, select **Enable memory optimized 2D LUT** and **Specify Extrapolation**.

flux d min endpoint, ulmin — Flux breakpoint

-0.22607 (default) | scalar

Flux breakpoint minimum extrapolation endpoint, *u1min*, in Wb.

Dependencies

To create this parameter, select Enable memory optimized 2D LUT and Specify Extrapolation.

flux_q max endpoint, u2max — Flux breakpoint

0.42959 (default) | scalar

Flux breakpoint maximum extrapolation endpoint, *u2max*, in Wb.

Dependencies

To create this parameter, select **Enable memory optimized 2D LUT** and **Specify Extrapolation**.

flux_q min endpoint, u2min — Flux breakpoint

-0.4296 (default) | scalar

Flux breakpoint minimum extrapolation endpoint, u2min, in Wb.

Dependencies

To create this parameter, select Enable memory optimized 2D LUT and Specify Extrapolation.

Stator phase resistance, Rs — Resistance

0.02 (default) | scalar

Stator phase resistance, R_s , in ohm.

Number of pole pairs, P — Pole pairs

4 (default) | scalar

Motor pole pairs, *P*.

Initial flux, fluxdq0 — Flux

[0 0] (default) | vector

Initial *d*- and *q*-axis flux, Ψ_{q0} and Ψ_{d0} , in Wb.

Initial mechanical position, theta_init — Angle

0 (default) | scalar

Initial rotor angular position, θ_{m0} , in rad.

Initial mechanical speed, omega init — Speed

0 (default) | scalar

Initial angular velocity of the rotor, ω_{m0} , in rad/s.

Dependencies

To enable this parameter, select the Torque configuration parameter.

Physical inertia, viscous damping, and static friction, mechanical — Inertia, damping, friction

[0.0027, 4.924e-4, 0] (default) | vector

Mechanical properties of the rotor:

- Inertia, *I*, in kgm²
- Viscous damping, F, in N·m/(rad/s)
- Static friction, T_f , in N·m

Dependencies

To enable this parameter, select the Torque configuration parameter.

References

[1] Hu, Dakai, Yazan Alsmadi, and Longya Xu. "High fidelity nonlinear IPM modeling based on measured stator winding flux linkage." *IEEE Transactions on Industry Applications*, Vol. 51, No. 4, July/August 2015.

- [2] Chen, Xiao, Jiabin Wang, Bhaskar Sen, Panagiotis Lasari, Tianfu Sun. "A High-Fidelity and Computationally Efficient Model for Interior Permanent-Magnet Machines Considering the Magnetic Saturation, Spatial Harmonics, and Iron Loss Effect." *IEEE Transactions on Industrial Electronics*, Vol. 62, No. 7, July 2015.
- [3] Ottosson, J., M. Alakula. "A compact field weakening controller implementation." *International Symposium on Power Electronics, Electrical Drives, Automation and Motion*, July, 2006.

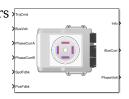
Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also

Flux-Based PM Controller | Induction Motor | Interior PMSM | Mapped Motor | Surface Mount PMSM

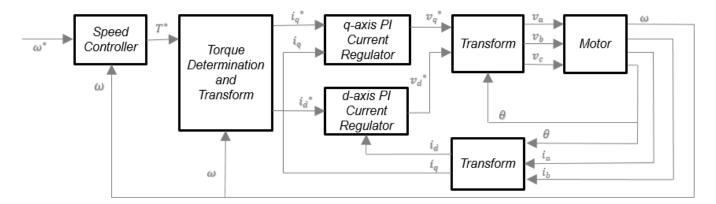

Topics

"Generate Parameters for Flux-Based Blocks"

Introduced in R2017b

Flux-Based PM Controller

Controller for a flux-based permanent magnet synchronous motor **Library:** Powertrain Blockset / Propulsion / Electric Motor Controllers



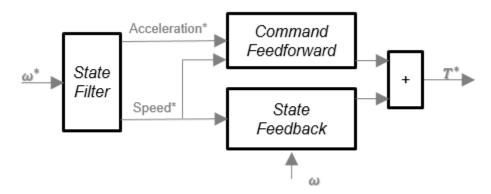
Description

The Flux Based PM Controller block implements a flux-based, field-oriented controller for an interior permanent magnet synchronous motor (PMSM) with an optional outer-loop speed controller. The internal torque control implements strategies for achieving maximum torque per ampere (MTPA) and weakening the magnetic flux. You can specify either the speed or torque control type.

The Flux Based PM Controller implements equations for speed control, torque determination, regulators, transforms, and motors.

The figure illustrates the information flow in the block.

The block implements equations using these variables.


ω	Rotor speed
ω^*	Rotor speed command
<i>T</i> *	Torque command
i_d	d-axis current
$i*_d$	d-axis current command
i_q	q-axis current
i^*_a	<i>q</i> -axis current command

v_d ,	d-axis voltage
v^*_d v_q	d-axis voltage command q -axis voltage
v * _q	q-axis voltage command
v_a , v_b , v_c	Stator phase a, b, c voltages
i_a , i_b , i_c	Stator phase a, b, c currents

Speed Controller

To implement the speed controller, select the **Control Type** parameter **Speed Control**. If you select the **Control Type** parameter **Torque Control**, the block does not implement the speed controller.

The speed controller determines the torque command by implementing a state filter, and calculating the feedforward and feedback commands. If you do not implement the speed controller, input a torque command to the Flux Based PM Controller block.

State Filter

The state filter is a low-pass filter that generates the acceleration command based on the speed command. The discrete form of characteristic equation is given by:

$$z + K_{sf}T_{sm} - 1$$

The filter calculates the gain using this equation.

$$K_{sf} = \frac{1 - \exp(-T_{sm}2\pi E V_{sf})}{T_{sm}}$$

The equations use these variables.

 EV_{sf} Bandwidth of the speed command filter T_{sm} Motion controller sample time K_{sf} Speed regulator time constant

State Feedback

To generate the state feedback torque, the block uses the filtered speed error signal from the state filter. To filter the speed, the block uses a proportional integral (PI) controller.

$$T_{cmd} = Kp_{\omega}(\omega_m^* - \omega_m) + Ki_{\omega} \frac{zT_{sm}}{z - 1}(\omega_m^* - \omega_m)$$

The equations use these variables.

 ω_m Rotor speed

 ω^*_m Rotor speed command T_{cmd} Torque command

 $egin{array}{lll} Kp_{\omega} & & & & & & & & & & & & & & & & & \\ Ki_{\omega} & & & & & & & & & & & & & & & & \\ T_{sm} & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & &$

Command Feedforward

To generate the state feedforward torque, the block uses the filtered speed and acceleration from the state filter. Also, the feedforward torque calculation uses the inertia, viscous damping, and static friction. To achieve zero tracking error, the torque command is the sum of the feedforward and feedback torque commands.

The feedforward torque command uses this equation.

$$T_{cmd_ff} = J_p \dot{\omega}_m + F_v \omega_m + F_s \frac{\omega_m}{|\omega_m|}$$

where:

 J_p Rotor inertia

 T_{cmd_ff} Torque command feedforward F_s Static friction torque constant F_v Viscous friction torque constant F_s Static friction torque constant

 ω_m Rotor speed

Current Command

The block uses lookup tables to determine the d-axis and q-axis current commands. The lookup tables are functions of mechanical speed and torque. To determine the lookup tables, you can use an external finite element analysis (FEA) models or dynamometer test results.

$$i_{dref} = f(|\omega_m|, |T_{ref}|)$$

$$i_{qref} = sign(T_{ref}) * f(|\omega_m|, |T_{ref}|)$$

The equations use these variables.

 ω_m Rotor speed

 T_{ref} Torque command

 i_{dref} , i_{qref} d- and q-axis reference current, respectively

Voltage Command

The block uses these equations to calculate the voltage in the motor reference frame.

$$\begin{split} v_{d} &= \frac{d\psi_{d}}{dt} + R_{s}i_{d} - \omega_{e}\psi_{q} \\ v_{q} &= \frac{d\psi_{q}}{dt} + R_{s}i_{q} + \omega_{e}\psi_{d} \\ \frac{d\psi_{d}}{dt} + R_{s}i_{d} &= Kp_{d}(i_{d}^{*} - i_{d}) + Ki_{d}\frac{zT_{st}}{z - 1}(i_{d}^{*} - i_{d}) \\ \frac{d\psi_{q}}{dt} + R_{s}i_{q} &= Kp_{q}(i_{q}^{*} - i_{q}) + Ki_{q}\frac{zT_{st}}{z - 1}(i_{q}^{*} - i_{q}) \\ v_{d} &= Kp_{i}(i_{d}^{*} - i_{d}) + Ki_{d}\frac{zT_{st}}{z - 1}(i_{d}^{*} - i_{d}) + \omega_{e}\psi_{q} \\ v_{q} &= Kp_{i}(i_{q}^{*} - i_{q}) + Ki_{q}\frac{zT_{st}}{z - 1}(i_{q}^{*} - i_{q}) - \omega_{e}\psi_{d} \\ \psi_{q} &= f(i_{d}, i_{q}) \\ \psi_{d} &= f(i_{d}, i_{q}) \end{split}$$

The equations use these variables.

ω_m	Rotor mechanical speed
ω_e	Rotor electrical speed
R_s , R_r	Resistance of the stator and rotor windings, respectively
i_q , i_d	q- and d -axis current, respectively
v_q , v_d	q- and d -axis voltage, respectively
Ψ_q , Ψ_d	q- and d -axis magnet flux, respectively
T_{st}	Current regulator sample rate
Ki_d , Ki_q	d- and q - axis integral gain, respectively
Kp_d , Kp_q	d- and q - axis proportional gain, respectively

Transforms

To calculate the voltages and currents in balanced three-phase (a, b) quantities, quadrature two-phase (α, β) quantities, and rotating (d, q) reference frames, the block uses the Clarke and Park Transforms.

In the transform equations.

$$\omega_e = P\omega_m$$

$$\frac{d\theta_e}{dt} = \omega_e$$

Transform	Description	Equations
Clarke	Converts balanced three-phase quantities (a, b) into balanced two-phase quadrature quantities (α, β) .	$x_{\alpha} = \frac{2}{3}x_a - \frac{1}{3}x_b - \frac{1}{3}x_c$ $x_{\beta} = \frac{\sqrt{3}}{2}x_b - \frac{\sqrt{3}}{2}x_c$
Park	Converts balanced two-phase orthogonal stationary quantities (α, β) into an orthogonal rotating reference frame (d, q) .	$x_d = x_{\alpha} \cos \theta_e + x_{\beta} \sin \theta_e$ $x_q = -x_{\alpha} \sin \theta_e + x_{\beta} \cos \theta_e$
Inverse Clarke	Converts balanced two-phase quadrature quantities (α, β) into balanced three-phase quantities (a, b) .	$x_a = x_a$ $x_b = -\frac{1}{2}x_\alpha + \frac{\sqrt{3}}{2}x_\beta$ $x_c = -\frac{1}{2}x_\alpha - \frac{\sqrt{3}}{2}x_\beta$
Inverse Park	Converts an orthogonal rotating reference frame (d, q) into balanced two-phase orthogonal stationary quantities (α, β) .	$x_{\alpha} = x_{d}\cos\theta_{e} - x_{q}\sin\theta_{e}$ $x_{\beta} = x_{d}\sin\theta_{e} + x_{q}\cos\theta_{e}$

The transforms use these variables.

ω_m	Rotor speed
P	Rotor pole pairs
ω_e	Rotor electrical speed
Θ_e	Rotor electrical angle
X	Phase current or voltage

Motor

The block uses the phase currents and phase voltages to estimate the DC bus current. Positive current indicates battery discharge. Negative current indicates battery charge.

The block uses these equations.

Load power	$Ld_{Pwr} = v_a i_a + v_b i_b + v_c i_c$
Source power	$Src_{Pwr} = Ld_{Pwr} + Pwr_{Loss}$
DC bus current	$i_{bus} = \frac{Srcp_{wr}}{v_{bus}}$
Estimated rotor torque	$T_e = 1.5P[\psi_d i_q - \psi_q i_d]$
Power loss for single efficiency source to load	$Pwr_{Loss} = \frac{100 - Eff}{Eff} \cdot Ld_{Pwr}$
Power loss for single efficiency load to source	$Pwr_{Loss} = \frac{100 - Eff}{100} \cdot Ld_{Pwr} $
Power loss for tabulated efficiency	$Pwr_{Loss} = f(\omega_m, MtrTrq_{est})$

The equations use these variables.

v_a , v_b , v_c	Stator phase a, b, c voltages
v_{bus}	Estimated DC bus voltage
i_a , i_b , i_c	Stator phase a, b, c currents
i_{bus}	Estimated DC bus current
Eff	Overall inverter efficiency
ω_m	Rotor mechanical speed
L_q , L_d	q- and d -axis winding inductance, respectively
Ψ_q , Ψ_d	q- and d -axis magnet flux, respectively
i_q , i_d	q- and d -axis current, respectively
λ	Permanent magnet flux linkage
P	Rotor pole pairs

Electrical Losses

To specify the electrical losses, on the **Electrical Losses** tab, for **Parameterize losses by**, select one of these options.

Setting	Block Implementation
Single efficiency measurement	Electrical loss calculated using a constant value for inverter efficiency.
Tabulated loss data	Electrical loss calculated as a function of motor speeds and load torques.
Tabulated efficiency data	Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques. • Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.
	Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.
	Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions.
	Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Ports

Input

SpdReq — Rotor speed command

scalar

Rotor speed command, ω^*_m , in rad/s.

Dependencies

To create this port, select Speed Control for the Control Type parameter.

TrqCmd — Torque command

scalar

Torque command, T^* , in N·m.

Dependencies

To create this port, select Torque Control for the Control Type parameter.

BusVolt — **DC** bus voltage

scalar

DC bus voltage, v_{bus} , in V.

PhaseCurrA — Current

scalar

Stator current phase a, i_a , in A.

PhaseCurrB — Current

scalar

Stator current phase b, i_b , in A.

SpdFdbk — Rotor speed

scalar

Rotor speed, ω_m , in rad/s.

PosFdbk — Rotor electrical angle

scalar

Rotor electrical angle, Θ_m , in rad.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Units
SrcPwr	Source power	W
LdPwr	Load power	W
PwrLoss	Power loss	W
MtrTrqEst	Estimated motor torque	N·m

BusCurr — **Bus current**

scalar

Estimated DC bus current, i_{bus} , in A.

PhaseVolt — Stator terminal voltages

array

Stator terminal voltages, V_a , V_b , and V_c , in V.

Parameters

Block Options

Control Type — Select control

Torque Control (default) | Speed Control

If you select Torque Control, the block does not implement the speed controller.

This table summarizes the port configurations.

Port Configuration	Creates Ports	
Speed Control	SpdReq	
Torque Control	TrqCmd	

Motor Parameters

Number of pole pairs, PolePairs — Poles

4 (default) | scalar

Motor pole pairs, *P*.

Vector of d-axis current breakpoints, id_index — Current

vector

d-axis current, $i_{d index}$, in A.

Vector of q-axis current breakpoints, iq_index — current

vector

q-axis current, $i_{q index}$, in A.

Corresponding d-axis flux, lambda_d — Flux

vector

d-axis flux, λ_d , in Wb.

Corresponding q-axis flux, lambda_q — Flux

vector

q-axis flux, λ_a , in Wb.

Current Controller

Sample time for the torque control, Tst — Time

1e-4 (default) | scalar

Torque control sample time, T_{st} , in s.

D-axis proportional gain, Kp_d — Gain

2.4056 (default) | scalar

d-axis proportional gain, Kp_d , in V/A.

Q-axis proportional gain, Kp_q — Gain

2.4056 (default) | scalar

q-axis proportional gain, Kp_q , in V/A.

D-axis integral gain, Ki_d — Gain

192.45 (default) | scalar

d-axis integral gain, Ki_d , in V/A·s.

Q-axis integral gain, Ki q — Gain

192.45 (default) | scalar

q- axis integral gain, Ki_q , in V/A·s.

Vector of speed breakpoints, wpb — Breakpoints

vector

Speed breakpoints, ω_{bp} , in rad/s.

Vector of torque breakpoints, tpb — Breakpoints

vector

Torque breakpoints, T_{bp} , in N·m.

Corresponding d-axis current reference, id_ref — Current

vector

d-axis reference current, i_{dref} , in A.

Corresponding q-axis current reference, iq_ref — Current

vector

q-axis reference current, i_{qref} , in A.

Speed Controller

Speed time constant, Ksf — Time

.1 (default) | scalar

Speed regulator time constant, K_{sf} , in 1/s.

Dependencies

To enable this parameter, for the **Control Type** parameter, select **Speed Control**.

Proportional gain, Kp_w — Gain

0.40475 (default) | scalar

Proportional gain, Kp_{ω} , in N·m/(rad/s).

Dependencies

To enable this parameter, for the **Control Type** parameter, select **Speed Control**.

Integral gain, Ki_w — Gain

10.1615 (default) | scalar

Integral gain, Ki_{ω} N·m/rad.

Dependencies

To enable this parameter, for the **Control Type** parameter, select **Speed Control**.

Inertia compensation, Jcomp — Inertia

0.0027 (default) | scalar

Inertia compensation, in kg·m^2.

Dependencies

To enable this parameter, for the **Control Type** parameter, select **Speed Control**.

Static friction, Fs — Friction

0 (default) | scalar

Static friction, in N·m.

Dependencies

To enable this parameter, for the **Control Type** parameter, select Speed Control.

Viscous damping compensation, Fv — Dampint

0.0004924 (default) | scalar

Viscous damping compensation, in $N \cdot m/(rad/s)$.

Dependencies

To enable this parameter, for the **Control Type** parameter, select **Speed Control**.

Electrical Losses

Parameterize losses by — Select type

Single efficiency measurement (default) | Tabulated loss data | Tabulated efficiency data

Setting	Block Implementation
Single efficiency measurement	Electrical loss calculated using a constant value for inverter efficiency.
Tabulated loss data	Electrical loss calculated as a function of motor speeds and load torques.

Setting	Block Implementation
Tabulated efficiency data	Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques.
	Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.
	Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.
	Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions.
	Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Overall inverter efficiency, eff — Constant 98 (default) | scalar

Overall inverter efficiency, Eff, in %.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

Vector of speeds (w) for tabulated loss, w_loss_bp — Breakpoints [0 200 400 600 800 1000] (default) | 1-by-M vector

Speed breakpoints for lookup table when calculating losses, in rad/s.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

```
Vector of torques (T) for tabulated loss, T_loss_bp — Breakpoints [0 25 50 75 100] (default) | 1-by-N vector
```

Torque breakpoints for lookup table when calculating losses, in N·m.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

Corresponding losses, losses_table — Table

```
[100 100 100 100 100;100 150 200 250 300;100 200 300 400 500;100 250 400 550 700;100 300 500 700 900;100 350 600 850 1100] (default) | M-by-N array
```

Array of values for electrical losses as a function of M speeds and N torques, in W. Each value specifies the losses for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated loss data.

Vector of speeds (w) for tabulated efficiency, w_eff_bp — Breakpoints [200 400 600 800 1000] (default) | 1-by-M vector

Speed breakpoints for lookup table when calculating efficiency, in rad/s.

Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated efficiency data**.

Vector of torques (T) for tabulated efficiency, T_eff_bp — Breakpoints [25 50 75 100] (default) | 1-by-N vector

Torque breakpoints for lookup table when calculating efficiency, in N·m.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated efficiency data.

```
Corresponding efficiency, efficiency_table — Table
[96.2 98.1 98.7 99;98.1 99 99.4 99.5;98.7 99.4 99.6 99.7;99 99.5 99.7
99.8;99.2 99.6 99.7 99.8] (default) | M-by-N array
```

Array of efficiency as a function of M speeds and N torque, in %. Each value specifies the efficiency for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated efficiency data**.

References

- [1] Hu, Dakai, Yazan Alsmadi, and Longya Xu. "High fidelity nonlinear IPM modeling based on measured stator winding flux linkage." *IEEE Transactions on Industry Applications*, Vol. 51, No. 4, July/August 2015.
- [2] Chen, Xiao, Jiabin Wang, Bhaskar Sen, Panagiotis Lasari, Tianfu Sun. "A High-Fidelity and Computationally Efficient Model for Interior Permanent-Magnet Machines Considering the Magnetic Saturation, Spatial Harmonics, and Iron Loss Effect." *IEEE Transactions on Industrial Electronics*, Vol. 62, No. 7, July 2015.
- [3] Ottosson, J., M. Alakula. "A compact field weakening controller implementation." International Symposium on Power Electronics, Electrical Drives, Automation and Motion, July, 2006.

Extended Capabilities

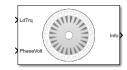
C/C++ Code Generation

Generate C and C++ code using Simulink® Coder $^{\text{\tiny TM}}$.

See Also

Flux-Based PMSM | IM Controller | Interior PM Controller | Surface Mount PM Controller

Topics

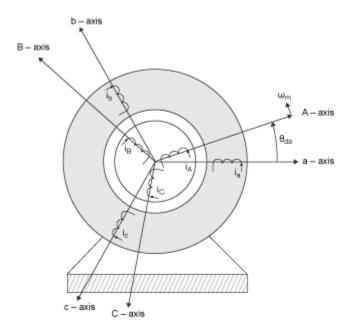

"Generate Parameters for Flux-Based Blocks"

Introduced in R2017b

Induction Motor

Three-phase induction motor

Library: Powertrain Blockset / Propulsion / Electric Motors


Description

The Induction Motor block implements a three-phase induction motor. The block uses the three-phase input voltages to regulate the individual phase currents, allowing control of the motor torque or speed.

By default, the block sets the **Simulation Type** parameter to Continuous to use a continuous sample time during simulation. If you want to generate code for fixed-step double- and single-precision targets, considering setting the parameter to Discrete. Then specify a **Sample Time, Ts** parameter.

Three-Phase Sinusoidal Model Electrical System

The block implements equations that are expressed in a stationary rotor reference (qd) frame. The daxis aligns with the a-axis. All quantities in the rotor reference frame are referred to the stator.

The block uses these equations to calculate the electrical speed (ω_{em}) and slip speed (ω_{slip}).

$$\omega_{em} = P\omega_m$$

$$\omega_{slip} = \omega_{syn} - \omega_{em}$$

To calculate the dq rotor electrical speed with respect to the rotor A-axis (dA), the block uses the difference between the stator a-axis (da) speed and slip speed:

$$\omega_{dA} = \omega_{da} - \omega_{em}$$

To simplify the equations for the flux, voltage, and current transformations, the block uses a stationary reference frame:

$$\omega_{da} = 0$$

$$\omega_{dA} = -\omega_{em}$$

Calculation	Equation
Flux	$ \frac{d}{dt} \begin{bmatrix} \lambda_{sd} \\ \lambda_{sq} \end{bmatrix} = \begin{bmatrix} v_{sd} \\ v_{sq} \end{bmatrix} - R_s \begin{bmatrix} i_{sd} \\ i_{sq} \end{bmatrix} - \omega_{da} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \lambda_{sd} \\ \lambda_{sq} \end{bmatrix} \frac{d}{dt} \begin{bmatrix} \lambda_{rd} \\ \lambda_{rq} \end{bmatrix} = \begin{bmatrix} v_{rd} \\ v_{rq} \end{bmatrix} - R_r \begin{bmatrix} i_{rd} \\ i_{rq} \end{bmatrix} - \omega_{dA} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \lambda_{rd} \\ \lambda_{rq} \end{bmatrix} $
	$\begin{bmatrix} \lambda_{sd} \\ \lambda_{sq} \\ \lambda_{rd} \\ \lambda_{rq} \end{bmatrix} = \begin{bmatrix} L_s & 0 & L_m & 0 \\ 0 & L_s & 0 & L_m \\ L_m & 0 & L_r & 0 \\ 0 & L_m & 0 & L_r \end{bmatrix} \begin{bmatrix} i_{sd} \\ i_{sq} \\ i_{rd} \\ i_{rq} \end{bmatrix}$
Current	$\begin{bmatrix} i_{sd} \\ i_{sq} \\ i_{rd} \\ i_{rq} \end{bmatrix} = \begin{bmatrix} 1 \\ \frac{1}{L_m^2 - L_r L_s} \end{bmatrix} \begin{bmatrix} -L_r & 0 & L_m & 0 \\ 0 & -L_r & 0 & L_m \\ L_m & 0 & -L_s & 0 \\ 0 & L_m & 0 & -L_s \end{bmatrix} \begin{bmatrix} \lambda_{sd} \\ \lambda_{sq} \\ \lambda_{rd} \\ \lambda_{rq} \end{bmatrix}$
Inductance	$L_S = L_{ls} + L_m$ $L_r = L_{lr} + L_m$
Electromagnetic torque	$T_e = PL_m(i_{sq}i_{rd} - i_{sd}i_{rq})$
Power invariant dq transformation to ensure that the dq and three phase powers are equal	
	$\begin{bmatrix} \cos(\Theta_{da}) & \cos(\Theta_{da} - \frac{2\pi}{3}) & \cos(\Theta_{da} + \frac{2\pi}{3}) \\ -\sin(\Theta_{da}) & -\sin(\Theta_{da} - \frac{2\pi}{3}) & -\sin(\Theta_{da} + \frac{2\pi}{3}) \end{bmatrix} \begin{bmatrix} v_a \\ v_b \\ v_c \end{bmatrix}$
	$\begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} \cos(\Theta_{da}) & -\sin(\Theta_{da}) \\ \cos(\Theta_{da} - \frac{2\pi}{3}) & -\sin(\Theta_{da} - \frac{2\pi}{3}) \\ \cos(\Theta_{da} + \frac{2\pi}{3}) & -\sin(\Theta_{da} + \frac{2\pi}{3}) \end{bmatrix} \begin{bmatrix} i_{sd} \\ i_{sq} \end{bmatrix}$

The equations use these variables.

 ω_m Angular velocity of the rotor

ω_{em}	Electrical rotor speed
ω_{slip}	Electrical rotor slip speed
ω_{syn}	Synchronous rotor speed
ω_{da}	dq stator electrical speed with respect to the rotor a-axis
ω_{dA}	dq stator electrical speed with respect to the rotor A-axis
Θ_{da}	dq stator electrical angle with respect to the rotor a-axis
Θ_{dA}	dq stator electrical angle with respect to the rotor A-axis
L_q , L_d	q- and d-axis inductances
L_s	Stator inductance
L_r	Rotor inductance
L_m	Magnetizing inductance
L_{ls}	Stator leakage inductance
L_{lr}	Rotor leakage inductance
v_{sq} , v_{sd}	Stator q- and d-axis voltages
i_{sq} , i_{sd}	Stator q- and d-axis currents
λ_{sq} , λ_{sd}	Stator q- and d-axis flux
i_{rq} , i_{rd}	Rotor q- and d-axis currents
λ_{rq} , λ_{rd}	Rotor q- and d-axis flux
v_a , v_b , v_c	Stator voltage phases a, b, c
i_a , i_b , i_c	Stator currents phases a, b, c
R_s	Resistance of the stator windings
R_r	Resistance of the rotor windings
P	Number of pole pairs
T_e	Electromagnetic torque

Mechanical System

The motor angular velocity is given by:

$$\frac{d}{dt}\omega_m = \frac{1}{J} \big(T_e - T_f - F\omega_m - T_m \big)$$

$$\frac{d\theta_m}{dt} = \omega_m$$

The equations use these variables.

J	Combined inertia of motor and load
F	Combined viscous friction of motor and load
$\theta_{\it m}$	Motor mechanical angular position
T_m	Motor shaft torque
T_e	Electromagnetic torque
T_f	Motor shaft static friction torque

 ω_m Angular mechanical velocity of the motor

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal		Description	Variab le	Equations	
PwrIn fo	PwrTrnsfrd — Power transferred between blocks	PwrMtr	Mechanical power	P_{mot}	$P_{mot} = -\omega_m T_e$
	Positive signals indicate flow into block	PwrBus	Electrical power	P_{bus}	$P_{bus} = v_{an}i_a + v_{bn}i_b + v_{cn}i_c$
	Negative signals indicate flow out of block				
	PwrNotTrnsfrd — Power crossing the block boundary, but not transferred	PwrElec Loss	Resistive power loss	P_{elec}	$P_{elec} = -(R_s i_{sd}^2 + R_s i_{sq}^2 + -R_r i_{rd}^2 + R_r i_{rq}^2)$
	Positive signals indicate an input	PwrMech Loss	Mechanical power loss	P_{mech}	When Port Configuration is set to Torque:
	Negative signals indicate a loss				$P_{mech} = - \left(\omega_m^2 F + \omega_m T_f\right)$
					When Port Configuration is set to Speed:
	PwrStored — Stored energy	PwrMtrS tored	Stored motor		$P_{mech} = 0$ $P_{str} = P_{bus} + P_{mot} + P_{elec} + P_{mech}$
	rate of changePositive signals indicate an increase	toreu	power		1 elec ⊤ 1 mech
	Negative signals indicate a decrease				

The equations use these variables.

R_s	Stator resistance
R_r	Motor resistance
i_a , i_b , i_c	Stator phase a, b, and c current
i_{sq} , i_{sd}	Stator q- and d-axis currents
v_{an}, v_{bn}, v_{cn}	Stator phase a, b, and c voltage
ω_m	Angular mechanical velocity of the rotor
F	Combined motor and load viscous damping
T_e	Electromagnetic torque

T_f Combined motor and load friction torque

Ports

Input

LdTrq — Rotor shaft torque

scalar

Rotor shaft input torque, T_m , in N·m.

Dependencies

To create this port, select Torque for the **Port configuration** parameter.

Spd — **Rotor shaft speed**

scalar

Angular velocity of the rotor, ω_m , in rad/s.

Dependencies

To create this port, select **Speed** for the **Port configuration** parameter.

PhaseVolt — Stator terminal voltages

1-by-3 array

Stator terminal voltages, V_a , V_b , and V_c , in V.

Output

Info — Bus signal

bus

The bus signal contains these block calculations.

Signal		Description	Variable	Units
IaStator		Stator phase current A	i_a	A
IbStator		Stator phase current B	i_b	A
IcStator		Stator phase current C	i_c	A
IdSync		Direct axis current	i_d	A
IqSync		Quadrature axis current	i_q	A
VdSync		Direct axis voltage	v_d	V
VqSync		Quadrature axis voltage	v_q	V
MtrSpd		Angular mechanical velocity of the rotor	ω_m	rad/s
MtrPos		Rotor mechanical angular position	θ_m	rad
MtrTrq		Electromagnetic torque	T_e	N·m
PwrInfo PwrTrnsfrd	PwrMtr	Mechanical power	P_{mot}	W

Signal			Description	Variable	Units
		PwrBus	Electrical power	P_{bus}	W
	PwrNotTrns frd	PwrElec Loss	Resistive power loss	P_{elec}	W
		PwrMech Loss	Mechanical power loss	P_{mech}	W
	PwrStored	PwrMtrS tored	Stored motor power	P_{str}	W

PhaseCurr — Phase a, b, c current

1-by-3 array

Phase a, b, c current, i_a , i_b , and i_c , in A.

MtrTrq — Motor torque

scalar

Motor torque, T_{mtr} , in N·m.

Dependencies

To create this port, select **Speed** for the **Port configuration** parameter.

MtrSpd — Motor speed

scalar

Angular speed of the motor, ω_{mtr} , in rad/s.

Dependencies

To create this port, select Torque for the **Port configuration** parameter.

Parameters

Block Options

Simulation Type — Select simulation type

Continuous (default) | Discrete

By default, the block uses a continuous sample time during simulation. If you want to generate code for single-precision targets, considering setting the parameter to Discrete.

Dependencies

Setting **Simulation Type** to **Discrete** creates the **Sample Time**, **Ts** parameter.

Sample Time, Ts — Sample time for discrete integration

0.001 (default) | scalar

Integration sample time for discrete simulation, in s.

Dependencies

Setting **Simulation Type** to **Discrete** creates the **Sample Time**, **Ts** parameter.

Port configuration — Select port configuration

Torque (default) | Speed

This table summarizes the port configurations.

Port Configuration	Creates Input Port	Creates Output Port
Torque	LdTrq	MtrSpd
Speed	Spd	MtrTrq

Stator resistance and leakage inductance, Zs — Resistance and inductance [1.77 0.0139] (default) | vector

Stator resistance, R_S , in ohms and leakage inductance, L_{ls} , in H.

Rotor resistance and leakage inductance, Zr — Resistance and inductance [1.34 0.0121] (default) | vector

Rotor resistance, R_r , in ohms and leakage inductance, L_{lr} , in H.

${\bf Magnetizing\ inductance,\ Lm-Inductance}$

0.3687 (default) | scalar

Magnetizing inductance, L_m , in H.

Number of pole pairs, P - Pole pairs

2 (default) | scalar

Motor pole pairs, *P*.

$\label{lem:continuous} \textbf{Initial mechanical position, theta_init-Angular position}$

0 (default) | scalar

Initial rotor angular position, θ_{m0} , in rad.

${\bf Initial\ mechanical\ speed,\ omega_init-Angular\ speed}$

0 (default) | scalar

Initial angular velocity of the rotor, ω_{m0} , in rad/s.

Dependencies

To enable this parameter, select Torque for the **Port configuration**.

Physical inertia, viscous damping, static friction, mechanical — Inertia, damping, friction

[0.001 0 0] (default) | vector

Mechanical properties of the rotor:

- Inertia, *J*, in kg·m^2
- Viscous damping, F, in N·m/(rad/s)
- Static friction, T_f , in N·m

Dependencies

To enable this parameter, select Torque for the **Port configuration**.

References

[1] Mohan, Ned. Advanced Electric Drives: Analysis, Control and Modeling Using Simulink. Minneapolis, MN: MNPERE, 2001.

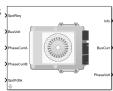
Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also

Flux-Based PMSM | IM Controller | Interior PMSM | Mapped Motor | Surface Mount PMSM

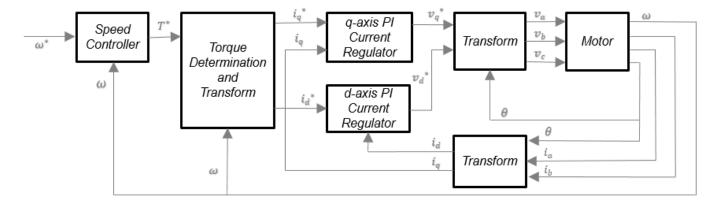

Introduced in R2017a

IM Controller

Internal torque-based, field-oriented controller for an induction motor with an optional outer-loop speed controller

Library:

Powertrain Blockset / Propulsion / Electric Motor Controllers



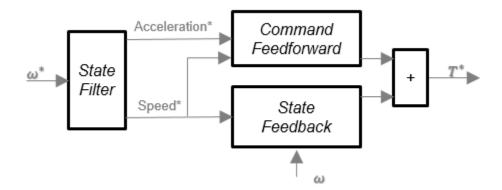
Description

The IM Controller block implements an internal torque-based, field-oriented controller for an induction motor (IM) with an optional outer-loop speed controller. The torque control implements a strategy to control the motor flux. You can specify either speed or torque control.

The IM Controller implements equations for speed control, torque determination, regulators, transforms, and motors.

The figure illustrates the information flow in the block.

The block implements equations that use these variables.


ω	Rotor speed
ω^*	Rotor speed command
T^*	Torque command
i_d	d-axis current
$i*_d$	d-axis current command
i_q	q-axis current
i^*_a	q-axis current command

v_d ,	d-axis voltage
v^*_d v_q	d-axis voltage command q-axis voltage
v^*_q	q-axis voltage command
v_a , v_b , v_c	Stator phase a, b, c voltages
i_a , i_b , i_c	Stator phase a, b, c currents

Speed Controller

To implement the speed controller, select the **Control Type** parameter **Speed Control**. If you select the **Control Type** parameter **Torque Control**, the block does not implement the speed controller.

The speed controller determines the torque command by implementing a state filter, and calculating the feedforward and feedback commands. If you do not implement the speed controller, input a torque command to the IM Controller block.

State Filter

The state filter is a low-pass filter that generates the acceleration command based on the speed command. On the **Speed Controller** tab:

- To make the speed-command lag time negligible, specify a Bandwidth of the state filter parameter.
- To calculate a Speed time constant, Ksf gain based on the state filter bandwidth, select Calculate Speed Regulator Gains.

The discrete form of characteristic equation is given by:

$$z + K_{sf}T_{sm} - 1$$

The filter calculates the gain using this equation.

$$K_{sf} = \frac{1 - \exp\left(-T_{sm} 2\pi E V_{sf}\right)}{T_{sm}}$$

The equation uses these variables.

 EV_{sf} Bandwidth of the speed command filter

 T_{sm} Motion controller sample time K_{sf} Speed regulator time constant

State Feedback

To generate the state feedback torque, the block uses the filtered speed error signal from the state filter. The feedback torque calculation also requires gains for speed regulator.

On the **Speed Controller** tab, select **Calculate Speed Regulator Gains** to compute:

- Proportional gain, ba
- · Angular gain, Ksa
- · Rotational gain, Kisa

For the gain calculations, the block uses the inertia from the **Physical inertia**, **viscous damping**, **static friction** parameter value on the **Motor Parameter** tab.

The gains for the state feedback are calculated using these equations.

Calculation	Equations
Discrete forms of characteristic equation	$z^{3} + \frac{\left(-3J_{p} + T_{s}b_{a} + T_{s}^{2}K_{sa} + T_{s}^{3}K_{isa}\right)}{J_{p}}z^{2} + \frac{\left(3J_{p} - 2T_{s}b_{a} - T_{s}^{2}K_{sa}\right)}{J_{p}}z + \frac{-J_{p} + T_{s}b_{a}}{J_{p}}$ $(z - p_{1})(z - p_{2})(z - p_{3}) = z^{3} + (p_{1} + p_{2} + p_{3})z^{2} + (p_{1}p_{2} + p_{2}p_{3} + p_{1}3)z^{2}$ $- p_{1}p_{2}p_{3}$
Speed regulator proportional gain	$b_a = \frac{J_p - J_p p_1 p_2 p_3}{T_{sm}}$
Speed regulator integral gain	$K_{sa} = \frac{J_p(p_1p_2 + p_2p_3 + p_3p_1) - 3J_p + 2b_aT_{sm}}{T_{sm}^2}$
Speed regulator double integral gain	$K_{isa} = \frac{-J_p(p_1 + p_2 + p_3) + 3J_p - b_a T_{sm} - K_{sa} T_{sm}^2}{T_{sm}^3}$

The equations use these variables.

P	Mot	or pole	e pairs
	_		

b_a Speed regulator proportional gain

 K_{sa} Speed regulator integral gain

 K_{isa} Speed regulator double integral gain

 J_p Motor inertia

 T_{sm} Motion controller sample time

Command Feedforward

To generate the state feedforward torque, the block uses the filtered speed and acceleration from the state filter. Also, the feedforward torque calculation uses the inertia, viscous damping, and static friction. To achieve zero tracking error, the torque command is the sum of the feedforward and feedback torque commands.

Selecting **Calculate Speed Regulator Gains** on the **Speed Controller** tab updates the inertia, viscous damping, and static friction with the **Physical inertia**, **viscous damping**, **static friction** parameter values on the **Motor Parameter** tab.

The feedforward torque command uses this equation.

$$T_{cmd_ff} = J_p \dot{\omega}_m + F_v \omega_m + F_s \frac{\omega_m}{|\omega_m|}$$

The equation uses these variables.

J_p	Motor inertia
T_{cmd_ff}	Torque command feedforward
F_s	Static friction torque constant
$F_{ u}$	Viscous friction torque constant
F_s	Static friction torque constant
ω_m	Rotor mechanical speed

Torque Determination

The block uses a quadrature current to determine the base speed and the current commands. The motor ratings determine the rated electrical speed.

Calculation	Equations
Current commands	$i_{qref} = \frac{T_{cmd}}{i_{sq_{-}0} \cdot P \cdot \left(\frac{L_{m}^{2}}{L_{r}}\right)}$
	If $ \omega_e \le \omega_{rated}$ $i_{dref} = i_{sd_0}$ Else
	$i_{dref} = \frac{i_{sd}_0}{ \omega_e }$ End
Inductance	$L_r = L_{lr} + L_m$
	$L_r = L_{lr} + L_m$ $L_s = L_{ls} + L_m$

The equations use these variables.

i_{dref}	d-axis reference current
i_{qref}	q-axis reference current
i_{sd_0}	d-axis rated current
i_{sq_0}	q-axis rated current
ω_e	Rotor electrical speed
ω_{rated}	Rated electrical speed
L_{lr}	Rotor leaking inductance

L_r	Rotor winding inductance
L_{ls}	Stator leaking inductance
L_s	Stator winding inductance
L_m	Motor magnetizing inductance
P	Motor pole pairs

 T_{cmd} Commanded motor maximum torque

Current Regulators

The block regulates the current with an anti-windup feature. Classic proportional-integrator (PI) current regulators do not consider the d-axis and q-axis coupling or the back-electromagnetic force (EMF) coupling. As a result, transient performance deteriorates. To account for the coupling, the block implements the complex vector current regulator (CVCR) in the scalar format of the rotor reference frame. The CVCR decouples:

- · d-axis and q-axis current cross-coupling
- · Back-EMF cross-coupling

The current frequency response is a first-order system, with a bandwidth of $EV_{current}$.

The block implements these equations.

Calculation	Equations
Motor voltage, in the stator reference frame	$\sigma = 1 - \frac{L_{m}^{2}}{L_{s}L_{r}}$
	$v_{sd} = R_s i_{sd} + \sigma L_s \frac{di_{sd}}{dt} + \frac{L_m}{L_r} \frac{d\lambda_{rd}}{dt} - P\omega_m \sigma L_s i_{sq}$
	$v_{sq} = R_s i_{sq} + \sigma L_s \frac{di_{sq}}{dt} + \omega_d \frac{L_m}{L_r} \frac{d\lambda_{rd}}{dt} + P\omega_m \sigma L_s i_{sd}$
Current regulator gains	$\omega_b = 2\pi E V_{current}$
	$\omega_b = 2\pi E V_{current}$ $K_p = \sigma L_d \omega_b$ $K_i = R_S \omega_b$
	$K_i = R_s \omega_b$
Transfer functions	$\frac{i_d}{i_{dref}} = \frac{\omega_b}{s + \omega_b}$ $\frac{i_q}{i_{qref}} = \frac{\omega_b}{s + \omega_b}$
	$\frac{iq}{i_{qref}} = \frac{\omega_b}{s + \omega_b}$

The equations use these variables.

$EV_{current}$	Current regulator bandwidth	
i_d	d-axis current	
i_q	q-axis current	
i_{sq}	Stator q-axis current	
i_{sd}	Stator d-axis current	
v_{sd}	Stator d-axis voltage	

v_{sq}	Stator q-axis voltage
K_p	Current regulator d-axis gain
K_i	Current regulator integrator gain
L_s	Stator winding inductance
L_m	Motor magnetizing inductance
L_r	Rotor winding inductance
R_s	Stator phase winding resistance
λ_{rd}	Rotor d-axis magnetic flux
σ	Leakage factor
p	Motor pole pairs

Transforms

To calculate the voltages and currents in balanced three-phase (a, b) quantities, quadrature twophase (α, β) quantities, and rotating (d, q) reference frames, the block uses the Clarke and Park Transforms.

In the transform equations.

$$\omega_e = P\omega_m$$

$$\frac{d\theta_e}{dt} = \omega_e$$

Transform	Description	Equations
Clarke	Converts balanced three-phase quantities (a, b) into balanced two-phase quadrature quantities (α, β) .	$x_{\alpha} = \frac{2}{3}x_{a} - \frac{1}{3}x_{b} - \frac{1}{3}x_{c}$ $x_{\beta} = \frac{\sqrt{3}}{2}x_{b} - \frac{\sqrt{3}}{2}x_{c}$
Park	Converts balanced two-phase orthogonal stationary quantities (α, β) into an orthogonal rotating reference frame (d, q) .	$x_d = x_\alpha \cos\theta_e + x_\beta \sin\theta_e$ $x_q = -x_\alpha \sin\theta_e + x_\beta \cos\theta_e$
Inverse Clarke	Converts balanced two-phase quadrature quantities (α, β) into balanced three-phase quantities (a, b) .	$x_a = x_a$ $x_b = -\frac{1}{2}x_\alpha + \frac{\sqrt{3}}{2}x_\beta$ $x_c = -\frac{1}{2}x_\alpha - \frac{\sqrt{3}}{2}x_\beta$
Inverse Park	Converts an orthogonal rotating reference frame (d, q) into balanced two-phase orthogonal stationary quantities (α, β) .	$x_{\alpha} = x_{d}\cos\theta_{e} - x_{q}\sin\theta_{e}$ $x_{\beta} = x_{d}\sin\theta_{e} + x_{q}\cos\theta_{e}$

The transforms use these variables.

Rotor mechanical speed ω_m Ρ Motor pole pairs Rotor electrical speed ω_e

 Θ_e Rotor electrical angle x Phase current or voltage

Motor

The block uses the phase currents and phase voltages to estimate the DC bus current. Positive current indicates battery discharge. Negative current indicates battery charge. The block uses these equations.

Load power	$Ld_{Pwr} = v_a i_a + v_b i_b + v_c i_c$
Source power	$Src_{Pwr} = Ld_{Pwr} + Pwr_{Loss}$
DC bus current	$i_{bus} = \frac{Src_{Pwr}}{v_{bus}}$
Estimated rotor torque	$MtrTrq_{est} = P\lambda_{rd}i_{sq}\frac{L_m}{L_r}$
Power loss for single efficiency source to load	$Pwr_{Loss} = \frac{100 - Eff}{Eff} \cdot Ld_{Pwr}$
Power loss for single efficiency load to source	$Pwr_{Loss} = \frac{100 - Eff}{100} \cdot Ld_{Pwr} $
Power loss for tabulated efficiency	$Pwr_{Loss} = f(\omega_m, MtrTrq_{est})$

The equations use these variables.

v_a , v_b , v_c	Stator phase a, b, c voltages
v_{bus}	Estimated DC bus voltage
i_a , i_b , i_c	Stator phase a, b, c currents
i_{bus}	Estimated DC bus current
Eff	Overall inverter efficiency
ω_m	Rotor mechanical speed
L_r	Rotor winding inductance
L_m	Motor magnetizing inductance
λ_{rd}	Rotor d-axis magnetic flux
i_{sq}	q-axis current
P	Motor pole pairs

Electrical Losses

To specify the electrical losses, on the $Electrical\ Losses$ tab, for $Parameterize\ losses\ by$, select one of these options.

Setting	Block Implementation
Single efficiency measurement	Electrical loss calculated using a constant value for inverter efficiency.
Tabulated loss data	Electrical loss calculated as a function of motor speeds and load torques.

Setting	Block Implementation
Tabulated efficiency data	Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques.
	Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.
	Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.
	Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions.
	Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Ports

Input

SpdReq — Rotor mechanical speed command

scala

Rotor mechanical speed command, ω^*_m , in rad/s.

Dependencies

To create this port, select Speed Control for the Control Type parameter.

TrqCmd — Torque command

scalar

Torque command, T^* , in N·m.

Dependencies

To create this port, select Torque Control for the Control Type parameter.

BusVolt — **DC** bus voltage

scalar

DC bus voltage v_{bus} , in V.

PhaseCurrA — Current

scalar

Stator current phase a, i_a , in A.

PhaseCurrB — Current

scalar

Stator current phase b, i_b , in A.

SpdFdbk — Rotor mechanical speed

scalar

Rotor mechanical speed, ω_m , in rad/s.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Units
SrcPwr	Source power	W
LdPwr	Load power	W
PwrLoss	Power loss	W
MtrTrqEst	Estimated motor torque	N·m

BusCurr — **Bus current**

scalar

Estimated DC bus current, i_{bus} , in A.

PhaseVolt — Stator terminal voltages

array

Stator terminal voltages, V_a , V_b , and V_c , in V.

Parameters

Block Options

Control Type — Select control

Speed Control (default) | Torque Control

If you select Torque Control, the block does not implement the speed controller.

This table summarizes the port configurations.

Port Configuration	Creates Ports
Speed Control	SpdReq
Torque Control	TrqCmd

Motor

Stator resistance, Rs — Resistance

1.77 (default) | scalar

Stator phase winding resistance, R_s , in ohm.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive		
	Parameter	Tab	
Stator resistance, Rs	D-axis rated current, Isd_0	Id and Iq Calculation	
	Q-axis rated current, Isq_0		
	Torque at rated current, Tem		
	D and Q axis integral gain, Ki	Current Controller	

Stator leakage inductance, Lls — Inductance

0.0139 (default) | scalar

Stator leakage inductance, L_{ls} , in H.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Stator leakage inductance, Lls	D-axis rated current, Isd_0 Q-axis rated current, Isq_0 Torque at rated current, Tem	Id and Iq Calculation
	D and Q axis proportional gain, Kp D and Q axis integral gain, Ki	Current Controller

Rotor resistance, Rr — Resistance

1.34 (default) | scalar

Rotor resistance, R_r , in ohm.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive		
	Parameter	Tab	
Rotor resistance, Rr	D-axis rated current, Isd_0	Id and Iq Calculation	
	Q-axis rated current, Isq_0		
	Torque at rated current, Tem		

Rotor leakage inductance, Llr — Inductance

0.0121 (default) | scalar

Rotor leakage inductance, L_{lr} , in H.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Rotor leakage inductance, Llr	D-axis rated current, Isd_0 Q-axis rated current, Isq_0 Torque at rated current, Tem	Id and Iq Calculation
	D and Q axis proportional gain, Kp	Current Controller

Rotor magnetizing inductance, Lm — Inductance

0.3687 (default) | scalar

Rotor magnetizing inductance, L_m , in H.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Rotor leakage inductance, Llr	D-axis rated current, Isd_0 Q-axis rated current, Isq_0 Torque at rated current, Tem	Id and Iq Calculation
	D and Q axis proportional gain, Kp	Current Controller

Number of pole pairs, PolePairs — Poles

2 (default) | scalar

Motor pole pairs, *P*.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Rotor leakage inductance, Llr	Torque at rated current, Tem	Id and Iq Calculation

Physical inertia, viscous damping, static friction, Mechanical — Mechanical properties of motor

[0.025, 0, 0] (default) | vector

Mechanical properties of the motor:

- Motor inertia, F_{ν} , in kgm²
- Viscous friction torque constant, F_v , in N·m/(rad/s)
- Static friction torque constant, F_s , in N·m

Dependencies

To enable this parameter, set the **Control Type** parameter to **Speed Control**.

For the gain calculations, the block uses the inertia from the **Physical inertia**, **viscous damping**, **static friction** parameter value that is on the **Motor Parameters** tab.

Parameter	Used to Derive	
	Parameter	Tab
Physical inertia, viscous damping, static friction, Mechanical	Proportional gain, ba Angular gain, Ksa Rotational gain, Kisa Inertia compensation, Jcomp Viscous damping compensation, Fv Static friction, Fs	Speed Controller

Id and Iq Calculation

Rated synchronous speed, Frate — Motor frequency

60 (default) | scalar

Motor-rated electrical frequency, F_{rate} , in Hz.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Rated synchronous speed, Frate		Id and Iq Calculation
	Q-axis rated current, Isq_0 Torque at rated current, Tem	

Rated line to line voltage RMS, Vrate — Motor voltage

460 (default) | scalar

Motor-rated line-to-line voltage, V_{rate} , in V.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Rated synchronous speed, Frate	D-axis rated current, Isd_0 Q-axis rated current, Isq_0	Id and Iq Calculation
	Torque at rated current, Tem	

Rated slip, Srate — Motor slip speed

0.0172 (default) | scalar

Motor-rated slip speed, S_{rate} , dimensionless.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Rated slip, Srate	D-axis rated current, Isd_0	Id and Iq Calculation
	Q-axis rated current, Isq_0	
	Torque at rated current, Tem	

Calculate Rated Stator Flux Current — Derive parameters

button

Click to derive parameters.

Dependencies

On the **Id and Iq Calculation** tab, when you select **Calculate Rated Stator Flux Current**, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

Derived Parameter on Id and Iq Calculation tab	Dependency		
	Parameter	Tab	
D-axis rated current, Isd_0	Rated synchronous speed, Frate	Id and Iq Calculation	
Q-axis rated current, Isq_0	Rated line to line voltage RMS, Vrate		
Torque at rated current, Tem	Rated slip, Srate		

Derived Parameter	Dependency	
on Id and Iq Calculation tab	Parameter	Tab
	Stator resistance, Rs	Motor Parameters
	Stator leakage inductance, Lls	
	Rotor resistance, Rr	
	Rotor leakage inductance, Llr	
	Rotor magnetizing inductance, Lm	

D-axis rated current, Isd_0 — Derived

3.1004 (default) | scalar

Derived d-axis rated current, in A.

Dependencies

On the **Id and Iq Calculation** tab, when you select **Calculate Rated Stator Flux Current**, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

Derived Parameter	Dependency	
on Id and Iq Calculation tab	Parameter	Tab
D-axis rated current, Isd_0	Rated synchronous speed, Frate	Id and Iq Calculation
Q-axis rated current, Isq_0	Rated line to line voltage RMS, Vrate	
Torque at rated	Rated slip, Srate	
current, Tem	Stator resistance, Rs	Motor Parameters
	Stator leakage inductance, Lls	
	Rotor resistance, Rr	
	Rotor leakage inductance, Llr	
	Rotor magnetizing inductance, Lm	

Q-axis rated current, Isq_0 — Derived

5.7131 (default) | scalar

Derived q-axis rated current, in A.

Dependencies

On the **Id and Iq Calculation** tab, when you select **Calculate Rated Stator Flux Current**, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

Derived Parameter	Dependency	
on Id and Iq Calculation tab	Parameter	Tab
D-axis rated current, Isd_0	Rated synchronous speed, Frate	Id and Iq Calculation
Q-axis rated current, Isq_0	Rated line to line voltage RMS, Vrate	
Torque at rated	Rated slip, Srate	
current, Tem	Stator resistance, Rs	Motor Parameters
	Stator leakage inductance, Lls	
	Rotor resistance, Rr	
	Rotor leakage inductance, Llr	
	Rotor magnetizing inductance, Lm	

Torque at rated current, Tem — Derived

12.6467 (default) | scalar

Torque at rated current, in $N \cdot m$.

Dependencies

On the **Id and Iq Calculation** tab, when you select **Calculate Rated Stator Flux Current**, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

Derived Parameter	Dependency	
on Id and Iq Calculation tab	Parameter	Tab
D-axis rated current, Isd_0	Rated synchronous speed, Frate	Id and Iq Calculation
Q-axis rated current, Isq_0	Rated line to line voltage RMS, Vrate	
Torque at rated current, Tem	Rated slip, Srate	

Derived Parameter	Dependency	
on Id and Iq Calculation tab	Parameter	Tab
	Stator resistance, Rs	Motor Parameters
	Stator leakage inductance, Lls	
	Rotor resistance, Rr	
	Rotor leakage inductance, Llr	
	Rotor magnetizing inductance, Lm	

Current Controller

Bandwidth of the current regulator, EV_current — Bandwidth 200 (default) | scalar

Current regulator bandwidth, in Hz.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Bandwidth of the current regulator,	D and Q axis integral gain, Ki	Current Controller
EV_current	D and Q axis proportional gain, Kp	

Sample time for the torque control, Tst — Time

5e-5 (default) | scalar

Torque control sample time, in s.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Sample time for the torque control, Tst	Speed time constant, Ksf	Speed Controller

Calculate Current Regulator Gains — Derive parameters

button

Click to derive parameters.

Dependencies

On the **Current Controller** tab, when you select **Calculate Current Regulator Gains**, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

Derived Parameter	Dependency	
on Current Controller tab	Parameter	Tab
D and Q axis proportional gain,	Bandwidth of the current regulator, EV_current	Current Controller
Кр	Stator resistance, Rs	Motor Parameters
D and Q axis integral gain, Ki	Stator leakage inductance, Lls	
	Rotor resistance, Rr	
	Rotor leakage inductance, Llr	
	Rotor magnetizing inductance, Lm	

D and Q axis proportional gain, Kp — Derived

32.1894 (default) | scalar

Derived proportional gain, in V/A.

Dependencies

On the **Current Controller** tab, when you select **Calculate Current Regulator Gains**, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

Derived Parameter	Dependency	
on Current Controller tab	Parameter	Tab
D and Q axis proportional gain,	Bandwidth of the current regulator, EV_current	Current Controller
Кр	Stator resistance, Rs	Motor Parameters
D and Q axis integral gain, Ki	Stator leakage inductance, Lls	
	Rotor resistance, Rr	
	Rotor leakage inductance, Llr	
	Rotor magnetizing inductance, Lm	

D and Q axis integral gain, Ki-Derived

2224.2476 (default) | scalar

Derived integral gain, in V/A*s.

Dependencies

On the **Current Controller** tab, when you select **Calculate Current Regulator Gains**, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

Derived Parameter	Dependency	
on Current Controller tab	Parameter	Tab
D and Q axis proportional gain,	Bandwidth of the current regulator, EV_current	Current Controller
Кр	Stator resistance, Rs	Motor Parameters
D and Q axis integral gain, Ki	Stator leakage inductance, Lls	
	Rotor resistance, Rr	
	Rotor leakage inductance, Llr	
	Rotor magnetizing inductance, Lm	

Speed Controller

Bandwidth of the motion controller, EV_motion — Bandwidth [20, 4, 0.8] (default) | vector

Motion controller bandwidth, in Hz. Set the first element of the vector to the desired cutoff frequency. Set the second and third elements of the vector to the higher-order cut off frequencies. You can set the value of the next element to 1/5 the value of the previous element. For example, if the desired cutoff frequency is 20 Hz, specify [20 4 0.8].

Dependencies

The parameter is enabled when the **Control Type** parameter is set to Speed Control.

Parameter	Used to Derive	
	Parameter	Tab
Bandwidth of the motion controller,	Proportional gain, ba	Speed Controller
EV_motion	Angular gain, Ksa	
	Rotational gain, Kisa	

Bandwidth of the state filter, EV_sf — Bandwidth

200 (default) | scalar

State filter bandwidth, in Hz.

Dependencies

The parameter is enabled when the **Control Type** parameter is set to **Speed Control**.

Parameter	Used to Derive	
	Parameter	Tab
Bandwidth of the state filter, EV_sf	Speed time constant, Ksf	Speed Controller

Calculate Speed Regulator Gains — Derive parameters

button

Click to derive parameters.

Dependencies

On the **Speed Controller** tab, when you select **Calculate Speed Regulator Gains**, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

Derived Parameter on Speed Controller tab		Depends On	
		Parameter	Tab
Proportional gain, ba	$b_a = \frac{J_p - J_p p_1 p_2 p_3}{T_{SM}}$	Bandwidth of the motion controller, EV_motion	Speed Controller
		Bandwidth of the state filter, EV_sf	
Angular gain, Ksa	$K_{sa} = \frac{J_p(p_1p_2 + p_2p_3 + p_3p_1) - 3J_p + 2b_aT_{sm}}{T_{sm}^2}$	Sample time for the torque control, Tst	Current Controller
Rotational gain, Kisa	$K_{isa} = \frac{-J_p(p_1 + p_2 + p_3) + 3J_p - b_a T_{sm} - K_{sa} T_{sm}^2}{T_{sm}^3}$	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters
Speed time constant, Ksf	$K_{sf} = \frac{1 - \exp(-T_{sm}2\pi E V_{sf})}{T_{sm}}$		
Inertia compensation, Jcomp	$J_{comp} = J_p$	Physical inertia, viscous damping, static friction,	Motor Parameters
Viscous damping compensation, Fv	$F_{ u}$	Mechanical	
Static friction, Fs	$ F_s $		

The equations use these variables.

P Motor pole pairs

 J_p Motor inertia

 EV_{sf} State filter bandwidth

 EV_{motion} Motion controller bandwidth

Proportional gain, ba — Derived

3.7477 (default) | scalar

Derived proportional gain, in $N \cdot m/(rad/s)$.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters
	Bandwidth of the motion controller, EV_motion	Speed Controller

Angular gain, Ksa — Derived

94.0877 (default) | scalar

Derived angular gain, in N·m/rad.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Angular gain, Ksa	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters
	Bandwidth of the motion controller, EV_motion	Speed Controller

Rotational gain, Kisa — Derived

381.7822 (default) | scalar

Derived rotational gain, in $N \cdot m/(rad*s)$.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Rotational gain, Kisa	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters
	Bandwidth of the motion controller, EV_motion	Speed Controller

Speed time constant, Ksf — Derived

1217.9727 (default) | scalar

Derived speed time constant, in 1/s.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency			
	Parameter	Tab		
Speed time constant, Ksf	Sample time for the torque control, Tst	Current Controller		
	Bandwidth of the state filter, EV_sf	Speed Controller		

Inertia compensation, Jcomp — Derived

0.025 (default) | scalar

Derived inertia compensation, in kg·m^2.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency		
	Parameter	Tab	
Inertia compensation, Jcomp	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters	

Viscous damping compensation, Fv — Derived

0 (default) | scalar

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency		
	Parameter	Tab	
Viscous damping compensation, Fv	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters	

Static friction, Fs — Derived

0 (default) | scalar

Derived static friction, in $N \cdot m/(rad/s)$.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency		
	Parameter	Tab	
Static friction, Fs	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters	

Electrical Losses

Parameterize losses by — Select type

Single efficiency measurement (default) | Tabulated loss data | Tabulated efficiency data

Setting	Block Implementation
Single efficiency measurement	Electrical loss calculated using a constant value for inverter efficiency.
Tabulated loss data	Electrical loss calculated as a function of motor speeds and load torques.
Tabulated efficiency data	Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques. Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.
	Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.
	Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions.
	Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

• Efficiency becomes ill defined for zero speed or zero torque.

• You can account for fixed losses that are still present for zero speed or torque.

Overall inverter efficiency, eff — Constant 98 (default) | scalar

Overall inverter efficiency, Eff, in %.

Dependencies

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

```
Vector of speeds (w) for tabulated loss, w_loss_bp — Breakpoints [0 200 400 600 800 1000] (default) | 1-by-M vector
```

Speed breakpoints for lookup table when calculating losses, in rad/s.

Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated loss data**.

```
Vector of torques (T) for tabulated loss, T_loss_bp — Breakpoints [0 25 50 75 100] (default) | 1-by-N vector
```

Torque breakpoints for lookup table when calculating losses, in N·m.

Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated loss data**.

Corresponding losses, losses_table — Table

```
[100 100 100 100 100;100 150 200 250 300;100 200 300 400 500;100 250 400 550 700;100 300 500 700 900;100 350 600 850 1100] (default) | M-by-N array
```

Array of values for electrical losses as a function of M speeds and N torques, in W. Each value specifies the losses for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated loss data.

```
Vector of speeds (w) for tabulated efficiency, w_eff_bp — Breakpoints [200 400 600 800 1000] (default) | 1-by-M vector
```

Speed breakpoints for lookup table when calculating efficiency, in rad/s.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated efficiency data.

```
Vector of torques (T) for tabulated efficiency, T_eff_bp — Breakpoints [25 50 75 100] (default) | 1-by-N vector
```

Torque breakpoints for lookup table when calculating efficiency, in N·m.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated efficiency data.

Corresponding efficiency, efficiency_table — Table

[96.2 98.1 98.7 99;98.1 99 99.4 99.5;98.7 99.4 99.6 99.7;99 99.5 99.7 99.8;99.2 99.6 99.7 99.8] (default) | M-by-N array

Array of efficiency as a function of M speeds and N torque, in %. Each value specifies the efficiency for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated efficiency data.

References

- [1] Lorenz, Robert D., Thomas Lipo, and Donald W. Novotny. "Motion control with induction motors." *Proceedings of the IEEE*, Vol. 82, Issue 8, August 1994, pp. 1215–1240.
- [2] Shigeo Morimoto, Masayuka Sanada, Yoji Takeda. "Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator." *IEEE Transactions on Industry Applications*, Vol. 30, Issue 4, July/August 1994, pp. 920–926.
- [3] Muyang Li. "Flux-Weakening Control for Permanent-Magnet Synchronous Motors Based on Z-Source Inverters." Master's Thesis, Marquette University, e-Publications@Marquette, Fall 2014.
- [4] Briz, Fernando, Michael W. Degner, and Robert D. Lorenz. "Analysis and design of current regulators using complex vectors." *IEEE Transactions on Industry Applications*, Vol. 36, Issue 3, May/June 2000, pp. 817–825.
- [5] Briz, Fernando, et al. "Current and flux regulation in field-weakening operation [of induction motors]." IEEE Transactions on Industry Applications, Vol. 37, Issue 1, Jan/Feb 2001, pp. 42– 50.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also

Flux-Based PM Controller | Induction Motor | Interior PM Controller | Surface Mount PM Controller

Introduced in R2017a

Surface Mount PMSM

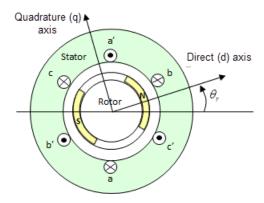
Three-phase exterior permanent magnet synchronous motor with sinusoidal back electromotive force

Library: Powertrain Blockset / Propulsion / Electric Motors

Motor Control Blockset / Electrical Systems / Motors

Description

The Surface Mount PMSM block implements a three-phase exterior permanent magnet synchronous motor (PMSM) with sinusoidal back electromotive force. The block uses the three-phase input voltages to regulate the individual phase currents, allowing control of the motor torque or speed.


By default, the block sets the **Simulation type** parameter to Continuous to use a continuous sample time during simulation. If you want to generate code for fixed-step double- and single-precision targets, considering setting the parameter to Discrete. Then specify a **Sample Time, Ts** parameter.

On the **Parameters** tab, if you select Back-emf or Torque constant, the block implements one of these equations to calculate the permanent flux linkage constant.

Setting	Equation
Back-emf	$\lambda_{pm} = \frac{1}{\sqrt{3}} \cdot \frac{K_e}{1000P} \cdot \frac{60}{2\pi}$
Torque constant	$\lambda_{pm} = \frac{2}{3} \cdot \frac{K_t}{P}$

Motor Construction

This figure shows the motor construction with a single pole pair on the motor.

The motor magnetic field due to the permanent magnets creates a sinusoidal rate of change of flux with motor angle.

For the axes convention, the a-phase and permanent magnet fluxes are aligned when motor angle θ_r is zero.

Three-Phase Sinusoidal Model Electrical System

The block implements these equations, expressed in the motor flux reference frame (dq frame). All quantities in the motor reference frame are referred to the stator.

$$\begin{split} &\omega_e = P\omega_m \\ &\frac{d}{dt}i_d = \frac{1}{L_d}v_d - \frac{R}{L_d}i_d + \frac{L_q}{L_d}P\omega_m i_q \\ &\frac{d}{dt}i_q = \frac{1}{L_q}v_q - \frac{R}{L_q}i_q - \frac{L_d}{L_q}P\omega_m i_d - \frac{\lambda_{pm}P\omega_m}{L_q} \\ &T_e = 1.5P[\lambda_{pm}i_q + (L_d - L_a)i_di_a] \end{split}$$

The L_q and L_d inductances represent the relation between the phase inductance and the motor position due to the saliency of the motor magnets. For the surface mount PMSM, $L_d = L_q$.

The equations use these variables.

L_q , L_d	q- and d-axis inductances
R	Resistance of the stator windings
i_q , i_d	q- and d-axis currents
v_q , v_d	q- and d-axis voltages
ω_m	Angular mechanical velocity of the motor
ω_e	Angular electrical velocity of the motor
λ_{pm}	Permanent magnet flux linkage
K_e	Back electromotive force (EMF)
K_t	Torque constant
P	Number of pole pairs
T_e	Electromagnetic torque
Θ_e	Electrical angle

Mechanical System

The motor angular velocity is given by:

$$\frac{d}{dt}\omega_m = \frac{1}{J}(T_e - T_f - F\omega_m - T_m)$$
$$\frac{d\theta_m}{dt} = \omega_m$$

The equations use these variables.

J Combined inertia of motor and loadF Combined viscous friction of motor and load

θ_m	Motor mechanical angular position
T_m	Motor shaft torque
T_e	Electromagnetic torque
T_f	Motor shaft static friction torque
ω_m	Angular mechanical velocity of the motor

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Variab le	Equations
PwrIn fo	PwrTrnsfrd — Power transferred between blocks	PwrMtr	Mechanical power	P_{mot}	$P_{mot} = -\omega_m T_e$
	Positive signals indicate flow into block	PwrBus	Electrical power	P_{bus}	$\begin{vmatrix} P_{bus} = v_{an}i_a + v_{bn}i_b \\ + v_{cn}i_c \end{vmatrix}$
	Negative signals indicate flow out of block				
	PwrNotTrnsfrd — Power crossing the block boundary, but not transferred		Resistive power loss	P_{elec}	$P_{elec} = -\frac{3}{2}(R_s i_{sd}^2 + R_s i_{sq}^2)$
	Positive signals indicate an input	PwrMech Loss	Mechanical power loss	P_{mech}	When Port Configuration is set to
	Negative signals indicate a loss				Torque: $P_{mech} = -\left(\omega_m^2 F + \omega_m T_f\right)$ When Port Configuration is set to Speed: $P_{mech} = 0$
	PwrStored — Stored energy rate of change • Positive signals indicate an increase	PwrMtrS tored	Stored motor power	P_{str}	$P_{str} = P_{bus} + P_{mot} + P_{elec} + P_{mech}$
	Negative signals indicate a decrease				

The equations use these variables.

R_s	Stator resistance
i_a , i_b , i_c	Stator phase a, b, and c current
i_{sq} , i_{sd}	Stator q- and d-axis currents

 v_{an} , v_{bn} , v_{cn} Stator phase a, b, and c voltage

 ω_m Angular mechanical velocity of the motor F Combined motor and load viscous damping

 T_e Electromagnetic torque

 T_f Combined motor and load friction torque

Ports

Input

LdTrq — Motor shaft torque

scalar

Motor shaft input torque, T_m , in N·m.

Dependencies

To create this port, select Torque for the **Port Configuration** parameter.

Spd — Motor shaft speed

scalar

Angular velocity of the motor, ω_m , in rad/s.

Dependencies

To create this port, select Speed for the Port Configuration parameter.

PhaseVolt — Stator terminal voltages

1-by-3 array

Stator terminal voltages, V_a , V_b , and V_c , in V.

Output

Info — Bus signal

bus

The bus signal contains these block calculations.

Signal	Description	Variable	Units
IaStator	Stator phase current A	i_a	A
IbStator	Stator phase current B	i_b	A
IcStator	Stator phase current C	i_c	A
IdSync	Direct axis current	i_d	A
IqSync	Quadrature axis current	i_q	A
VdSync	Direct axis voltage	v_d	V
VqSync	Quadrature axis voltage	v_q	V

Signal			Description	Variable	Units
·			Angular mechanical velocity of the motor	city of the ω_m	
MtrPos			Motor mechanical angular position θ_m		rad
MtrTrq			Electromagnetic torque	T_e	N·m
PwrInfo	PwrTrnsfrd	PwrMtr	Mechanical power	P_{mot}	W
		PwrBus	Electrical power	P_{bus}	W
	PwrNotTrns frd	PwrElecLo ss	Resistive power loss	P_{elec}	W
		PwrMechLo ss	Mechanical power loss	P_{mech}	W
	PwrStored	PwrMtrSto red	Stored motor power	P_{str}	W

PhaseCurr — Phase a, b, c current

1-by-3 array

Phase a, b, c current, i_a , i_b , and i_c , in A.

MtrTrq — Motor torque

scalar

Motor torque, T_{mtr} , in N·m.

Dependencies

To create this port, select Speed for the **Mechanical input configuration** parameter.

MtrSpd — Motor speed

scalar

Angular speed of the motor, ω_{mtr} , in rad/s.

Dependencies

To create this port, select Torque for the **Mechanical input configuration** parameter.

Parameters

Block Options

Mechanical input configuration — Select port configuration

Torque (default) | Speed

This table summarizes the port configurations.

Port Configuration	Creates Input Port	Creates Output Port
Torque	LdTrq	MtrSpd
Speed	Spd	MtrTrq

Simulation type — Select simulation type

Continuous (default) | Discrete

By default, the block uses a continuous sample time during simulation. If you want to generate code for single-precision targets, considering setting the parameter to Discrete.

Dependencies

Setting **Simulation type** to **Discrete** creates the **Sample Time**, **Ts** parameter.

Sample Time (Ts) — Sample time for discrete integration scalar

Scatai

Integration sample time for discrete simulation, in s.

Dependencies

Setting **Simulation type** to **Discrete** creates the **Sample Time**, **Ts** parameter.

Parameters

Number of pole pairs (P) — Pole pairs

scalar

Motor pole pairs, *P*.

Stator phase resistance per phase (Rs) — Resistance

scalar

Stator phase resistance per phase, R_s , in ohm.

Stator d-axis inductance (Ldq_) — Inductance

scalar

Stator inductance, L_{da} , in H.

Permanent flux linkage constant (lambda_pm) — Flux

scalar

Permanent flux linkage constant, λ_{pm} , in Wb.

Back-emf constant (Ke) — Back electromotive force

scalar

Back electromotive force, EMF, K_e , in peak Vpk_LL/krpm. Vpk_LL is the peak voltage line-to-line measurement.

To calculate the permanent flux linkage constant, the block implements this equation.

$$\lambda_{pm} = \frac{1}{\sqrt{3}} \cdot \frac{K_e}{1000P} \cdot \frac{60}{2\pi}$$

Torque constant (Kt) — Torque constant

scalar

Torque constant, K_t , in N·m/A.

To calculate the permanent flux linkage constant, the block implements this equation.

$$\lambda_{pm} = \frac{2}{3} \cdot \frac{K_t}{P}$$

Physical inertia, viscous damping, and static friction (mechanical) — Inertia, damping, friction

vector

Mechanical properties of the motor:

- Inertia, J, in kgm^2
- Viscous damping, F, in N·m/(rad/s)
- Static friction, T_f , in N·m

Dependencies

To enable this parameter, select the **Torque** configuration parameter.

Initial Values

Initial d-axis and q-axis current (idq0) — Current vector

Initial q- and d-axis currents, i_a , i_d , in A.

Initial mechanical position (theta_init) — Angle scalar

Initial motor angular position, θ_{m0} , in rad.

Initial mechanical speed (omega_init) — Speed scalar

Initial angular velocity of the motor, ω_{m0} , in rad/s.

Dependencies

To enable this parameter, select the Torque configuration parameter.

References

- [1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
- [2] Anderson, P. M. Analysis of Faulted Power Systems. Hoboken, NJ: Wiley-IEEE Press, 1995.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also

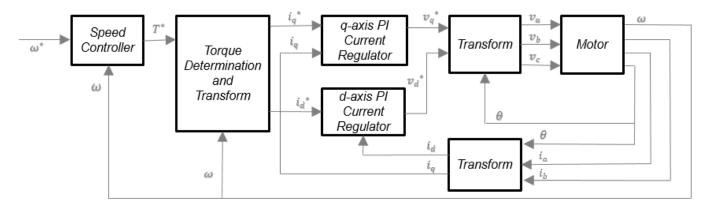
Flux-Based PMSM | Induction Motor | Interior PMSM | Mapped Motor | Surface Mount PM Controller

Introduced in R2017a

Surface Mount PM Controller

Torque-based, field-oriented controller for a surface mount permanent magnet synchronous motor **Library:** Powertrain Blockset / Propulsion / Electric Motors

Motor Control Blockset / Electrical Systems / Motors


Davice And Description (And Description And De

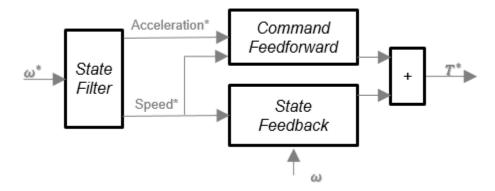
Description

The Surface Mount PM Controller block implements a torque-based, field-oriented controller for a surface mount permanent magnet synchronous motor (PMSM) with an optional outer-loop speed controller. The torque control utilizes quadrature current and does not weaken the magnetic flux. You can specify either speed or torque control.

The Surface Mount PM Controller implements equations for speed control, torque determination, regulators, transforms, and motors.

The figure illustrates the information flow in the block.

The block implements equations that use these variables.


ω	Rotor speed
ω^*	Rotor speed command
<i>T</i> *	Torque command
i_d	d-axis current
i^*_d	d-axis current command
i_q	q-axis current
i^*_q	q-axis current command
v_d ,	d-axis voltage
v^*_d	d-axis voltage command

v_q	q-axis voltage
v^*_q	q-axis voltage command
v_a , v_b , v_c	Stator phase a, b, c voltages
i_a , i_b , i_c	Stator phase a, b, c currents

Speed Controller

To implement the speed controller, select the **Control Type** parameter **Speed Control**. If you select the **Control Type** parameter **Torque Control**, the block does not implement the speed controller.

The speed controller determines the torque command by implementing a state filter, and calculating the feedforward and feedback commands. If you do not implement the speed controller, input a torque command to the Surface Mount PM Controller block.

State Filter

The state filter is a low-pass filter that generates the acceleration command based on the speed command. On the **Speed Controller** tab:

- To make the speed-command lag time negligible, specify a Bandwidth of the state filter parameter.
- To calculate a Speed time constant, Ksf gain based on the state filter bandwidth, select Calculate Speed Regulator Gains.

The discrete form of characteristic equation is given by:

$$z+K_{sf}T_{sm}-1$$

The filter calculates the gain using this equation.

$$K_{sf} = \frac{1 - \exp(-T_{sm}2\pi E V_{sf})}{T_{sm}}$$

The equations use these variables.

 EV_{sf} Bandwidth of the speed command filter T_{sm} Motion controller sample time K_{sf} Speed regulator time constant

State Feedback

To generate the state feedback torque, the block uses the filtered speed error signal from the state filter. The feedback torque calculation also requires gains for speed regulator.

On the **Speed Controller** tab, select **Calculate Speed Regulator Gains** to calculate:

- · Proportional gain, ba
- Angular gain, Ksa
- Rotational gain, Kisa

For the gain calculations, the block uses the inertia from the **Physical inertia**, **viscous damping**, **static friction** parameter value on the **Motor Parameters** tab.

The gains for the state feedback are calculated using these equations.

Calculation	Equations
Discrete forms of characteristic equation	$z^{3} + \frac{\left(-3J_{p} + T_{s}b_{a} + T_{s}^{2}K_{sa} + T_{s}^{3}K_{isa}\right)}{J_{p}}z^{2} + \frac{\left(3J_{p} - 2T_{s}b_{a} - T_{s}^{2}K_{sa}\right)}{J_{p}}z + \frac{-J_{p} + T_{s}b_{a}}{J_{p}}$ $(z - p_{1})(z - p_{2})(z - p_{3}) = z^{3} + (p_{1} + p_{2} + p_{3})z^{2} + (p_{1}p_{2} + p_{2}p_{3} + p_{1}3)z^{2}$
	$-p_1p_2p_3$
Speed regulator proportional gain	$b_a = \frac{J_p - J_p p_1 p_2 p_3}{T_{sm}}$
Speed regulator integral gain	$K_{sa} = \frac{J_p(p_1p_2 + p_2p_3 + p_3p_1) - 3J_p + 2b_aT_{sm}}{T_{sm}^2}$
Speed regulator double integral gain	$K_{isa} = \frac{-J_p(p_1 + p_2 + p_3) + 3J_p - b_a T_{sm} - K_{sa} T_{sm}^2}{T_{sm}^3}$

The equations use these variables.

P	Motor pole pairs
\boldsymbol{b}_a	Speed regulator proportional gain
K_{sa}	Speed regulator integral gain
K_{isa}	Speed regulator double integral gain
J_p	Motor inertia
T_{sm}	Motion controller sample time

Command Feedforward

To generate the state feedforward torque, the block uses the filtered speed and acceleration from the state filter. Also, the feedforward torque calculation uses the inertia, viscous damping, and static friction. To achieve zero tracking error, the torque command is the sum of the feedforward and feedback torque commands.

Selecting **Calculate Speed Regulator Gains** on the **Speed Controller** tab updates the inertia, viscous damping, and static friction with the **Physical inertia**, **viscous damping**, **static friction** parameter values on the **Motor Parameters** tab.

The feedforward torque command uses this equation.

$$T_{cmd_ff} = J_p \dot{\omega}_m + F_v \omega_m + F_s \frac{\omega_m}{|\omega_m|}$$

The equation uses these variables.

J_p	Motor inertia
T_{cmd_ff}	Torque command feedforward
F_s	Static friction torque constant
F_{v}	Viscous friction torque constant
F_s	Static friction torque constant
ω_m	Rotor speed

Torque Determination

The block uses a quadrature current to determine the base speed and the current commands. The available bus voltage determines the base speed. The direct (d) and quadrature (q) permanent magnet (PM) determines the induced voltage.

Calculation	Equations
Motor maximum torque	$T_{max} = \frac{3}{2}P(\lambda_{pm}i_q + (L_d - L_q)i_di_q)$
Maximum q-axis phase current	$i_{q_max} = \frac{T_{cmd}}{\frac{3}{2}P\lambda_{pm}}$
Electrical base speed	$\omega_{base} = \frac{v_{max}}{\sqrt{(L_q i_q)^2 + (\lambda_{pm})^2}}$
d-axis voltage	$v_d = -\omega_e L_q i_{q_max}$
q-axis voltage	$v_q = \omega_e \lambda_{pm}$
Maximum phase current	$i_{max} = i_{q_max} $
Maximum voltage	$v_{max} = \frac{v_{bus}}{\sqrt{3}}$

Calculation	Equations
Current command	$i_{dref} = 0$
	$i_{q_tmp} = \min(i_{q_max}, \frac{T_{cmd}}{\frac{3}{2}P\lambda_{pm}})$
	$\begin{aligned} If \omega_e &\leq & \omega_{base} \\ & i_{qref} = & i_{q_tmp} \end{aligned}$
	Else
	$i_{qfw} = sqrt(\min(0, \frac{1}{L_q}((\frac{v_{max}}{\omega_e})^2 - (\lambda_{pm})^2))$
	If $i_{a tmp} < i_{afw}$
	$i_{qref} = i_{q_tmp}$ Else
	$i_{qref} = i_{qfw}$
	End
	End

The equations use these variables.

Maximum phase current
d-axis current
q-axis current
d-axis reference current
q-axis reference current
Maximum q-axis phase current
Rotor electrical speed
Permanent magnet flux linkage
d-axis voltage
q-axis voltage
Maximum line to neutral voltage
DC bus voltage
d-axis winding inductance
q-axis winding inductance
Motor pole pairs
Motor maximum torque
Commanded motor maximum torque

Current Regulators

The block regulates the current with an anti-windup feature. Classic proportional-integrator (PI) current regulators do not consider the d-axis and q-axis coupling or the back-electromagnetic force (EMF) coupling. As a result, transient performance deteriorates. To account for the coupling, the block implements the complex vector current regulator (CVCR) in the scalar format of the rotor reference frame. The CVCR decouples:

· d-axis and q-axis current cross-coupling

· back-EMF cross-coupling

The current frequency response is a first-order system, with a bandwidth of $EV_{current}$.

The block implements these equations.

Calculation	Equations
Motor voltage, in the rotor reference frame	$L_{d} \frac{di_{d}}{dt} = v_{d} - R_{s}i_{d} + p\omega_{m}L_{q}i_{q}$ $L_{d} \frac{di_{q}}{dt} = v_{q} - R_{s}i_{q} - p\omega_{m}L_{d}i_{d} - p\omega_{m}\lambda_{pm}$
Current regulator gains	$\omega_b = 2\pi E V_{current}$
	$\begin{aligned} \omega_b &= 2\pi E V_{current} \\ K_{p_d} &= L_d \omega_b \\ K_{p_q} &= L_q \omega_b \\ K_i &= R_s \omega_b \end{aligned}$
	$K_{p_{-}q} = L_q \omega_b$
	$K_i = R_s \omega_b$
Transfer functions	$\frac{i_d}{i_{dref}} = \frac{\omega_b}{s + \omega_b}$
	$\frac{i_q}{i_{qref}} = \frac{\omega_b}{s + \omega_b}$

The equations use these variables.

$EV_{current}$	Current regulator bandwidth
i_d	d-axis current
i_q	q-axis current
K_{p_d}	Current regulator d-axis gain
K_{p_q}	Current regulator q-axis gain
K_i	Current regulator integrator gain
L_d	d-axis winding inductance
L_q	q-axis winding inductance
R_s	Stator phase winding resistance
ω_m	Rotor speed
v_d	d-axis voltage
v_q	q-axis voltage
λ_{pm}	Permanent magnet flux linkage
P	Motor pole pairs

Transforms

To calculate the voltages and currents in balanced three-phase (a, b) quantities, quadrature two-phase (α, β) quantities, and rotating (d, q) reference frames, the block uses the Clarke and Park Transforms.

In the transform equations.

$$\omega_e = P\omega_m$$

$$\frac{d\theta_e}{dt} = \omega_e$$

Transform	Description	Equations
Clarke	Converts balanced three-phase quantities (a, b) into balanced two-phase quadrature quantities (α, β) .	$x_{\alpha} = \frac{2}{3}x_{a} - \frac{1}{3}x_{b} - \frac{1}{3}x_{c}$ $x_{\beta} = \frac{\sqrt{3}}{2}x_{b} - \frac{\sqrt{3}}{2}x_{c}$
Park	Converts balanced two-phase orthogonal stationary quantities (α, β) into an orthogonal rotating reference frame (d, q) .	$x_d = x_\alpha \cos \theta_e + x_\beta \sin \theta_e$ $x_q = -x_\alpha \sin \theta_e + x_\beta \cos \theta_e$
Inverse Clarke	Converts balanced two-phase quadrature quantities (α, β) into balanced three-phase quantities (a, b) .	$x_a = x_a$ $x_b = -\frac{1}{2}x_\alpha + \frac{\sqrt{3}}{2}x_\beta$ $x_c = -\frac{1}{2}x_\alpha - \frac{\sqrt{3}}{2}x_\beta$
Inverse Park	Converts an orthogonal rotating reference frame (d, q) into balanced two-phase orthogonal stationary quantities (α, β) .	$x_{\alpha} = x_{d}\cos\theta_{e} - x_{q}\sin\theta_{e}$ $x_{\beta} = x_{d}\sin\theta_{e} + x_{q}\cos\theta_{e}$

The transforms use these variables.

ω_m	Rotor speed
P	Motor pole pairs
ω_e	Rotor electrical speed
Θ_e	Rotor electrical angle
X	Phase current or voltage

Motor

The block uses the phase currents and phase voltages to estimate the DC bus current. Positive current indicates battery discharge. Negative current indicates battery charge. The block uses these equations.

Load power	$Ld_{Pwr} = v_a i_a + v_b i_b + v_c i_c$
Source power	$Src_{Pwr} = Ld_{Pwr} + Pwr_{Loss}$
DC bus current	$i_{bus} = \frac{Srcp_{wr}}{v_{bus}}$
Estimated rotor torque	$MtrTrq_{est} = 1.5P[\lambda i_q + (L_d - L_q)i_d i_q]$
Power loss for single efficiency source to load	$Pwr_{Loss} = \frac{100 - Eff}{Eff} \cdot Ld_{Pwr}$
Power loss for single efficiency load to source	$Pwr_{Loss} = \frac{100 - Eff}{100} \cdot Ld_{Pwr} $

Power loss for tabulated efficiency	$Pwr_{Loss} = f(\omega_m, MtrTrq_{est})$
-------------------------------------	--

The equations use these variables.

Stator phase a, b, c voltages	
Estimated DC bus voltage	
Stator phase a, b, c currents	
Estimated DC bus current	
Overall inverter efficiency	
Rotor mechanical speed	
q-axis winding inductance	
d-axis winding inductance	
q-axis current	
d-axis current	
Permanent magnet flux linkage	
Motor pole pairs	

Electrical Losses

To specify the electrical losses, on the **Electrical Losses** tab, for **Parameterize losses by**, select one of these options.

Setting	Block Implementation	
Single efficiency measurement	Electrical loss calculated using a constant value for inverter efficiency.	
Tabulated loss data	Electrical loss calculated as a function of motor speeds and load torques.	
Tabulated efficiency data	 Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques. Converts the efficiency values you provide into losses and uses the tabulated losses for simulation. Ignores efficiency values you provide for zero speed or zero 	
	torque. Losses are assumed zero when either torque or speed is zero.	
	Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions.	
	Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.	

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Ports

Input

SpdReq — Rotor speed command

scalar

Rotor speed command, ω^*_m , in rad/s.

Dependencies

To create this port, select Speed Control for the Control Type parameter.

TrqCmd — Torque command

scalar

Torque command, T^* , in N·m.

Dependencies

To create this port, select Torque Control for the Control Type parameter.

BusVolt — **DC** bus voltage

scalar

DC bus voltage v_{bus} , in V.

PhaseCurrA — Current

scalar

Stator current phase a, i_a , in A.

PhaseCurrB — Current

scalar

Stator current phase b, i_b , in A.

SpdFdbk — Rotor speed

scalar

Rotor speed, ω_m , in rad/s.

PosFdbk — Rotor electrical angle

scalar

Rotor electrical angle, Θ_m , in rad.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Units
SrcPwr	Source power	W
LdPwr	Load power	W
PwrLoss	Power loss	W
MtrTrqEst	Estimated motor torque	N·m

BusCurr — **Bus current**

scalar

Estimated DC bus current, i_{bus} , in A.

PhaseVolt — Stator terminal voltages

array

Stator terminal voltages, V_a , V_b , and V_c , in V.

Parameters

Configuration

Control Type — Select control

Speed Control (default) | Torque Control

If you select Torque Control, the block does not implement the speed controller.

This table summarizes the port configurations.

Port Configuration	Creates Ports
Speed Control	SpdReq
Torque Control	TrqCmd

Motor Parameters

Stator resistance, Rs — Resistance

0.02 (default) | scalar

Stator phase winding resistance, R_s , in ohm.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter Tab	
Stator resistance, Rs	D and Q axis integral gain, Ki	Current Controller

DQ axis inductance, Ldq — Inductance

1.7e-3 (default) | scalar

D-axis winding inductance, L_{dq} , in H.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive		
	Parameter	Tab	
DQ axis inductance, Ldq	D-axis proportional gain, Kp_d	Current Controller	
_	Q-axis proportional gain, Kp_q		
	D and Q axis integral gain, Ki		

Permanent magnet flux, lambda_pm — Flux

0.2205 (default) | scalar

Permanent magnet flux, λ_{pm} , in Wb.

Number of pole pairs, PolePairs — Poles

4 (default) | scalar

Motor pole pairs, *P*.

Physical inertia, viscous damping, static friction, Mechanical — Inertia, damping, friction

[0.0027, 4.924e-4, 0] (default) | vector

Mechanical properties of the motor:

- Motor inertia, F_{ν} , in kgm²
- Viscous friction torque constant, F_v , in N·m/(rad/s)
- Static friction torque constant, F_s , in N·m

Dependencies

To enable this parameter, set the **Control Type** parameter to **Speed Control**.

For the gain calculations, the block uses the inertia from the **Physical inertia**, **viscous damping**, **static friction** parameter value that is on the **Motor Parameters** tab.

Parameter	Used to Derive	
	Parameter	Tab
Physical inertia, viscous damping, static friction, Mechanical	Proportional gain, ba Angular gain, Ksa Rotational gain, Kisa Inertia compensation, Jcomp Viscous damping compensation, Fv	Speed Controller
	Static friction, Fs	

Id and Iq Calculation

Maximum torque, T_max — Torque

60 (default) | scalar

Maximum torque, in N·m.

Current Controller

Bandwidth of the current regulator, EV_current — Bandwidth

200 (default) | scalar

Current regulator bandwidth, in Hz.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Used to Derive	
	Parameter	Tab
Bandwidth of the current regulator, EV_current	D-axis proportional gain, Kp_d Q-axis proportional gain, Kp_q D and q axis proportional gain, Ki	

Sample time for the torque control, Tst — Time

5e-5 (default) | scalar

Torque control sample time, in s.

Dependencies

Parameter	Used to Derive	
	Parameter Tab	
Sample time for the torque control, Tst	Speed time constant, Ksf	Speed Controller

Calculate Current Regulator Gains — Derive parameters

button

Click to derive parameters.

Dependencies

On the **Current Controller** tab, when you select **Calculate Current Regulator Gains**, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

Derived Parameter	Dependency	
on Current Controller tab	Parameter	Tab
D-axis proportional gain, Kp_d	Bandwidth of the current regulator, EV_current	Current Controller
Q-axis proportional	Stator resistance, Rs	Motor Parameters
gain, Kp_q	DQ-axis inductance, Ldq	
D and Q axis integral gain, Ki		

D-axis proportional gain, Kp_d — Derived

0.47149 (default) | scalar

Derived d-axis proportional gain, in V/A.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency		
	Parameter Tab		
D-axis proportional gain, Kp_d	Bandwidth of the current regulator, EV_current	Current Controller	
	DQ-axis inductance, Ldq	Motor Parameters	

Q-axis proportional gain, Kp_q — Derived

0.52125 (default) | scalar

Derived q-axis proportional gain, in V/A.

Dependencies

Parameter	Dependency Parameter Tab		
Q-axis proportional gain, Kp_q	Bandwidth of the current regulator, EV_current	Current Controller	
	DQ-axis inductance, Ldq	Motor Parameters	

D and Q axis integral gain, Ki — Derived

251.3274 (default) | scalar

Derived axis integral gain, in V/A*s.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency		
	Parameter	Tab	
D and Q axis integral gain, Ki	Bandwidth of the current regulator, EV_current	Current Controller	
	Stator resistance, Rs	Motor Parameters	
	DQ-axis inductance, Ldq		

Speed Controller

Bandwidth of the motion controller, EV_motion — Bandwidth

[20, 4, 0.8] (default) | vector

Motion controller bandwidth, in Hz. Set the first element of the vector to the desired cutoff frequency. Set the second and third elements of the vector to the higher-order cut off frequencies. You can set the value of the next element to 1/5 the value of the previous element. For example, if the desired cutoff frequency is $20 \, \text{Hz}$, specify [$20 \, 4 \, 0.8$].

Dependencies

The parameter is enabled when the **Control Type** parameter is set to Speed Control.

Parameter	Used to Derive	
	Parameter	Tab
Bandwidth of the motion controller,		Speed Controller
EV_motion	Angular gain, Ksa Rotational gain, Kisa	

Bandwidth of the state filter, EV_sf — Bandwidth

200 (default) | scalar

State filter bandwidth, in Hz.

Dependencies

The parameter is enabled when the **Control Type** parameter is set to **Speed Control**.

Parameter	Used to Derive	
	Parameter	Tab
Bandwidth of the state filter, EV_sf	Speed time constant, Ksf	Speed Controller

Calculate Speed Regulator Gains — Derive parameters

button

Click to derive parameters.

Dependencies

On the **Speed Controller** tab, when you select **Calculate Speed Regulator Gains**, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

Derived Parameter on Speed Controller tab		Depends On	
		Parameter	Tab
Proportional gain, ba	$b_a = \frac{J_p - J_p p_1 p_2 p_3}{T_{sm}}$	Bandwidth of the motion controller, EV_motion Bandwidth of the state filter, EV_sf	Speed Controller
Angular gain, Ksa	$K_{sa} = \frac{J_p(p_1p_2 + p_2p_3 + p_3p_1) - 3J_p + 2b_aT_{sm}}{T_{sm}^2}$	Sample time for the torque control, Tst	Current Controller
Rotational gain, Kisa	$K_{isa} = \frac{-J_p(p_1 + p_2 + p_3) + 3J_p - b_a T_{sm} - K_{sa} T_{sm}^2}{T_{sm}^3}$	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters
Speed time constant, Ksf	$K_{sf} = \frac{1 - \exp(-T_{sm}2\pi E V_{sf})}{T_{sm}}$		
Inertia compensation, Jcomp	$J_{comp} = J_p$	Physical inertia, viscous damping, static friction,	Motor Parameters
Viscous damping compensation, Fv	$F_{\mathbf{v}}$	Mechanical	
Static friction, Fs	$ F_s $		

The equations use these variables.

P Motor pole pairs

 J_p Motor inertia

 EV_{sf} State filter bandwidth

 EV_{motion} Motion controller bandwidth

Proportional gain, ba — Derived

3.7477 (default) | scalar

Derived proportional gain, in $N \cdot m/(rad/s)$.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Proportional gain, ba	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters
	Bandwidth of the motion controller, EV_motion	Speed Controller

Angular gain, Ksa — Derived

94.0877 (default) | scalar

Derived angular gain, in N·m/rad.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Angular gain, Ksa	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters
	Bandwidth of the motion controller, EV_motion	Speed Controller

Rotational gain, Kisa — Derived

381.7822 (default) | scalar

Derived rotational gain, in $N \cdot m/(rad*s)$.

Dependencies

Parameter	Dependency	
	Parameter	Tab
Rotational gain, Kisa	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters
	Bandwidth of the motion controller, EV_motion	Speed Controller

Speed time constant, Ksf — Derived

1217.9727 (default) | scalar

Derived speed time constant, in 1/s.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency		
	Parameter Tab		
	Sample time for the torque control, Tst	Current Controller	
	Bandwidth of the state filter, EV_sf	Speed Controller	

Inertia compensation, Jcomp — Derived

0.025 (default) | scalar

Derived inertia compensation, in kg·m^2.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency	
	Parameter	Tab
Inertia compensation, Jcomp	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters

Viscous damping compensation, Fv — Derived

0 (default) | scalar

Dependencies

Parameter	Dependency Parameter Tab	
Viscous damping compensation, Fv	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters

Static friction, Fs — Derived

0 (default) | scalar

Derived static friction, in $N \cdot m/(rad/s)$.

Dependencies

This table summarizes the parameter dependencies.

Parameter	Dependency			
	Parameter Tab			
Static friction, Fs	Physical inertia, viscous damping, static friction, Mechanical	Motor Parameters		

Electrical Losses

Parameterize losses by — Select type

Single efficiency measurement (default) | Tabulated loss data | Tabulated efficiency data

Setting	Block Implementation
Single efficiency measurement	Electrical loss calculated using a constant value for inverter efficiency.
Tabulated loss data	Electrical loss calculated as a function of motor speeds and load torques.
Tabulated efficiency data	Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques. Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.
	Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.
	Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions.
	Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

• Efficiency becomes ill defined for zero speed or zero torque.

• You can account for fixed losses that are still present for zero speed or torque.

Overall inverter efficiency, eff — Constant 98 (default) | scalar

Overall inverter efficiency, Eff, in %.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated loss data.

```
Vector of speeds (w) for tabulated loss, w_loss_bp — Breakpoints [0 200 400 600 800 1000] (default) | 1-by-M vector
```

Speed breakpoints for lookup table when calculating losses, in rad/s.

Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated loss data**.

```
Vector of torques (T) for tabulated loss, T_loss_bp — Breakpoints [0 25 50 75 100] (default) | 1-by-N vector
```

Torque breakpoints for lookup table when calculating losses, in N·m.

Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated loss data**.

Corresponding losses, losses_table — Table

```
[100 100 100 100 100;100 150 200 250 300;100 200 300 400 500;100 250 400 550 700;100 300 500 700 900;100 350 600 850 1100] (default) | M-by-N array
```

Array of values for electrical losses as a function of M speeds and N torques, in W. Each value specifies the losses for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated loss data.

```
Vector of speeds (w) for tabulated efficiency, w_eff_bp — Breakpoints [200 400 600 800 1000] (default) | 1-by-M vector
```

Speed breakpoints for lookup table when calculating efficiency, in rad/s.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated efficiency data.

```
Vector of torques (T) for tabulated efficiency, T_eff_bp — Breakpoints [25 50 75 100] (default) | 1-by-N vector
```

Torque breakpoints for lookup table when calculating efficiency, in N·m.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated efficiency data.

Corresponding efficiency, efficiency_table — Table

[96.2 98.1 98.7 99;98.1 99 99.4 99.5;98.7 99.4 99.6 99.7;99 99.5 99.7 99.8;99.2 99.6 99.7 99.8] (default) | M-by-N array

Array of efficiency as a function of M speeds and N torque, in %. Each value specifies the efficiency for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated efficiency data.

References

- [1] Lorenz, Robert D., Thomas Lipo, and Donald W. Novotny. "Motion control with induction motors." *Proceedings of the IEEE*, Vol. 82, Issue 8, August 1994, pp. 1215–1240.
- [2] Shigeo Morimoto, Masayuka Sanada, Yoji Takeda. "Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator." *IEEE Transactions on Industry Applications*, Vol. 30, Issue 4, July/August 1994, pp. 920–926.
- [3] Muyang Li. "Flux-Weakening Control for Permanent-Magnet Synchronous Motors Based on Z-Source Inverters." Master's Thesis, Marquette University, e-Publications@Marquette, Fall 2014.
- [4] Briz, Fernando, Michael W. Degner, and Robert D. Lorenz. "Analysis and design of current regulators using complex vectors." *IEEE Transactions on Industry Applications*, Vol. 36, Issue 3, May/June 2000, pp. 817–825.
- [5] Briz, Fernando, et al. "Current and flux regulation in field-weakening operation [of induction motors]." *IEEE Transactions on Industry Applications*, Vol. 37, Issue 1, Jan/Feb 2001, pp. 42–50.

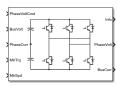
Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also

Flux-Based PM Controller | IM Controller | Interior PM Controller | Surface Mount PMSM


Introduced in R2017a

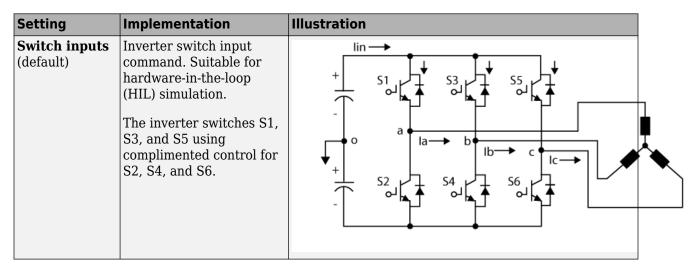
Three-Phase Voltage Source Inverter

Three-phase voltage source inverter

Library: Powertrain Blockset / Propulsion / Electric Motors and

Inverters

Description


The Three-Phase Voltage Source Inverter block implements a three-phase voltage source inverter that generates neutral voltage commands for a balanced three-phase load. Configure the voltage switching function for continuous vector modulation or inverter switch input signals. You can incorporate the block into a closed-loop model to simulate a power inverter. The block controls the ideal switch states.

To enable power loss calculations suitable for code generation targets that limit memory, select **Enable memory optimized 2D LUT**. Click **Calibrate Maps** to virtually calibrate an inverter power loss lookup table as a function of motor torque and motor speed.

If you select **Input inverter temperature**, click **Calibrate Maps** to virtually calibrate the power loss table as a function of motor torque, motor speed, and inverter temperature. You cannot enable memory optimization for the 3D power loss lookup table.

Use the **Switching voltage function** parameter to set the switching voltage function.

Setting	Implementation	Illustration
Commanded phase voltage	Phase a, b, c line-to- neutral voltage command input. Suitable for continuous sinusoidal or space vector modulation input signals.	lin di

Virtual Calibration

If you have Model-Based Calibration Toolbox, click **Calibrate Maps** to virtually calibrate the lookup tables using measured data. The dialog box steps through these tasks.

Task	Description	
Import Loss Data	Import this loss data from a file. For example, open <matlabroot>/toolbox/autoblks/autoblksshared/mbctemplates/MappedInverterDataset.xlsx. For more information, see "Using Data" (Model-Based Calibration Toolbox).</matlabroot>	
	Input inverter Required Data temperature Setting	
	off	Motor speed, rad/s
		Motor torque, N·m
		Power loss, W
	on	Motor speed, rad/s
		Motor torque, N·m
		Motor temperature, K
		Power loss, W
	Collect inverter data at steady-state operating conditions. Data should cove the inverter speed, torque, and temperature operating range. To filter or edit the data, select Edit in Application . The Model-Based Calibration Toolbox Data Editor opens.	

Task	Description		
Generate Response Models	Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs). To assess or adjust the response model fit, select Edit in Application . The Model-Based Calibration Toolbox Model Browser opens. For more information,		
	see "Model Assessm	ent" (Model-Based Calibration Toolbox).	
Generate Calibration	Model-Based Calibrated tables.	ation Toolbox calibrates the response models and generates	
	To assess or adjust the calibration, select Edit in Application . The Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Lookup Tables" (Model-Based Calibration Toolbox).		
Update block parameters	Update these parameters with the calibration.		
purumeters	Input inverter temperature Setting	Parameters	
	off	Vector of speeds (w) for tabulated losses, w_eff_bp	
		 Vector of torques (T) for tabulated losses, T_eff_bp 	
		Corresponding power loss, ploss_table	
	on	 Vector of speeds (w) for tabulated losses, w_eff_bp 	
		 Vector of torques (T) for tabulated losses, T_eff_bp 	
		 Vector of temperatures for tabulated losses, Temp_eff_bp 	
		Corresponding power loss, ploss_table_3d	

Switching Function

For the switch voltage, the block implementation depends on the $\bf Switching\ voltage\ function$ setting.

Setting	Calculation	Equations
Commanded phase voltage	Continuous line-to-neutral voltage commands set to phase a, b, c line-to-neutral voltage	$v_{an} = v_{a_cmd}$ $v_{bn} = v_{b_cmd}$
	command input	$v_{cn} = v_{c_cmd}$
	Line-to-line voltage	$v_{ab} = v_{an} - v_{bn}$
		$v_{bc} = v_{bn} - v_{cn}$
		$v_{Ca} = v_{Cn} - v_{an}$

Setting	Calculation	Equations
Switch inputs	Switching function	$SF_a = \begin{cases} 1 & \text{S1 on and S2 off} \\ -1 & \text{S1 off and S2 on} \end{cases}$
		$SF_b = \begin{cases} 1 & \text{S3 on and S4 off} \\ -1 & \text{S3 off and S4 on} \end{cases}$
		$SF_c = \begin{cases} 1 & \text{S5 on and S6 off} \\ -1 & \text{S5 off and S6 on} \end{cases}$
	Line-to-center point voltage	$v_{ao} = \frac{v_{bus}}{2} SF_a$
		$v_{bo} = \frac{v_{bus}}{2} SF_b$
		$v_{co} = \frac{v_{bus}}{2} SF_c$
	Line-to-neutral voltage	$v_{an} = v_{ao} - v_{no}$
		$v_{bn} = v_{bo} - v_{no}$ $v_{cn} = v_{co} - v_{no}$
		$v_{an} + v_{bn} + v_{cn} = 0$
		$v_{no} = \frac{1}{3}(v_{ao} + v_{bo} + v_{co})$
		$v_{an} = v_{ao} - \frac{1}{3}(v_{ao} + v_{bo} + v_{co})$
		$v_{bn} = v_{bo} - \frac{1}{3}(v_{ao} + v_{bo} + v_{co})$
		$v_{cn} = v_{co} - \frac{1}{3}(v_{ao} + v_{bo} + v_{co})$
	Line-to-line voltage	$v_{ab} = v_{an} - v_{bn}$
		$v_{bc} = v_{bn} - v_{cn}$ $v_{ca} = v_{cn} - v_{an}$

The equations use these variables.

SF_a , SF_b , SF_c	Phase a, b, c line switching functions, respectively
v_{bus}	Power source bus voltage
V_{ao} , V_{bo} , V_{co}	Phase a, b, c line-to-center voltage, respectively
$V_{\it an}$, $V_{\it bn}$, $V_{\it cn}$	Phase a, b, c line-to-neutral voltage, respectively
V_{ab} , V_{bc} , V_{ca}	Phase ab, bc, ca line-to-neutral voltage, respectively
V_{a_cmd} , V_{b_cmd} , V_{c_cmd}	Phase a, b, c line-to-neutral voltage commands, respectively

Current and Power Loss

For the line-to-center, line-to-neutral, and line-to-line voltage, the block implements these equations.

Calculation	Equations
Motor and bus power	$P_{mtr} = v_{an}i_a + v_{bn}i_b + v_{cn}i_c$
	$P_{bus} = v_{bus}i_{bus}$
Inverter power loss and bus current	$P_{in} = P_{bus} = v_{bus}i_{bus}$
	$P_{out} = P_{mtr} = v_{an}i_a + v_{bn}i_b + v_{cn}i_c + P_{LossInv}$
	$i_{bus} = \frac{v_{an}i_a + v_{bn}i_b + v_{cn}i_c + P_{LossInv}}{v_{bus}}$

The equations use these variables.

 P_{mtr} Power delivered to the motor

 P_{bus} Power from input bus

 P_{loss} Power loss

 i_{bus} Power source bus current

 i_a , i_b , i_c Phase a, b, c line current, respectively

 V_{an} , V_{bn} , V_{cn} Phase a, b, c line-to-neutral voltage, respectively

 v_{bus} Power source bus voltage

Power Accounting

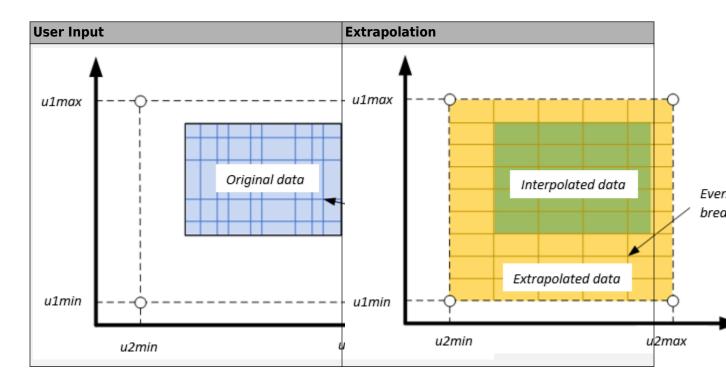
For the power accounting, the block implements these equations.

Bus Sig	Bus Signal		Description	Variable	Equation
PwrIn fo	fo Power transferred	PwrMtr	Power delivered to the motor	$P_{TrnsfrdMtr}$	$\begin{vmatrix} P_{TrnsfrdMtr} = & -(v_{an}i_a \\ + v_{bn}i_b + v_{cn}i_c) \end{vmatrix}$
	 Positive signals indicate flow into block Negative signals indicate flow out of block 	PwrBus	Power from input bus	$P_{TrnsfrdBus}$	$P_{TrnsfrdBus} = P_{bus}$

Bus Sig	Bus Signal		Description	Variable	Equation
	PwrNotTrnsfrd — Power crossing the block boundary, but not transferred • Positive signals indicate an input • Negative signals indicate a loss	PwrLoss	Power loss Negative value indicates power loss	$P_{NotTrnsfrd}$	$P_{NotTrnsfrd} = (P_{TrnsfrdBus} + P_{TrnsfrdMtr})$
	 PwrStored — Storenergy rate of charenergy rate of charenergy	nge indicate	Not used		

Lookup Table Memory Optimization

The inverter power loss table parameter **Corresponding power loss, ploss_table** data is a function of motor torque and motor speed at different battery voltages. Positive current indicates battery discharge. Negative current indicates battery charge.


To enable power loss calculations suitable for code generation targets that limit memory, select **Enable memory optimized 2D LUT**. The block uses linear interpolation to optimize the inverter power loss lookup table values for code generation. This table summarizes the optimization implementation.

Use Case	Implementation
Motor speed and torque input align with the lookup table breakpoint values.	Memory-optimized power loss is power loss lookup table value at intersection of motor speed and torque.
Motor speed and torque input do not align with the lookup table breakpoint values, but are within range.	Memory-optimized power loss is linear interpolation between corresponding motor speed and torque.
Motor speed and torque input do not align with the lookup table breakpoint values, and are out of range.	Cannot compute a memory-optimized power loss. Block uses extrapolated data.

Extrapolation

The lookup tables optimized for code generation do not support extrapolation for data that is out of range. However, you can include pre-calculated extrapolation values in the power loss lookup table by selecting **Specify Extrapolation**.

The block uses the endpoint parameters to resize the table data.

Ports

Input

PhaseVoltCmd — Phase a, b, c line-to-neutral voltage command

1-by-3 array

Phase a, b, c line-to-neutral voltage command, V_{a_cmd} , V_{b_cmd} , and V_{c_cmd} , in V.

Dependencies

To create this port, set **Switching voltage function** to Commanded phase voltage.

SwitchCmd — Switch commands

1-by-3 array

Switch commands, S_a , S_b , and S_c , dimensionless.

Dependencies

To create this port, set **Switching voltage function** to Switch inputs.

BusVolt — **Power source bus voltage**

bus

Power source bus voltage, V_{bus} , in V.

PhaseCurr — Phase a, b, c current

1-by-3 array

Phase a, b, c current, i_a , i_b , and i_c , in A.

MtrTrq — Motor torque

scalar

Motor torque, T_{mtr} , in N·m.

MtrSpd — Motor speed

scalar

Angular speed of the motor, ω_{mtr} , in rad/s.

InvrtrTemp — Inverter operating temperature

scalar

Inverter operating temperature, $Temp_{Invrtr}$, in K.

Dependencies

To create this port, select **Input inverter temperature**.

Output

Info — Bus signal

bus

The bus signal contains these block calculations.

Signal			Description	Variable	Units
BusCurr		Power source bus current	i_{bus}	A	
PwrLossInv		Inverter power loss	$arepsilon_{inv}$	dimensionl ess	
PwrInfo	PwrTrnsfrd	PwrMtr	Power delivered to the motor	$P_{TrnsfrdMtr}$	W
		PwrBus	Power from input bus	$P_{TrnsfrdBus}$	W
	PwrNotTrns frd	PwrLoss		$P_{NotTrnsfrd}$	W
	PwrStored		Not used		

PhaseVolt — Phase a, b, c line-to-neutral voltage

1-by-3 array

Phase a, b, c line-to-neutral voltage, V_{an} , V_{bn} , and V_{cn} , in V.

BusCurr — **Power source bus current**

scalar

Power source bus current, i_{bus} , in A.

Parameters

Block Options

Input inverter temperature — Create input port

off (default) | on

Select this parameter to create the InvrtrTemp input port.

The block enables you to specify inverter power loss lookup tables that are functions of motor torque, T_{mtr} , and motor speed, ω_{mtr} . If you select **Input inverter temperature**, the tables are also a function of the inverter temperature, $Temp_{Invrtr}$.

Input Inverter Temperature Parameter Setting	Enables Efficiency Table	Function Of
off	Corresponding power loss, ploss_table	$f(T_{mtr}, \omega_{mtr})$
on	Corresponding power loss, ploss_table_3d	$f(T_{mtr}, \omega_{mtr}, Temp_{Invrtr})$

Dependencies

If you select **Input inverter temperature** to specify a 3D power loss lookup table as a function of motor torque, motor speed, and inverter temperature, you cannot select **Enable memory optimized 2D LUT** to enable a memory optimization.

Enable memory optimized 2D LUT — Selection

off (default) | on

Enable generation of memory-optimized lookup tables, suitable code generation targets that limit memory.

Dependencies

If you select **Enable memory optimized 2D LUT**, you cannot select **Input inverter temperature**.

Calibrate Maps — Calibrate tables with measured data

selection

If you have Model-Based Calibration Toolbox, click **Calibrate Maps** to virtually calibrate the lookup tables using measured data. The dialog box steps through these tasks.

Task	Description			
Import Loss Data	<pre>Import this loss data from a file. For example, open <matlabroot>/toolbox/ autoblks/autoblksshared/mbctemplates/ MappedInverterDataset.xlsx.</matlabroot></pre>			
	For more information	information, see "Using Data" (Model-Based Calibration Toolbox).		
	Input inverter temperature Setting Required Data			
	off	Motor speed, rad/s		
		Motor torque, N·m		
		Power loss, W		
	on	Motor speed, rad/s		
		Motor torque, N·m		
		Motor temperature, K		
		Power loss, W		
		at steady-state operating conditions. Data should cover orque, and temperature operating range.		
	To filter or edit the data, select Edit in Application . The Model-Based Calibration Toolbox Data Editor opens.			
Generate Response Models	Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs).			
	To assess or adjust the response model fit, select Edit in Application . The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).			
Generate Calibration	Model-Based Calibration Toolbox calibrates the response models and generate calibrated tables. To assess or adjust the calibration, select Edit in Application . The Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Lookup Tables" (Model-Based Calibration Toolbox).			

Task	Description		
Update block parameters	Update these parameters with the calibration.		
	Input inverter temperature Setting	Parameters	
	off	 Vector of speeds (w) for tabulated losses, w_eff_bp 	
		 Vector of torques (T) for tabulated losses, T_eff_bp 	
		Corresponding power loss, ploss_table	
	on	Vector of speeds (w) for tabulated losses, w_eff_bp	
		 Vector of torques (T) for tabulated losses, T_eff_bp 	
		 Vector of temperatures for tabulated losses, Temp_eff_bp 	
		Corresponding power loss, ploss_table_3d	

Electrical Model

Switching voltage function — SelectionCommanded phase voltage (default) | Switch inputs

Use the **Switching voltage function** parameter to set the switching voltage function.

Setting	Implementation	Illustration
Commanded phase voltage	Phase a, b, c line-to- neutral voltage command input. Suitable for continuous sinusoidal or space vector modulation input signals.	linput Output

Setting	Implementation	Illustration	
Switch inputs (default)	Inverter switch input command. Suitable for hardware-in-the-loop (HIL) simulation. The inverter switches S1, S3, and S5 using complimented control for S2, S4, and S6.	$\frac{1}{1}$ $\frac{1}$	_

Vector of speeds (w) for tabulated losses, w_eff_bp — Speed breakpoints [-1000 -500 0 500 1000] (default) | 1-by-M vector

Vector of motor speed, ω_{mtr} , breakpoints for power loss, in rad/s. If you set **Enable memory optimized 2D LUT**, the block converts the data to single precision.

Speed breakpoint storage size, n1, dimensionless. The block resamples the **Corresponding power loss**, **ploss_table** data based on the storage size.

Dependencies

To create this parameter, select **Enable memory optimized 2D LUT**.

Vector of motor torque, T_{mtr} , breakpoints for power loss, in N·m. If you set **Enable memory optimized 2D LUT**, the block converts the data to single precision.

Torque breakpoint storage size, n2, dimensionless. The block resamples the **Corresponding power loss**, **ploss_table** data based on the storage size.

Dependencies

To create this parameter, select **Enable memory optimized 2D LUT**.

Vector of temperatures for tabulated losses, Temp_eff_bp — Temperature breakpoints

[213.15 293.15 373.15] (default) | 1-by-L vector

Vector of inverter temperature, $Temp_{Invrtr}$, breakpoints for power loss, in K.

Dependencies

To create this parameter, select **Input inverter temperature**.

Corresponding power loss, ploss_table — 2D lookup table

```
[1 0.999 0.989 0.997 0.996; 0.995 0.994 0.993 0.992 0.991; 0.990 0.989 0.988 0.987 0.986; 0.985 0.984 0.983 0.982 0.981; 0.980 0.979 0.978 0.977 0.976] (default) | M-by-N array
```

Array of values for power loss as a function of M motor speeds, ω_{mtr} , and N motor torques, T_{mtr} , in W. Each value specifies the power loss for a specific combination of motor speed and motor torque. The array size must match the dimensions defined by the speed and torque vectors.

If you have Model-Based Calibration Toolbox, click **Calibrate Maps** to virtually calibrate the lookup table using measured data.

If you set **Enable memory optimized 2D LUT**, the block converts the data to single precision.

Dependencies

To create this parameter, clear **Input inverter temperature**.

Corresponding power loss, ploss_table_3d — 3D lookup table M-by-N-by-L array

Array of values for power loss as a function of M motor speeds, ω_{mtr} , N motor torques, T_{mtr} , and L motor temperatures, $Temp_{Invrtr}$, in W. Each value specifies the power loss for a specific combination of motor speed, motor torque, and temperature. The array size must match the dimensions defined by the speed, torque, and temperature vectors.

If you have Model-Based Calibration Toolbox, click **Calibrate Maps** to virtually calibrate the lookup table using measured data.

Dependencies

To create this parameter, select **Input inverter temperature**.

Specify Extraction

w_eff_bp max endpoint, u1max — Speed breakpoint 1000 (default) | scalar

Speed breakpoint maximum extrapolation endpoint, *u1max*, in rad/s.

Dependencies

To create this parameter, select **Enable memory optimized 2D LUT** and **Specify Extrapolation**.

w_eff_bp min endpoint, ulmin — Speed breakpoint -1000 (default) | scalar

Speed breakpoint minimum extrapolation endpoint, *u1min*, in rad/s.

Dependencies

To create this parameter, select **Enable memory optimized 2D LUT** and **Specify Extrapolation**.

T_eff_bp max endpoint, u2max — Torque breakpoint

200 (default) | scalar

Torque breakpoint maximum extrapolation endpoint, *u2max*, in rad/s.

Dependencies

To create this parameter, select **Enable memory optimized 2D LUT** and **Specify Extrapolation**.

T_eff_bp min endpoint, u2min — Torque breakpoint

-200 (default) | scalar

Torque breakpoint minimum extrapolation endpoint, *u2min*, in rad/s.

Dependencies

To create this parameter, select **Enable memory optimized 2D LUT** and **Specify Extrapolation**.

References

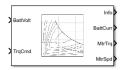
- [1] Lee, Byoung-Kuk and Mehrdad Ehsami. "A simplified functional simulation model for three-phase voltage-source inverter using switching function concept." *IEEE Transactions on Industrial Electronics*, Vol. 48, No. 2, pp. 309-321, April 2001.
- [2] Ziogas, Phoivas D., Eduardo P. Wiechmann, and Victor R. Stefanovic. "A Computer-Aided Analysis and Design Approach for Static Voltage Source Inverters." *IEEE Transactions on Industrial Electronics. Transactions on Industry Applications*, Vol. IA-21, No. 5, September/October 1985.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also


Flux-Based PM Controller | Induction Motor | Interior PMSM | Surface Mount PMSM

Introduced in R2019a

Mapped Motor

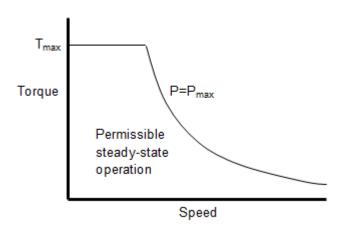
Mapped motor and drive electronics operating in torque-control mode **Library:** Powertrain Blockset / Propulsion / Electric Motors

Vehicle Dynamics Blockset / Powertrain / Propulsion

Description

The Mapped Motor block implements a mapped motor and drive electronics operating in torque-control mode. The output torque tracks the torque reference demand and includes a motor-response and drive-response time constant. Use the block for fast system-level simulations when you do not know detailed motor parameters, for example, for motor power and torque tradeoff studies. The block assumes that the speed fluctuations due to mechanical load do not affect the motor torque tracking.

You can specify:


- Port configuration Input torque or speed.
- Electrical torque range Torque speed envelope or maximum motor power and torque.
- Electrical loss Single operating point, measured efficiency, or measured loss. If you have Model-Based Calibration Toolbox, you can virtually calibrate the measured loss tables.

Electrical Torque

To specify the range of torque and speed that the block allows, on the **Electrical Torque** tab, for **Parametrized by**, select one of these options.

Setting	Block Implementation
Tabulated torque-speed envelope	Range specified as a set of speed data points and corresponding maximum torque values.
Maximum torque and power	Range specified with maximum torque and maximum power.

For either method, the block implements an envelope similar to this.

Electrical Losses

To specify the electrical losses, on the $Electrical\ Losses$ tab, for $Parameterize\ losses\ by$, select one of these options.

Setting	Block Implementation
Single efficiency	Sum of these terms, measured at a single measurement point:
measurement	• Fixed losses independent of torque and speed, P_0 . Use P_0 to account for fixed converter losses.
	• A torque-dependent electrical loss $k\tau^2$, where k is a constant and τ is the torque. Represents ohmic losses in the copper windings.
	• A speed-dependent electrical loss $k_{\rm w}\omega^2$, where $k_{\rm w}$ is a constant and ω is the speed. Represents iron losses due to eddy currents.
Tabulated loss data	Loss lookup table that is a function of motor speeds and load torques.
	If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the 2D lookup tables using measured data.
Tabulated loss data with temperature	Loss lookup table that is a function of motor speeds, load torques, and operating temperature.
	If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the 3D lookup tables using measured data.
Tabulated efficiency data	2D efficiency lookup table that is a function of motor speeds and load torques:
	• Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.
	• Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.
	Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions.
	Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.

Setting	Block Implementation
Tabulated efficiency data with temperature	3D efficiency lookup table that is a function of motor speeds, load torques, and operating temperature:
	Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.
	Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.
	Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions.
	Does not extrapolate loss values for speed, torque, or temperature magnitudes that exceed the range of the table.

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Note Due to system losses, the motor can draw a current when the motor torque is zero.

Virtual Calibration

If you have Model-Based Calibration Toolbox, you can virtually calibrate the measured loss lookup tables.

- 1 On the **Electrical Losses** tab, set **Parameterize losses by** to either:
 - Tabulated loss data
 - Tabulated loss data with temperature
- 2 Click Calibrate Maps.

The dialog box steps through these tasks.

Task	Description		
Import Loss Data	autoblks/autoblk	from a file. For example, open <matlabroot>/toolbox/csshared/mbctemplates/MappedMotorDataset.xlsx.</matlabroot>	
	For more information	n, see "Using Data" (Model-Based Calibration Toolbox).	
	Parameterize losses by	Required Data	
	Tabulated loss	Motor speed, rad/s	
	data	• Motor torque, N·m	
		Power loss, W	
	Tabulated loss	Motor speed, rad/s	
	data with temperature	Motor torque, N·m	
		Motor temperature, K	
		Power loss, W	
	Collect motor data at steady-state operating conditions. Data should cover the motor speed, torque, and temperature operating range.		
	To filter or edit the d Calibration Toolbox	lata, select Edit in Application . The Model-Based Data Editor opens.	
Generate Response Models	Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs).		
	Model-Based Calibra	he response model fit, select Edit in Application . The ation Toolbox Model Browser opens. For more information, ent" (Model-Based Calibration Toolbox).	
Generate Calibration	Model-Based Calibrated tables.	ation Toolbox calibrates the response models and generates	
	Based Calibration To	he calibration, select Edit in Application . The Model- colbox CAGE Browser opens. For more information, see Tables" (Model-Based Calibration Toolbox).	

Task	Description			
Update block parameters	Update these param	Update these parameters with the calibration.		
	Parameterize losses by	Parameters		
	Tabulated loss data	 Vector of speeds(w) for tabulated losses, w_eff_bp Vector of torques (T) for tabulated losses, T_eff_bp Corresponding losses, losses_table 		
	Tabulated loss data with temperature	 Vector of speeds(w) for tabulated losses, w_eff_bp Vector of torques (T) for tabulated losses, T_eff_bp Vector of temperatures for tabulated losses, Temp_eff_bp Corresponding losses, losses_table_3d 		

Battery Current

The block calculates the battery current using the mechanical power, power loss, and battery voltage. Positive current indicates battery discharge. Negative current indicates battery charge.

$$BattAmp = \frac{MechPwr + PwrLoss}{BattVolt}$$

The equation uses these variables.

BattVolt Battery voltageMechPwr Mechanical powerPwrLoss Power lossBattCurr Battery current

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal		Description	Variable	Equations	
	PwrTrnsfrd	PwrMtr	Mechanical power	P_{mot}	$P_{mot} = \omega_m T_e$
fo	 Positive signals indicate power flow into the block. Negative signals indicate power flow out of the block. 	PwrBus	Electrical power	P_{bus}	$P_{bus} = P_{mot} + P_{loss}$
	PwrNotTrnsfrd • Negative signals indicate power loss.	PwrLoss	Motor power loss	P_{loss}	$P_{stored} = \omega_m \dot{\omega}_m J$

Bus Signal		Description	Variable	Equations	
	PwrStoredPositive signals indicate power gain.		Motor power stored	P_{str}	$P_{loss} = -(P_{mot} + P_{loss} - P_{stored})$

The equations use these variables.

 T_e Motor output shaft torque

 ω Motor shaft speed

J Motor inertia

Ports

Input

BattVolt — Battery voltage

scalar

Battery voltage, BattVolt, in V.

TrqCmd — Commanded motor torque

scalar

Commanded motor torque, Trq_{cmd} , in N·m.

Dependencies

To create this input port, for the **Port configuration**, select **Torque**.

MtrSpd — Motor output shaft speed

scalar

Motor shaft speed, Mtr_{spd} , in rad/s.

Dependencies

To create this input port, for the **Port configuration**, select **Speed**.

Output

Info — Bus signal

bus

The bus signal contains these block calculations.

Signal			Description	Units
MechPwr			Mechanical power	rad
PwrLoss			Internal inverter and motor power loss	N·m
PwrInfo	PwrTrnsfrd	PwrMtr	Mechanical power	W
		PwrBus	Electrical power	W

Signal			Description	Units
	PwrNotTrnsfrd	PwrLoss	Motor power loss	W
	PwrStored	PwrStored Shft	Motor power stored	W

BattCurr — **Battery** current

scalar

Battery current draw or demand, I_{batt} , in A.

MtrTrq — Motor torque

scalar

Motor output shaft torque, Mtr_{trq} , in N·m.

MtrSpd — Motor shaft speed

scalar

Motor shaft speed, Mtr_{spd} , in rad/s.

Dependencies

To create this output port, for the **Port configuration**, select **Torque**.

Parameters

Block Options

Port configuration — Select port configuration

Torque (default) | Speed

This table summarizes the port configurations.

Port Configuration	Creates Ports
Torque	Outpost MtrSpd
Speed	Input MtrSpd

Calibrate Maps — Calibrate tables with measured data

selection

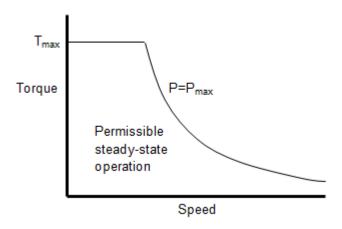
If you have Model-Based Calibration Toolbox, you can virtually calibrate the measured loss lookup tables.

- 1 On the **Electrical Losses** tab, set **Parameterize losses by** to either:
 - · Tabulated loss data
 - Tabulated loss data with temperature
- 2 Click Calibrate Maps.

The dialog box steps through these tasks.

Task	Description		
Import Loss Data	Import this loss data from a file. For example, open <matlabroot>/toolbox/autoblks/autoblksshared/mbctemplates/MappedMotorDataset.xlsx.</matlabroot>		
	For more information	n, see "Using Data" (Model-Based Calibration Toolbox).	
	Parameterize losses by	Required Data	
	Tabulated loss	Motor speed, rad/s	
	data	Motor torque, N·m	
		Power loss, W	
	Tabulated loss	Motor speed, rad/s	
	temperature	Motor torque, N·m	
		Motor temperature, K	
		Power loss, W	
		t steady-state operating conditions. Data should cover the and temperature operating range.	
	To filter or edit the d Calibration Toolbox l	ata, select Edit in Application . The Model-Based Data Editor opens.	
Generate Response Models	Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs). To assess or adjust the response model fit, select Edit in Application . The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).		
Generate Calibration	Model-Based Calibration Toolbox calibrates the response models and generates calibrated tables.		
	Based Calibration To	he calibration, select Edit in Application . The Model- olbox CAGE Browser opens. For more information, see Tables" (Model-Based Calibration Toolbox).	

Task	Description			
Update block parameters	Update these param	Update these parameters with the calibration.		
	Parameterize losses by	Parameters		
	Tabulated loss data Tabulated loss data with temperature	 Vector of torques (T) for tabulated losses, T_eff_bp Corresponding losses, losses_table Vector of speeds(w) for tabulated losses, w_eff_bp Vector of torques (T) for tabulated losses, T_eff_bp 		
		 Vector of temperatures for tabulated losses, Temp_eff_bp Corresponding losses, losses_table_3d 		


Electrical Torque

Parameterized by — Select type

Tabulated torque-speed envelope (default) | Maximum torque and power

Setting	Block Implementation
Tabulated torque-speed envelope	Range specified as a set of speed data points and corresponding maximum torque values.
Maximum torque and power	Range specified with maximum torque and maximum power.

For either method, the block implements an envelope similar to this.

Vector of rotational speeds, $\mathbf{w_t} - \mathbf{Rotational}$ speeds

[0 375 750 800] (default) | vector

Rotational speeds for permissible steady-state operation, in rad/s. To avoid poor performance due to an infinite slope in the torque-speed curve, specify a vector of rotational speeds that does not contain duplicate consecutive values.

To create this parameter, for the **Parameterized by** parameter, select **Tabulated torque-speed** envelope.

Vector of maximum torque values, T_t — Torque [0.09 0.08 0.07 0] (default) | vector

Maximum torque values for permissible steady state, in N·m.

Dependencies

To create this parameter, for the **Parameterized by** parameter, select **Tabulated torque-speed** envelope.

Maximum torque, torque_max — Torque

.1 (default) | scalar

The maximum permissible motor torque, in N·m.

Dependencies

To create this parameter, for the **Parameterized by** parameter, select Maximum torque and power.

${\tt Maximum\ power,\ power_max-Power}$

30 (default) | scalar

The maximum permissible motor power, in W.

Dependencies

To create this parameter, for the **Parameterized by** parameter, select Maximum torque and power.

Torque control time constant, Tc — Time constant

0.02 (default) | scalar

Time constant with which the motor driver tracks a torque demand, in s.

Electrical Losses

Parameterize losses by — Select type

Single efficiency measurement (default) | Tabulated loss data | Tabulated efficiency data

Setting	Block Implementation
Single efficiency	Sum of these terms, measured at a single measurement point:
measurement	• Fixed losses independent of torque and speed, P_0 . Use P_0 to account for fixed converter losses.
	• A torque-dependent electrical loss $k\tau^2$, where k is a constant and τ is the torque. Represents ohmic losses in the copper windings.
	• A speed-dependent electrical loss $k_{\rm w}\omega^2$, where $k_{\rm w}$ is a constant and ω is the speed. Represents iron losses due to eddy currents.
Tabulated loss data	Loss lookup table that is a function of motor speeds and load torques.
	If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the 2D lookup tables using measured data.
Tabulated loss data with temperature	Loss lookup table that is a function of motor speeds, load torques, and operating temperature.
	If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the 3D lookup tables using measured data.
Tabulated efficiency data	2D efficiency lookup table that is a function of motor speeds and load torques:
	Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.
	Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.
	Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions.
	Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.

Setting	Block Implementation
Tabulated efficiency data with temperature	3D efficiency lookup table that is a function of motor speeds, load torques, and operating temperature:
	Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.
	Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.
	Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions.
	Does not extrapolate loss values for speed, torque, or temperature magnitudes that exceed the range of the table.

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Note Due to system losses, the motor can draw a current when the motor torque is zero.

Motor and drive overall efficiency, eff — Efficiency

100 (default) | scalar

The block defines overall efficiency as:

$$\eta = 100 \frac{\tau_0 \omega_0}{\tau_0 \omega_0 + P_0 + k \tau_0^2 + k_w \omega_0^2}$$

The equation uses these variables.

τ_0	Torque at which efficiency is measured
ω_0	Speed at which efficiency is measured
P_0	Fixed losses independent of torque or speed
$k\tau_0^2$	Torque-dependent electrical losses
$k_w\omega^2$	Speed-dependent iron losses

At initialization, the block solves the efficiency equation for k. The block neglects losses associated with the rotor damping.

Dependencies

To create this parameter, for the Parameterize losses by parameter, select Single efficiency measurement.

Speed at which efficiency is measured, w_eff — Speed

375 (default) | scalar

Speed at which efficiency is measured, in rad/s.

To create this parameter, for the **Parameterize losses by** parameter, select Single efficiency measurement.

Torque at which efficiency is measured, T_eff — Torque

0.08 (default) | scalar

Torque at which efficiency is measured, in N·m.

Dependencies

To create this parameter, for the **Parameterize losses by** parameter, select Single efficiency measurement.

Iron losses, Piron — Power

0 (default) | scalar

Iron losses at the speed and torque at which efficiency is defined, in W.

Dependencies

To create this parameter, for the **Parameterize losses by** parameter, select Single efficiency measurement.

Fixed losses independent of torque and speed, Pbase — Power 0 (default) | scalar

Fixed electrical loss associated with the driver when the motor current and torque are zero, in W.

Dependencies

To create this parameter, for the **Parameterize losses by** parameter, select Single efficiency measurement.

Vector of speeds (w) for tabulated losses, w_eff_bp — Breakpoints [-8000 -4000 0 4000 8000] (default) | 1-by-M vector

Speed breakpoints for lookup table when calculating losses, in rad/s. Array dimensions are 1 by the number of speed breakpoints, M.

Dependencies

To create this parameter, for the **Parameterize losses by** parameter, select one of these:

- Tabulated loss data
- Tabulated loss data with temperature
- Tabulated efficiency data
- Tabulated efficiency data with temperature

Vector of torques (T) for tabulated losses, T_eff_bp — Breakpoints [0 0.03 0.06 0.09] (default) | 1-by-N vector

Torque breakpoints for lookup table when calculating losses, in $N \cdot m$. Array dimensions are 1 by the number of torque breakpoints, N.

To create this parameter, for the **Parameterize losses by** parameter, select one of these:

- Tabulated loss data
- Tabulated loss data with temperature
- Tabulated efficiency data
- Tabulated efficiency data with temperature

Vector of temperatures for tabulated losses, Temp_eff_bp — Breakpoints [233.15 293.15 373.15] (default) | 1-by-L vector

Temperature breakpoints for lookup table when calculating losses, in K. Array dimensions are ${\bf 1}$ by the number of temperature breakpoints, ${\bf L}$.

Dependencies

To create this parameter, for the **Parameterize losses by** parameter, select one of these:

- Tabulated loss data with temperature
- Tabulated efficiency data with temperature

Corresponding losses, losses_table — 2D lookup table

M-by-N matrix

Array of values for electrical losses as a function of speed and torque, in W. Each value specifies the losses for a specific combination of speed and torque. The array dimensions must match the speed, M, and torque, N, breakpoint vector dimensions.

Dependencies

To create this parameter, for the **Parameterize losses by** parameter, select **Tabulated loss** data.

Corresponding losses, losses_table_3d — 3D lookup table

M-by-N-by-L array

Array of values for electrical losses as a function of speed, torque, and temperature, in W. Each value specifies the losses for a specific combination of speed, torque, and temperature. The array dimensions must match the speed, M, torque, N, and temperature, L, breakpoint vector dimensions.

Dependencies

To create this parameter, for the **Parameterize losses by** parameter, select **Tabulated loss data** with temperature.

Corresponding efficiency, efficiency_table — 2D lookup table

M-by-N matrix

Array of efficiency as a function of speed and torque, in %. Each value specifies the losses for a specific combination of speed and torque. The array dimensions must match the speed, M, and torque, N, breakpoint vector dimensions.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

Dependencies

To create this parameter, for the **Parameterize losses by** parameter, select **Tabulated** efficiency data.

Corresponding efficiency, efficiency_table_3d — 3D lookup table M-by-N-by-L array

Array of efficiency as a function of speed and torque, in %. Each value specifies the losses for a specific combination of speed and torque. The array dimensions must match the speed, M, torque, N, and temperature, L, breakpoint vector dimensions.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

Dependencies

To create this parameter, for the **Parameterize losses by** parameter, select **Tabulated** efficiency data.

Mechanical

Rotor inertia, J — Inertia

5e-6 (default) | scalar

Rotor resistance to change in motor motion, in kg*m². The value can be zero.

Dependencies

To create this parameter, for the **Port configuration** parameter, select **Torque**.

Rotor damping, b — Damping

1e-5 (default) | scalar

Rotor damping, in $N \cdot m/(rad/s)$. The value can be zero.

Dependencies

To create this parameter, for the **Port configuration** parameter, select **Torque**.

Initial rotor speed, omega_o — Speed

0 (default) | scalar

Rotor speed at the start of the simulation, in rad/s.

Dependencies

To create this parameter, for the **Port configuration** parameter, select **Torque**.

Extended Capabilities

C/C++ Code Generation

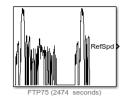
Generate C and C++ code using Simulink® Coder $^{\text{\tiny TM}}$.

See Also

Flux-Based PMSM | Induction Motor | Interior PMSM | Surface Mount PMSM

Introduced in R2017a

Scenario Creation Blocks


Drive Cycle Source

Standard or specified longitudinal drive cycle

Library: Powertrain Blockset / Vehicle Scenario Builder

Vehicle Dynamics Blockset / Vehicle Scenarios / Drive Cycle

and Maneuvers

Description

The Drive Cycle Source block generates a standard or user-specified longitudinal drive cycle. The block output is the specified vehicle longitudinal speed, which you can use to:

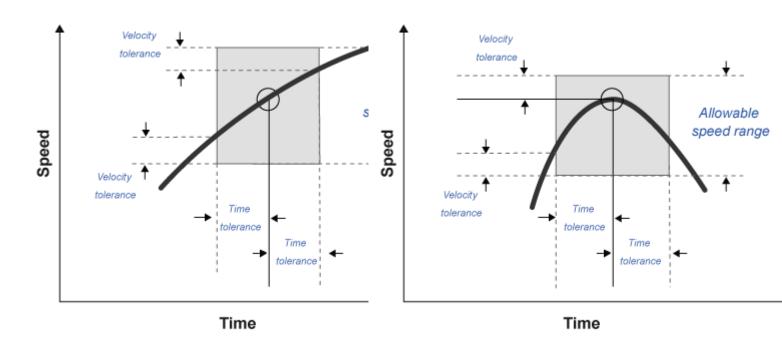
- Predict the engine torque and fuel consumption that a vehicle requires to achieve desired speed and acceleration for a given gear shift reference.
- Produce realistic velocity and shift references for closed loop acceleration and braking commands for vehicle control and plant models.
- Study, tune, and optimize vehicle control, system performance, and system robustness over multiple drive cycles.
- Identify the faults within tolerances specified by standardized tests, including:
 - EPA dynamometer driving schedules¹
 - Worldwide Harmonised Light Vehicle Test Procedure (WLTP) laboratory tests²

For the drive cycles, you can use:

- Drive cycles from predefined sources. By default, the block includes the FTP-75 drive cycle. To install additional drive cycles from a support package, see "Install Drive Cycle Data". The support package has drive cycles that include the gear shift schedules, for example JC08 and CUEDC.
- Workspace variables.
- .mat, .xls, .xlsx, or .txt files.
- Wide open throttle (WOT) parameters, including initial and nominal reference speed, deceleration start time, and final reference speed.

To achieve the goals listed in the table, use the specified Drive Cycle Source block parameter options.

Goal	Action
Repeat the drive cycle if the simulation run time exceeds the drive cycle length.	Select Repeat cyclically.
Output the acceleration, as calculated by Savitzky-Golay differentiation.	Select Output acceleration.
Specify a sample period for discrete applications.	Specify a Output sample period (0 for continuous), dt parameter.


Goal	Action
Update the simulation run time so that it equals the length of the drive cycle.	Click Update simulation time . If a model configuration reference exists, the block does not enable this option.
Plot the drive cycle in a MATLAB® figure.	Click Plot drive cycle.
Specify the drive cycle using	Click Specify variable . The block:
a workspace variable.	Sets the Drive cycle source parameter to Workspace variable.
	Enables the From workspace parameter.
	Specify the workspace variable so that it contains time, velocity, and, optionally, the gear shift schedule.
Specify the drive cycle using	Click Select file . The block:
a file.	• Sets the Drive cycle source parameter to .mat, .xls, .xlsx or .txt file.
	Enables the Drive cycle source file parameter.
	Specify a file that contains time, velocity, and, optionally, the gear shift schedule.
Output drive cycle gear.	Specify a drive cycle that contains a gear shift schedule. You can use:
	A support package to install standard drive cycles that include the gear shift schedules, for example JC08 and CUEDC.
	Workspace variables.
	• .mat, .xls, .xlsx, or .txt files.
	Click Output gear shift data.
Install additional drive cycles from a support package.	Click Install additional drive cycles . The block enables the parameter if you can install additional drive cycles from a support package.
Identify drive cycle faults within tolerances specified by standardized tests.	On the Fault Tracking tab, use the parameters to specify the fault tolerances. If the vehicle speed is not within the allowable speed range, the block sets a fault condition.

Fault and Failure Tracking

On the $Fault\ Tracking\$ tab, use the parameters to specify the fault tolerances. If the vehicle speed or time is not within the allowable range, the block sets a fault condition.

Parameter	Description	Setting			
		EPA Standard ¹	WLTP Tests ²		
Speed tolerance	Speed tolerance above the highest point and below the lowest point of the drive cycle speed trace within the time tolerance.	2.0 mph	2.0 km/h		
Time tolerance	Time that the block uses to determine the speed tolerance.	1.0 s	1.0 s		
Maximum number of faults	Maximum number of faults during the drive cycle.	Not specified	10		
Maximum single fault time	Maximum fault duration.	2.0 s	1.0 s		
Maximum total fault time Maximum accumulated time spent under fault condition.		Not specified	Not specified		

These figures illustrate how the block uses the velocity and time tolerances to determine the allowable speed range.

Ports

Input

VelFdbk — Vehicle longitudinal speed

scalar

Longitudinal vehicle speed.

Dependencies

To enable this port, on the **Fault Tracking** tab, select **Enable fault tracking**. Set the **Velocity feedback units, inUnit** parameter to the **VelFdbk** input port signal units.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal		Description			
Reference Speed		Vehicle reference speed			
Reference Accel		Vehicle reference acceleration			
Gear		Vehicle gear			
Fault	UpprBnd	Upper bound of allowable vehicle speed range.			
	LowerBnd	Lower bound of allowable vehicle speed range.			
	Fault	Boolean value indicating fault condition:			
		• 1 — Fault			
		• 0 — No fault			
		If the vehicle speed is not within the allowable speed range, the block sets a fault condition.			
	FaultCnt	Number of faults.			
	CumFaultTime	Cumulative time spent in fault condition.			
	SnglFaultTime	Tim spent in a single fault.			
	Fail	Boolean value indicating fault failure:			
		• 1 — Failure			
		• 0 — No failure			
		If the fault conditions exceed the maximum number of faults, maximum single fault time, or maximum total fault time, the block sets a fault failure.			

Dependencies

To enable this port, on the **Fault Tracking** tab, select **Enable fault tracking**.

RefSpd — Vehicle reference speed

scalar

Vehicle reference speed, in units that you specify. To specify the units, use the **Output velocity units** parameter.

RefAcc — Vehicle reference acceleration

scalar

To calculate the acceleration, the block implements Savitzky-Golay differentiation using a second-order polynomial with a three-sample point filter.

Dependencies

To create the output acceleration port, select **Output acceleration**. Selecting **Output acceleration** enables the **Output acceleration units** parameter.

Gear — Vehicle gear

scalar

Dependencies

To enable this port:

- **1** Specify a drive cycle that contains a gear shift schedule. You can use:
 - A support package to install standard drive cycles that include the gear shift schedules, for example JC08 and CUEDC.
 - Workspace variables.
 - .mat, .xls, .xlsx, or .txt files.
- 2 Select **Output gear shift** data.

Parameters

Cycle Setup

Setup

Drive cycle source — Select the drive cycle source

FTP75 $(default) \mid Wide \ Open \ Throttle \ (WOT) \mid Workspace \ variable \mid .mat, .xls, .xlsx or .txt file$

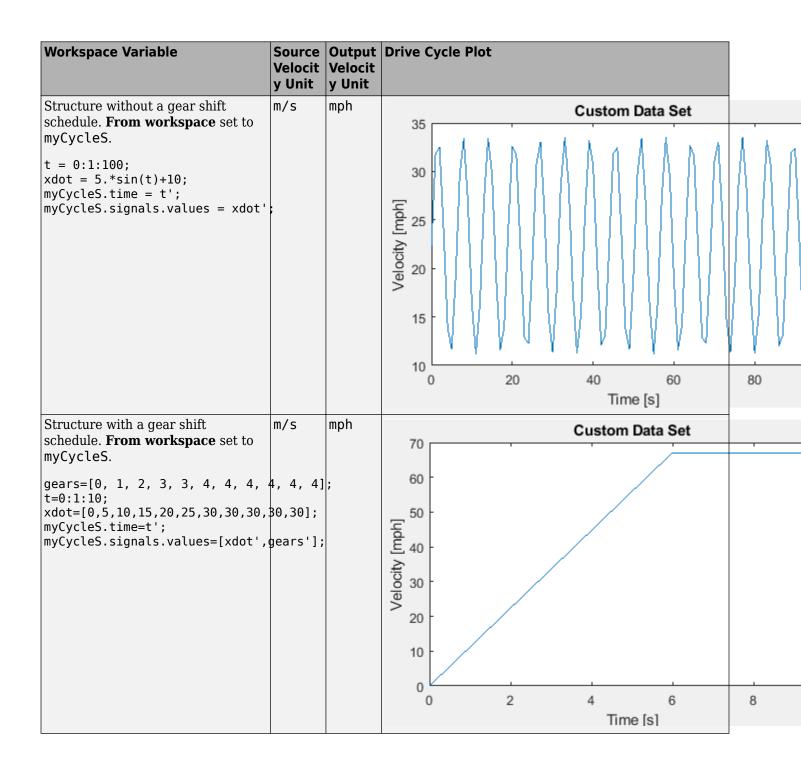
- FTP75 Load the FTP75 drive cycle from a .mat file into a 1-D Lookup Table block. The FTP75
 represents a city drive cycle that you can use to determine tailpipe emissions and fuel economy of
 passenger cars. To install additional drive cycles from a support package, see "Install Drive Cycle
 Data".
- Wide Open Throttle (WOT) Use WOT parameters to specify a drive cycle for performance testing.
- Workspace variable Specify time, speed, and, optionally, gear data as a structure, 2-D array, or time series object.
- .mat, .xls, .xlsx or .txt file Specify a file that contains time, speed and, optionally, gear data in column format.

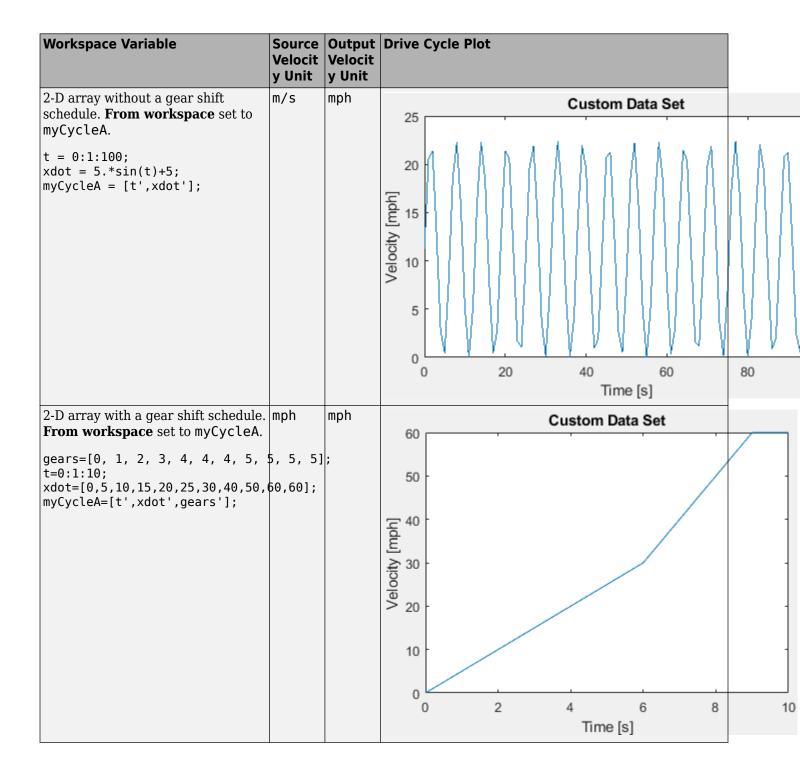
Once you have installed additional cycles, you can use set_param to set the drive cycle. For example, to use drive cycle US06:

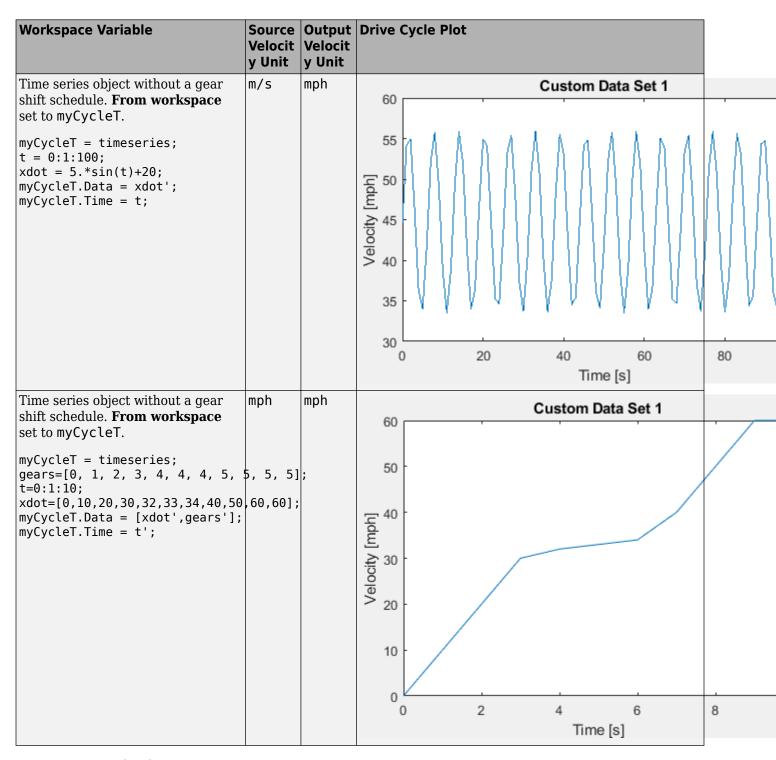
set_param([gcs '/Drive Cycle Source'],'cycleVar','US06')

Dependencies

The table summarizes the parameter dependencies.

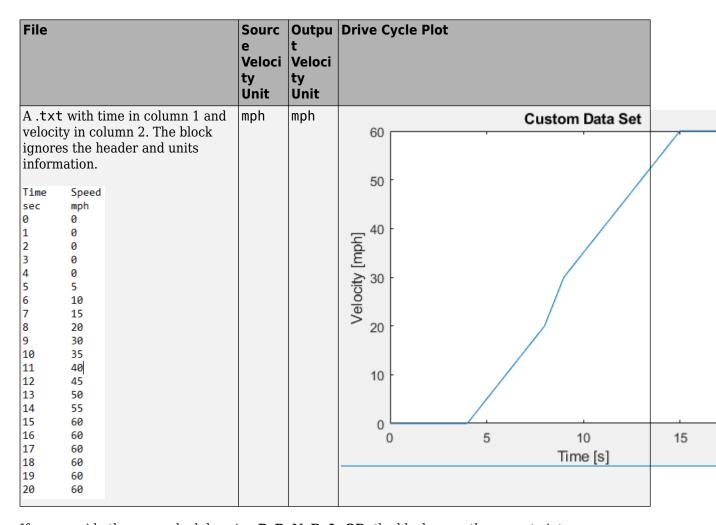

Drive Cycle Source	Enables Parameter
Wide Open Throttle (WOT)	Start time, t_wot1
	Initial reference speed, xdot_woto
	Nominal reference speed, xdot_wot1
	Time to start deceleration, wot2
	Final reference speed, xdot_wot2
	WOT simulation time, t_wotend
	Source velocity units
Workspace variable	From workspace
	Source velocity units
	Output gear shift data, if drive cycle includes gear shift schedule
.mat, .xls, .xlsx or .txt file	Drive cycle source file
	Source velocity units
	Output gear shift data, if drive cycle includes gear shift schedule


From workspace — Workspace


variable

Monotonically increasing time, velocity, and, optionally, gear data, specified by a structure, 2-D array, or time series object. Enter units for velocity in the **Source velocity units** parameter field.

A valid point must exist for each corresponding time value. You cannot specify inf, empty, or NaN.


To enable this parameter, select Workspace variable from **Drive cycle source**.

Drive cycle source file — File name .mat, .xls, .xlsx or .txt

File containing monotonically increasing time, velocity, and, optionally, gear in column or commaseparated format. The block ignores units in the file. Enter units for velocity in the **Source velocity units** parameter field.

File			е	Outpu t Veloci ty Unit	Drive	Cycle Plot					
colum B.		ile with time in city in column	mph	mph	50 40 [udu] Nelocity [mbh] 20 10	_		Custom	Data Set		
					0	0	1	2 Time	3 e [s]	4	

Fil	e				Sourc e Veloci ty Unit	t	Drive (Drive Cycle Plot				
col	umn A,	velocity	le with t in colum i C. The	ın B,	mph	mph	50	Custom Data Set				
	Ignores	the unit ts the ge jers:	ts in the ear infori	file.			40					
1 2	• D to		C gear N				Velocity [mph]					
3	0.5	0	N N									
5 6 7	1.5 2 2.5	0 1 5	N D D				10					
9 10	3 3.5 4	10 20 30	D D				0	0 2 4 6	8			
11 12	4.5 5	40 50	D D					Time [s]				

If you provide the gear schedule using P, R, N, D, L, OD, the block maps the gears to integers.

Gear	Integer
P	80
R	-1
N	0
L	1
D	2
OD	Next integer after highest specified gear.

For example, the block converts the gear schedule P P N L D 3 4 5 6 5 4 5 6 7 0D 7 to 80 80 0 1 2 3 4 5 6 5 4 5 6 7 8 7.

Dependencies

To enable this parameter, select .mat, .xls, .xlsx or .txt file from **Drive cycle source**.

$\label{eq:Repeat_cyclically} \textbf{Repeat_cycle} \ \textbf{Repeat_cycle} \\ \textbf{Repeat_cyclically} \ \textbf{--} \ \textbf{Repeat_drive_cycle} \\ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \\ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \\ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \\ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \\ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \\ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \\ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \\ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \\ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \\ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \\ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \\ \textbf{--} \ \textbf{--} \\ \textbf{--} \ \textbf{--$

off (default) | on

Repeat the drive cycle if the simulation run time exceeds the length of the drive cycle.

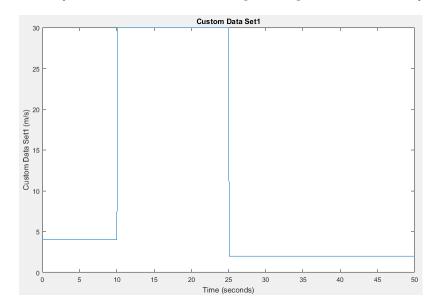
Output acceleration — Output the acceleration off (default)

To calculate the acceleration, the block implements Savitzky-Golay differentiation using a secondorder polynomial with a three-sample point filter.

Dependencies

To create the output acceleration port, select **Output acceleration**. Selecting **Output acceleration** enables the **Output acceleration units** parameter.

Output gear shift data — Output the gear off (default) | on

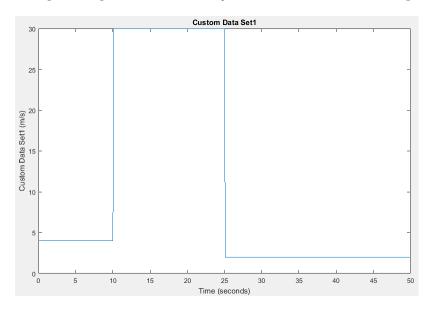

Dependencies

- Specify a drive cycle that contains a gear shift schedule. You can use:
 - A support package to install standard drive cycles that include the gear shift schedules, for example JC08 and CUEDC.
 - · Workspace variables.
 - .mat, .xls, .xlsx, or .txt files.
- Clicking this parameter creates input port **Gear**.

WOT

Start time, t_wot1 — Drive cycle start time 5 (default) | scalar

Drive cycle start time, in s. For example, this plot shows a drive cycle with a start time of 10 s.

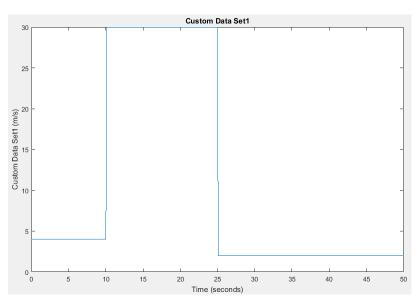

Dependencies

To enable this parameter, select the **Drive cycle source** parameter Wide Open Throttle (WOT).

Initial reference speed, xdot_woto — Speed

0 (default) | scalar

Initial reference speed, in units that you specify with the **Source velocity units** parameter. For example, this plot shows a drive cycle with an initial reference speed of 4 m/s.

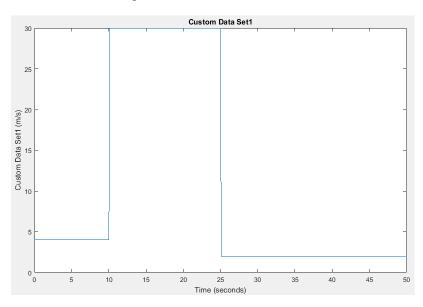

Dependencies

To enable this parameter, select the **Drive cycle source** parameter Wide Open Throttle (WOT).

Nominal reference speed, xdot_wot1 — Speed

30 (default) | scalar

Nominal reference speed, in units that you specify with the **Source velocity units** parameter. For example, this plot shows a drive cycle with a nominal reference speed of 30 m/s.

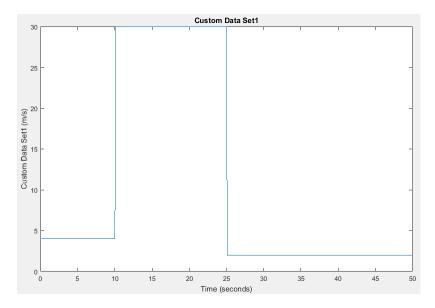


To enable this parameter, select the **Drive cycle source** parameter Wide Open Throttle (WOT).

Time to start deceleration, wot2 — Time

20 (default) | scalar

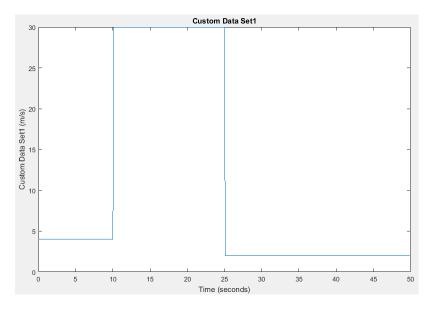
Time to start vehicle deceleration, in s. For example, this plot shows a drive cycle with vehicle deceleration starting at $25 \ s$.



Dependencies

To enable this parameter, select the **Drive cycle source** parameter Wide Open Throttle (WOT).

Final reference speed, xdot_wot2 — Speed 0 (default) | scalar


Final reference speed, in units that you specify with the **Source velocity units** parameter. For example, this plot shows a drive cycle with a final reference speed of 2 m/s.

To enable this parameter, select the **Drive cycle source** parameter Wide Open Throttle (WOT).

WOT simulation time, **t_wotend** — **Time** 30 (default) | scalar

Drive cycle WOT simulation time, in s. For example, this plot shows a drive cycle with a simulation time of $50\ s$.

Dependencies

To enable this parameter, select the **Drive cycle source** parameter Wide Open Throttle (WOT).

Units and Sample Period

Source velocity units — Specify velocity units

m/s (default)

Input velocity units.

Dependencies

To enable this parameter, select the **Drive cycle source** parameter Wide Open Throttle (WOT), Workspace variable, or .mat, .xls, .xlsx or .txt file.

Output velocity units - Specify velocity units

m/s (default)

Output velocity units.

Output acceleration units — Specify acceleration units

m/s^2 (default)

Specify the output acceleration units.

Dependencies

To enable this parameter, select **Output acceleration**.

Output sample period (0) for continuous — Sample rate

0 (default) | scalar

Sample rate. Set to θ for continuous sample period. For a discrete period, specify a non-zero rate.

Fault Tracking

Fault Settings

Enable fault tracking — Enable fault tracking

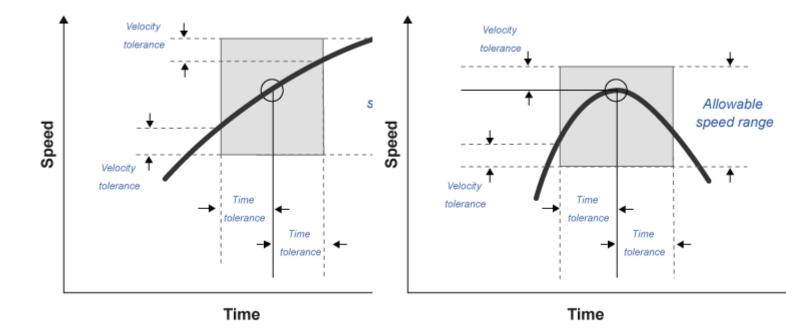
off (default) | on

Select this parameter to enable drive cycle fault tracking. Use the parameters to specify the fault tolerances. If the vehicle speed is not within the allowable speed range, the block sets a fault condition.

Dependencies

Selecting this parameter enables these parameters:

- Speed tolerance, velBnd
- Speed tolerance units, velBndUnit
- Velocity feedback units, inUnit
- · Time tolerance, timeBnd


Speed tolerance, velBnd — Drive cycle speed tolerance

2.0 (default) | scalar

The speed tolerance above the highest point and below the lowest point of the drive cycle speed trace within the time tolerance. If the vehicle speed is not within the allowable speed range, the block sets a fault condition. For the tolerances specified by the standardized tests, use these settings:

- EPA dynamometer driving schedules 2.0
- WLTP tests 2.0

These figures illustrate how the block uses the velocity and time tolerances to determine the allowable speed range.

Dependencies

To enable this parameter, on the Fault Tracking tab, select Enable fault tracking.

Speed tolerance units, velBndUnit — Set units mph (default)

Speed tolerance units. For the units specified by the standardized tests, use these units:

- EPA dynamometer driving schedules m/s
- WLTP tests km/h

Dependencies

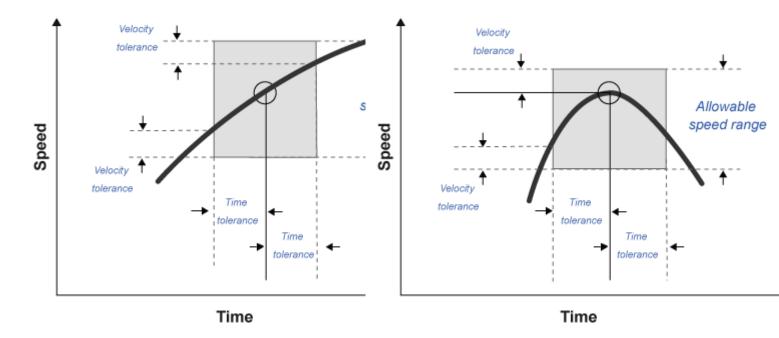
To enable this parameter, on the Fault Tracking tab, select Enable fault tracking.

Velocity feedback units, inUnit — Set velocity feedback units m/s (default)

Velocity feedback units. Set the value to the VelFdbk input port signal units.

Dependencies

To enable this parameter, on the **Fault Tracking** tab, select **Enable fault tracking**.


Time tolerance, timeBnd — Time tolerance

1.0 (default) | scalar

Time that the block uses to determine the speed tolerance. If the vehicle speed is not within the allowable speed range, the block sets a fault condition. For the time tolerances specified by the standardized tests, use these settings:

- EPA dynamometer driving schedules 1.0
- WLTP tests 1.0

These figures illustrate how the block uses the velocity and time tolerances to determine the allowable speed range.

Dependencies

To enable this parameter, on the Fault Tracking tab, select Enable fault tracking.

Failure Settings

Enable failure tracking — Enable failure tracking off (default) | on

Select this parameter to enable drive cycle failure tracking.

Dependencies

To enable this parameter, select **Enable fault tracking**. Selecting **Enable failure tracking** parameter enables these parameters:

- Stop simulation when trace fails, stopSim
- Maximum number of faults, maxFaultCnt

- · Maximum single fault time, maxFaultTime
- · Maximum total fault time, maxTotFaultTime

Maximum number of faults, maxFaultCnt — Maximum number of faults 10 (default) | scalar

Maximum number of faults during the drive cycle. For the number specified by the standardized tests, use these settings:

- EPA dynamometer driving schedules *Not specified*
- WLTP tests 10

If the number of faults exceeds the maximum number of faults, the block sets a fault failure.

Dependencies

To enable this parameter, on the Fault Tracking tab, select Enable failure tracking.

$\label{lem:maxFaultTime} \textbf{Maximum single fault time, maxFaultTime - Maximum duration of single fault} \\ 2.0 \ (default) \ | \ scalar$

Maximum duration of single fault, in s. For the time specified by the standardized tests, use these settings:

- EPA dynamometer driving schedules 2.0
- WLTP tests 1.0

If the fault duration exceeds the maximum single fault time, the block sets a fault failure.

Dependencies

To enable this parameter, on the **Fault Tracking** tab, select **Enable failure tracking**.

Maximum total fault time, maxTotFaultTime — Maximum total fault time 15.0 (default) | scalar

Maximum accumulated time spent under fault condition, in s.

If the accumulated time spent under fault condition exceeds the maximum total fault time, the block sets a fault failure.

Dependencies

To enable this parameter, on the Fault Tracking tab, select Enable failure tracking.

Simulation Trace

Display simulation trace — Display velocity trace off (default) | on

Select this parameter to display a velocity trace window. Selecting this parameter can slow the simulation time.

Dependencies

Selecting this parameter enables these parameters:

- · Simulation trace update rate, dtTrace
- Simulation trace display window, traceWindow

Simulation trace update rate, dtTrace — Trace update rate

1 (default) | scalar

Simulation trace update rate, in s. Set to 0 for continuous sample period. For a discrete period, specify a non-zero rate.

Dependencies

To enable this parameter, on the Fault Tracking tab, select Display simulation trace.

Simulation trace display window, traceWindow — Trace window update rate 10 (default) | scalar

Simulation trace window update rate, in s.

Dependencies

To enable this parameter, on the Fault Tracking tab, select Display simulation trace.

References

- [1] Environmental Protection Agency (EPA). *EPA urban dynamometer driving schedule*. 40 CFR 86.115-78, July 1, 2001.
- [2] European Union Commission. "Speed trace tolerances". *European Union Commission Regulation*. 32017R1151, Sec 1.2.6.6, June 1, 2017.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also

Longitudinal Driver

Topics

"Install Drive Cycle Data"

"Track Drive Cycle Errors"

"Time Series Objects and Collections" (MATLAB)

Introduced in R2017a

Longitudinal Driver

Longitudinal speed-tracking controller

Library: Powertrain Blockset / Vehicle Scenario Builder

Vehicle Dynamics Blockset / Vehicle Scenarios / Driver

Description

The Longitudinal Driver block implements a longitudinal speed-tracking controller. Based on reference and feedback velocities, the block generates normalized acceleration and braking commands that can vary from 0 through 1. You can use the block to model the dynamic response of a driver or to generate the commands necessary to track a longitudinal drive cycle.

Configurations

External Actions

Use the **External Actions** parameters to create input ports for signals that can disable, hold, or override the closed-loop acceleration or deceleration commands. The block uses this priority order for the input commands: disable (highest), hold, override.

This table summarizes the external action parameters.

Goal	External Action Parameter	Input Ports	Data Type
Override the accelerator	Accelerator	EnablAccelOvr	Boolean
command with an input acceleration command.	override	AccelOvrCmd d	double
Hold the acceleration command at the current value.	Accelerator hold	AccelHld	Boolean
Disable the acceleration command.	Accelerator disable	AccelZero	Boolean
Override the decelerator	Decelerator	EnablDecelOvr	Boolean
command with an input deceleration command.	override	Decel0vrCmd	double
Hold the decelerator command at current value.	Decelerator hold	DecelHld	Boolean
Disable the decelerator command.	Decelerator disable	DecelZero	Boolean

Controller

Use the **Control type, cntrlType** parameter to specify one of these control options.

Setting	Block Implementation		
PI	Proportional-integral (PI) control with tracking windup and feed-forward gains.		
Scheduled PI	PI control with tracking windup and feed-forward gains that are a function of vehicle velocity.		
Predictive	Optimal single-point preview (look ahead) control model developed by C. C. MacAdam ^{1, 2, 3} . The model represents driver steering control behavior during path-following and obstacle avoidance maneuvers. Drivers preview (look ahead) to follow a predefined path. To implement the MacAdam model, the block:		
	Represents the dynamics as a linear single track (bicycle) vehicle		
	• Minimizes the previewed error signal at a single point T^* seconds ahead in time		
	Accounts for the driver lag deriving from perceptual and neuromuscular mechanisms		

Shift

Use the **Shift type**, **shftType** parameter to specify one of these shift options.

Setting	Block Implementation
None	No transmission. Block outputs a constant gear of 1.
	Use this setting to minimize the number of parameters you need to generate acceleration and braking commands to track forward vehicle motion. This setting does not allow reverse vehicle motion.
Reverse, Neutral, Drive	Block uses a Stateflow [®] chart to model reverse, neutral, and drive gear shift scheduling.
	Use this setting to generate acceleration and braking commands to track forward and reverse vehicle motion using simple reverse, neutral, and drive gear shift scheduling. Depending on the vehicle state and vehicle velocity feedback, the block uses the initial gear and time required to shift to shift the vehicle up into drive or down into reverse or neutral.
	For neutral gears, the block uses braking commands to control the vehicle speed. For reverse gears, the block uses an acceleration command to generate torque and a brake command to reduce vehicle speed.

Setting	Block Implementation
Scheduled	Block uses a Stateflow chart to model reverse, neutral, park, and N-speed gear shift scheduling.
	Use this setting to generate acceleration and braking commands to track forward and reverse vehicle motion using reverse, neutral, park, and N-speed gear shift scheduling. Depending on the vehicle state and vehicle velocity feedback, the block uses these parameters to determine the:
	Initial gear
	Upshift and downshift accelerator pedal positions
	Upshift and downshift velocity
	Timing for shifting and engaging forward and reverse from neutral
	For neutral gears, the block uses braking commands to control the vehicle speed. For reverse gears, the block uses an acceleration command to generate torque and a brake command to reduce vehicle speed.
External	Block uses the input gear, vehicle state, and velocity feedback to generate acceleration and braking commands to track forward and reverse vehicle motion.
	For neutral gears, the block uses braking commands to control the vehicle speed. For reverse gears, the block uses an acceleration command to generate torque and a brake command to reduce vehicle speed.

Gear Signal

Use the **Output gear signal** parameter to create the **GearCmd** output port. The **GearCmd** signal contains the integer value of the commanded vehicle gear.

Gear	Integer		
Park	80		
Reverse	-1		
Neutral	Θ		
Drive	1		
Gear	Gear number		

Controller: PI Speed-Tracking

If you set the control type to PI or Scheduled PI, the block implements proportional-integral (PI) control with tracking windup and feed-forward gains. For the Scheduled PI configuration, the block uses feed forward gains that are a function of vehicle velocity.

To calculate the speed control output, the block uses these equations.

Setting	Equation
PI	$y = \frac{K_{ff}}{v_{nom}}v_{ref} + \frac{K_{p}e_{ref}}{v_{nom}} + \int \left(\frac{K_{i}e_{ref}}{v_{nom}} + K_{aw}e_{out}\right)dt + K_{g}\theta$

Setting	Equation
Scheduled PI	$y = \frac{K_{ff}(v)}{v_{nom}}v_{ref} + \frac{K_p(v)e_{ref}}{v_{nom}} + \int \left(\frac{K_i(v)e_{ref}}{v_{nom}} + K_{aw}e_{out}\right)e_{ref}dt + K_g(v)\theta$

where:

$$\begin{aligned} e_{ref} &= v_{ref} - v \\ e_{out} &= y_{sat} - y \\ y_{sat} &= \begin{cases} -1 & y < -1 \\ y & -1 \le y \le 1 \\ 1 & 1 < y \end{cases} \end{aligned}$$

The velocity error low-pass filter uses this transfer function.

$$H(s) = \frac{1}{\tau_{err}s + 1} \quad \text{for} \quad \tau_{err} > 0$$

To calculate the acceleration and braking commands, the block uses these equations.

$$y_{acc} = \begin{cases} 0 & y_{sat} < 0 \\ y_{sat} & 0 \le y_{sat} \le 1 \\ 1 & 1 < y_{sat} \end{cases}$$
$$y_{dec} = \begin{cases} 0 & y_{sat} > 0 \\ -y_{sat} & -1 \le y_{sat} \le 0 \\ 1 & y_{sat} < -1 \end{cases}$$

The equations use these variables.

v_{nom}	Nominal vehicle speed		
K_p	Proportional gain		
K_i	Integral gain		
K_{aw}	Anti-windup gain		
K_{ff}	Velocity feed-forward gain		
K_g	Grade feed-forward gain		
θ	Grade angle		
τ_{err}	Error filter time constant		
У	Nominal control output magnitude		
y_{sat}	Saturated control output magnitude		
$e_{\it ref}$	Velocity error		
e_{out}	Difference between saturated and nominal control outputs		
\mathcal{Y}_{acc}	Acceleration signal		
y_{dec}	Braking signal		
ν	Velocity feedback signal		

Reference velocity signal

Controller: Predictive Speed-Tracking

If you set the **Control type, cntrlType** parameter to Predictive, the block implements an optimal single-point preview (look ahead) control model developed by C. C. MacAdam^{1, 2, 3}. The model represents driver steering control behavior during path-following and obstacle avoidance maneuvers. Drivers preview (look ahead) to follow a predefined path. To implement the MacAdam model, the block:

- · Represents the dynamics as a linear single track (bicycle) vehicle
- Minimizes the previewed error signal at a single point T* seconds ahead in time
- · Accounts for the driver lag deriving from perceptual and neuromuscular mechanisms

Vehicle Dynamics

 v_{ref}

For longitudinal motion, the block implements these linear dynamics.

$$x_1 = v$$

$$\dot{x}_1 = x_2 = \frac{K_{pt}}{m} - g\sin(\gamma) + F_r x_1$$

In matrix notation:

$$\dot{x} = Fx + g\bar{u}$$

where:

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$F = \begin{bmatrix} 0 & 1 \\ \frac{F_r}{m} & 0 \end{bmatrix}$$

$$g = \begin{bmatrix} 0 \\ \frac{K_{pt}}{m} \end{bmatrix}$$

$$\bar{u} = u - \frac{m^2}{K_{pt}} g \sin(\gamma)$$

The block uses this equation for the rolling resistance.

$$F_r = -\left[\tanh(x_1)(\frac{a_r}{x_1} + c_r x_1) + b_r\right]$$

The single-point model assumes a minimum previewed error signal at a single point T^* seconds ahead in time. a^* is the driver ability to predict the future vehicle response based on the current steering control input. b^* is the driver ability to predict the future vehicle response based on the current vehicle state. The block uses these equations.

6-27

$$a^* = (T^*)m^T \left[I + \sum_{n=1}^{\infty} \frac{F^n (T^*)^n}{(n+1)!} \right] ge$$

$$b^* = m^T \left[I + \sum_{n=1}^{\infty} \frac{F^n (T^*)^n}{n!} \right]$$

where:

$$m^T = [1 \ 1]$$

The equations use these variables.

a, b Forward and rearward tire location, respectively

m Vehicle mass

I Vehicle rotational inertia

*a**, *b** Driver prediction scalar and vector gain, respectively

x Predicted vehicle state vector

v Longitudinal velocity

F System matrix

 K_{pt} Tractive force and brake limit

γ Grade angle

 g
 Control coefficient vector

 g
 Gravitational constant

 T*
 Preview time window

 $f(t+T^*)$ Previewed path input T* seconds ahead

U Forward vehicle velocity

m^T Constant observer vector; provides vehicle lateral position

 F_r Rolling resistance

 a_r Static rolling and driveline resistance b_r Linear rolling and driveline resistance

 c_r Aerodynamic rolling and driveline resistance

Optimization

The single-point model implemented by the block finds the steering command that minimizes a local performance index, I, over the current preview interval, (t, t+T).

$$J = \frac{1}{T} \int_{0}^{t+T} [f(\eta) - y(\eta)]^2 d\eta$$

To minimize *J* with respect to the steering command, this condition must be met.

$$\frac{dJ}{du} = 0$$

You can express the optimal control solution in terms of a current non-optimal and corresponding nonzero preview output error T^* seconds ahead^{1, 2, 3}.

$$u^o(t)=u(t)+\frac{e(t+T^*)}{a^*}$$

The block uses the preview distance and vehicle longitudinal velocity to determine the preview time window.

$$T^* = \frac{L}{U}$$

The equations use these variables.

T^*	Preview time window
$f(t+T^*)$	Previewed path input T^* sec ahead
$y(t+T^*)$	Previewed plant output T^* sec ahead
$e(t+T^*)$	Previewed error signal T^* sec ahead
$u(t), u^o(t)$	Steer angle and optimal steer angle, respectively
L	Preview distance
J	Performance index
U	Forward (longitudinal) vehicle velocity

Driver Lag

The single-point model implemented by the block introduces a driver lag. The driver lag accounts for the delay when the driver is tracking tasks. Specifically, it is the transport delay deriving from perceptual and neuromuscular mechanisms. To calculate the driver transport delay, the block implements this equation.

$$H(s) = e^{-s\tau}$$

The equations use these variables.

τ	Driver transport delay
$y(t+T^*)$	Previewed plant output T^* sec ahead
$e(t+T^*)$	Previewed error signal T^* sec ahead
$u(t), u^o(t)$	Steer angle and optimal steer angle, respectively
I	Performance index

Ports

Input

VelRef — **Reference vehicle velocity**

scalar

Reference velocity, v_{ref} , in m/s.

EnblAccelOvr — Enable acceleration command override

scalar

Enable acceleration command override.

To enable this port, select **Acceleration override**.

Data Types: Boolean

AccelOvrCmd — Acceleration override command

scalar

Acceleration override command, normalized from 0 through 1.

Dependencies

To enable this port, select **Acceleration override**.

Data Types: double

AccelHld — Acceleration hold

scalar

Boolean signal that holds the acceleration command at the current value.

Dependencies

To enable this port, select **Acceleration hold**.

Data Types: Boolean

AccelZero — Disable acceleration command

scalar

Disable acceleration command.

Dependencies

To enable this port, select **Acceleration disable**.

Data Types: Boolean

EnblDecelOvr — **Enable deceleration command override**

scalar

Enable deceleration command override.

Dependencies

To enable this port, select **Deceleration override**.

Data Types: Boolean

DecelOvrCmd — Deceleration override command

scalar

Deceleration override command, normalized from 0 through 1.

Dependencies

To enable this port, select **Deceleration override**.

Data Types: double

DecelHld — Deceleration hold

scalar

Boolean signal that holds the deceleration command at the current value.

Dependencies

To enable this port, select **Deceleration hold**.

Data Types: Boolean

DecelZero — **Disable deceleration command**

scalar

Disable deceleration command.

Dependencies

To enable this port, select **Deceleration disable**.

Data Types: Boolean

ExtGear — Gear

scalar

Gear	Integer		
Park	80		
Reverse	-1		
Neutral	0		
Drive	1		
Gear	Gear number		

Dependencies

To enable this port, set **Shift type**, **shftType** to External.

VelFdbk — Longitudinal vehicle velocity

scalar

Longitudinal vehicle velocity, U, in the vehicle-fixed frame, in m/s.

Grade — Road grade angle

scalar

Road grade angle, θ or γ , in deg.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal		Variable	Description
Accel		y_{acc}	Commanded vehicle acceleration, normalized from 0 through 1
Decel		<i>Ydec</i>	Commanded vehicle deceleration, normalized from 0 through 1
Gear			Integer value of commanded gear
Clutch			Clutch command
Err		e_{ref}	Difference in reference vehicle speed and vehicle speed
ErrSqrSum		$\int_{0}^{t} e_{ref}^{2} dt$	Integrated square of error
ErrMax		$\max(e_{ref}(t))$	Maximum error during simulation
ErrMin		$\min(e_{ref}(t))$	Minimum error during simulation
ExtActions	EnblAccel0vr		Override the accelerator command with an input acceleration command
	Accel0vrCmd		Input accelerator override command
	AccelHld		Hold the acceleration command at the current value
	AccelZero		Disable the acceleration command
	EnblDecel0vr		Override the decelerator command with an input deceleration command
	DecelOvrCmd		Input deceleration override command
	DecelHld		Hold the decelerator command at current value
	DecelZero		Disable the decelerator command

AccelCmd — Commanded vehicle acceleration

scalar

Commanded vehicle acceleration, y_{acc} , normalized from 0 through 1.

DecelCmd — Commanded vehicle deceleration

scalar

Commanded vehicle deceleration, y_{dec} , normalized from 0 through 1.

GearCmd — **Commanded vehicle gear**

scalar

Integer value of commanded vehicle gear.

Gear	Integer
Park	80
Reverse	-1

Gear	Integer
Neutral	0
Drive	1
Gear	Gear number

To enable this port, select **Output gear signal**.

Parameters

External Actions

Accelerator override — Override acceleration command

off (default) | on

Select to override the acceleration command with an input acceleration command.

Dependencies

Selecting this parameter creates the EnblAccelOvr and AccelOvrCmd input ports.

Accelerator hold — Hold acceleration command

off (default) | on

Select to hold the acceleration command.

Dependencies

Selecting this parameter creates the AccelHld input port.

Accelerator disable — Disable acceleration command

off (default) | on

Select to disable the acceleration command.

Dependencies

Selecting this parameter creates the AccelZero input port.

Decelerator override — Override deceleration command

off (default) | on

Select to override the deceleration command with an input deceleration command.

Dependencies

Selecting this parameter creates the EnblDecelOvr and DecelOvrCmd input ports.

Decelerator hold — Hold deceleration command

off (default) | on

Select to hold the deceleration command.

Selecting this parameter creates the DecelHld input port.

$\begin{tabular}{ll} \textbf{Decelerator disable - Disable deceleration command} \\ \textbf{off } (default) \mid \textbf{on} \\ \end{tabular}$

Select to disable the deceleration command.

Dependencies

Selecting this parameter creates the DecelZero input port.

Configuration

Control type, cntrlType — Longitudinal control

PI (default) | Scheduled PI | Predictive

Type of longitudinal control.

Setting	Block Implementation
PI	Proportional-integral (PI) control with tracking windup and feed-forward gains.
Scheduled PI	PI control with tracking windup and feed-forward gains that are a function of vehicle velocity.
Predictive	Optimal single-point preview (look ahead) control model developed by C. C. MacAdam ^{1, 2, 3} . The model represents driver steering control behavior during path-following and obstacle avoidance maneuvers. Drivers preview (look ahead) to follow a predefined path. To implement the MacAdam model, the block:
	Represents the dynamics as a linear single track (bicycle) vehicle
	• Minimizes the previewed error signal at a single point T^* seconds ahead in time
	Accounts for the driver lag deriving from perceptual and neuromuscular mechanisms

Shift type, shftType — Shift type

None (default) | Reverse, Neutral, Drive | Scheduled | External

Shift type.

Setting	Block Implementation
None	No transmission. Block outputs a constant gear of 1. Use this setting to minimize the number of parameters you need to generate
	acceleration and braking commands to track forward vehicle motion. This setting does not allow reverse vehicle motion.

Setting	Block Implementation
Reverse, Neutral, Drive	Block uses a Stateflow chart to model reverse, neutral, and drive gear shift scheduling.
	Use this setting to generate acceleration and braking commands to track forward and reverse vehicle motion using simple reverse, neutral, and drive gear shift scheduling. Depending on the vehicle state and vehicle velocity feedback, the block uses the initial gear and time required to shift the vehicle up into drive or down into reverse or neutral.
	For neutral gears, the block uses braking commands to control the vehicle speed. For reverse gears, the block uses an acceleration command to generate torque and a brake command to reduce vehicle speed.
Scheduled	Block uses a Stateflow chart to model reverse, neutral, park, and N-speed gear shift scheduling.
	Use this setting to generate acceleration and braking commands to track forward and reverse vehicle motion using reverse, neutral, park, and N-speed gear shift scheduling. Depending on the vehicle state and vehicle velocity feedback, the block uses these parameters to determine the:
	Initial gear
	Upshift and downshift accelerator pedal positions
	Upshift and downshift velocity
	Timing for shifting and engaging forward and reverse from neutral
	For neutral gears, the block uses braking commands to control the vehicle speed. For reverse gears, the block uses an acceleration command to generate torque and a brake command to reduce vehicle speed.
External	Block uses the input gear, vehicle state, and velocity feedback to generate acceleration and braking commands to track forward and reverse vehicle motion.
	For neutral gears, the block uses braking commands to control the vehicle speed. For reverse gears, the block uses an acceleration command to generate torque and a brake command to reduce vehicle speed.

Reference and feedback units, velUnits — Velocity units m/s (default)

Vehicle velocity reference and feedback units.

Dependencies

If you set **Control type, cntrlType** control type to Scheduled or Scheduled PI, the block uses the **Reference and feedback units, velUnits** for the **Nominal speed, vnom** parameter dimension.

If you set **Shift Type, shftType** to **Scheduled**, the block uses the **Longitudinal velocity units, velUnits** for these parameter dimensions:

• Upshift velocity data table, upShftTbl

· Downshift velocity data table, dwnShftTbl

Output gear signal — Create GearCmd output port off $(default) \mid on$

Specify to create output port GearCmd.

Control

Longitudinal

Proportional gain, Kp — Gain

10 (default) | scalar

Proportional gain, K_n , dimensionless.

Dependencies

To create this parameter, set **Control type** to PI.

Integral gain, Ki — Gain

5 (default) | scalar

Proportional gain, K_i , dimensionless.

Dependencies

To create this parameter, set **Control type** to PI.

Velocity feed-forward, Kff — Gain

.1 (default) | scalar

Velocity feed-forward gain, K_{ff} , dimensionless.

Dependencies

To create this parameter, set **Control type** to PI.

Grade feed-forward, Kg — Gain

0 (default) | scalar

Grade feed-forward gain, K_a , in 1/deg.

Dependencies

To create this parameter, set **Control type** to PI.

Velocity gain breakpoints, VehVelVec — Breakpoints

[0 100] (default) | vector

Velocity gain breakpoints, VehVelVec, dimensionless.

Dependencies

To create this parameter, set **Control type** to **Scheduled PI**.

Velocity feed-forward gain values, KffVec — Gain

[.1 .1] (default) | vector

Velocity feed-forward gain values, *KffVec*, as a function of vehicle velocity, dimensionless.

Dependencies

To create this parameter, set **Control type** to **Scheduled PI**.

Proportional gain values, KpVec — Gain

[10 10] (default) | vector

Proportional gain values, *KpVec*, as a function of vehicle velocity, dimensionless.

Dependencies

To create this parameter, set **Control type** to **Scheduled PI**.

Integral gain values, KiVec — Gain

[5 5] (default) | vector

Integral gain values, *KiVec*, as a function of vehicle velocity, dimensionless.

Dependencies

To create this parameter, set **Control type** to **Scheduled PI**.

Grade feed-forward values, KgVec — Grade gain

[0 0] (default) | vector

Grade feed-forward values, *KgVec*, as a function of vehicle velocity, in 1/deg.

Dependencies

To create this parameter, set **Control type** to **Scheduled PI**.

Nominal speed, vnom — Nominal vehicle speed

5 (default) | scalar

Nominal vehicle speed, v_{nom} , in units specified by the **Reference and feedback units**, **velUnits** parameter. The block uses the nominal speed to normalize the controller gains.

Dependencies

To create this parameter, set **Control type** to PI or Scheduled PI.

Anti-windup, Kaw — Gain

1 (default) | scalar

Anti-windup gain, K_{aw} , dimensionless.

Dependencies

To create this parameter, set **Control type** to PI or Scheduled PI.

Error filter time constant, tauerr — Filter

.01 (default) | scalar

Error filter time constant, τ_{err} , in s. To disable the filter, enter 0.

To create this parameter, set **Control type** to PI or Scheduled PI.

Predictive

Vehicle mass, m — Mass

1500 (default) | scalar

Vehicle mass, m, in kg.

Dependencies

To create this parameter, set **Longitudinal control type**, **cntrlType** to Predictive.

Effective vehicle total tractive force, Kp — Tractive force

3000 (default) | scalar

Effective vehicle total tractive force, K_p , in N.

Dependencies

To create this parameter, set **Longitudinal control type**, **cntrlType** to Predictive.

Driver response time, tau — Tau

.1 (default) | scalar

Driver response time, τ , in s.

Dependencies

To create this parameter, set **Longitudinal control type**, **cntrlType** to Predictive.

Preview distance, L — Distance

2 (default) | scalar

Driver preview distance, L, in m.

Dependencies

To create this parameter, set **Longitudinal control type**, **cntrlType** to Predictive.

Rolling resistance coefficient, aR — Resistance

200 (default) | scalar

Static rolling and driveline resistance coefficient, a_R , in N. Block uses the parameter to estimate the constant acceleration or braking effort.

Dependencies

To create this parameter, set **Longitudinal control type**, **cntrlType** to Predictive.

Rolling and driveline resistance coefficient, bR-Resistance

2.5 (default) | scalar

Rolling and driveline resistance coefficient, b_R , in N·s/m. Block uses the parameter to estimate the linear velocity-dependent acceleration or braking effort.

To create this parameter, set **Longitudinal control type**, **cntrlType** to Predictive.

Aerodynamic drag coefficient, cR — Drag

.5 (default) | scalar

Aerodynamic drag coefficient, c_R , in N·s^2/m^2. Block uses the parameter to estimate the quadratic velocity-dependent acceleration or braking effort.

Dependencies

To create this parameter, set **Longitudinal control type**, **cntrlType** to Predictive.

Gravitational constant, g — Gravitational constant

9.81 (default) | scalar

Gravitational constant, g, in m/s^2.

Dependencies

To create this parameter, set **Longitudinal control type**, **cntrlType** to Predictive.

Shift

Reverse, Neutral, Drive

Initial gear, GearInit — Initial gear

0 (default) | scalar

Integer value of the initial gear. The block uses the initial gear to generate acceleration and braking commands to track forward and reverse vehicle motion.

Gear	Integer
Park	80
Reverse	-1
Neutral	0
Drive	1
Gear	Gear number

Dependencies

To create this parameter, set **Shift type**, **shftType** to Reverse, Neutral, Drive or Scheduled. If you specify Reverse, Neutral, Drive, the **Initial Gear, GearInit** parameter value can be only -1, 0, or 1.

Time required to shift, tShift — Time

.1 (default) | scalar

Time required to shift, tShift, in s. The block uses the time required to shift to generate acceleration and braking commands to track forward and reverse vehicle motion using reverse, neutral, and drive gear shift scheduling.

To create this parameter, set **Shift type**, **shftType** to Reverse, Neutral, Drive.

Scheduled

Initial gear, GearInit — Initial gear

0 (default) | scalar

Integer value of the initial gear. The block uses the initial gear to generate acceleration and braking commands to track forward and reverse vehicle motion.

	Integer
Park	80
Reverse	-1
Neutral	0
Drive	1
Gear	Gear number

Dependencies

To create this parameter, set **Shift type**, **shftType** to Reverse, Neutral, Drive or Scheduled. If you specify Reverse, Neutral, Drive, the **Initial Gear**, **GearInit** parameter value can be only -1, 0, or 1.

Up and down shift accelerator pedal positions, pdlVec — Pedal position breakpoints

Pedal position breakpoints for lookup tables when calculating upshift and downshift velocities, dimensionless. Vector dimensions are 1 by the number of pedal position breakpoints, m.

Dependencies

To create this parameter, set **Shift type**, **shftType** to **Scheduled**.

Upshift velocity data table, upShftTbl — Table [m-by-n] array

Upshift velocity data as a function of pedal position and gear, in units specified by the **Reference and feedback units, velUnits** parameter. Upshift velocities indicate the vehicle velocity at which the gear should increase by 1.

The array dimensions are m pedal positions by n gears. The first column of data, when n equals 1, is the upshift velocity for the neutral gear.

Dependencies

To create this parameter, set **Shift type**, **shftType** to **Scheduled**.

Downshift velocity data table, dwnShftTbl — Table [m-by-n] array

Downshift velocity data as a function of pedal position and gear, in units specified by the **Reference and feedback units, velUnits** parameter. Downshift velocities indicate the vehicle velocity at which the gear should decrease by 1.

The array dimensions are m pedal positions by n gears. The first column of data, when n equals 1, is the downshift velocity for the neutral gear.

Dependencies

To create this parameter, set **Shift type**, **shftType** to **Scheduled**.

Time required to shift, tClutch — Time .5 (default) | scalar

Time required to shift, t_{Clutch} , in s.

Dependencies

To create this parameter, set **Shift type**, **shftType** to **Scheduled**.

Time required to engage reverse from neutral, tRev — Time .5 (default) | scalar

Time required to engage reverse from neutral, t_{Rev} , in s.

Dependencies

To create this parameter, set **Shift type**, **shftType** to **Scheduled**.

Time required to engage park from neutral, tPark — Time 120 (default) | scalar

Time required to engage park from neutral, t_{Park} , in s.

Dependencies

To create this parameter, set **Shift type**, **shftType** to **Scheduled**.

References

- [1] MacAdam, C. C. "An Optimal Preview Control for Linear Systems". *Journal of Dynamic Systems, Measurement, and Control*. Vol. 102, Number 3, Sept. 1980.
- [2] MacAdam, C. C. "Application of an Optimal Preview Control for Simulation of Closed-Loop Automobile Driving ". *IEEE Transactions on Systems, Man, and Cybernetics*. Vol. 11, Issue 6, June 1981.
- [3] MacAdam, C. C. Development of Driver/Vehicle Steering Interaction Models for Dynamic Analysis. Final Technical Report UMTRI-88-53. Ann Arbor, Michigan: The University of Michigan Transportation Research Institute, Dec. 1988.

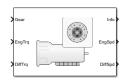
Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also

Drive Cycle Source | Vehicle Body Total Road Load


Introduced in R2017a

Transmission Blocks

Automated Manual Transmission

Ideal automated manual transmission

Library: Powertrain Blockset / Transmission / Transmission Systems

Description

The Automated Manual Transmission block implements an ideal automated transmission (AMT). An AMT is a manual transmission with additional actuators and an electronic control unit (ECU) to regulate clutch and gear selection based on commands from a controller. The number of gears is specified via an integer vector with corresponding gear ratios, inertias, viscous damping, and efficiency factors. The clutch and synchronization engagement rates are linear and adjustable.

Use the block for:

- · Power and torque capacity sizing
- Determining gear ratio impact on fuel economy and performance

To determine the rotational drive shaft speed and reaction torque, the Automated Manual Transmission block calculates:

- Clutch lock-up and clutch friction
- Locked rotational dynamics
- Unlocked rotational dynamics

To specify the block efficiency calculation, for **Efficiency factors**, select either of these options.

Setting	Block Implementation
Gear only	Efficiency determined from a 1D lookup table that is a function of the gear.
Gear, input torque, input speed, and temperature	 Efficiency determined from a 4D lookup table that is a function of: Gear Input torque Input speed Oil temperature

Clutch Control

The AMT delivers drive shaft torque continuously by controlling the pressure signals from the clutch. If you select **Control type** parameter **Ideal** integrated controller, the block generates idealized clutch pressure signals. To use your own clutch control signals, select **Control type** parameter **External** control.

Clutch Lock-Up and Clutch Friction

Based on the clutch lock-up condition, the block implements one of these friction models.

If	Clutch Condition	Friction Model
$\omega_i \neq N\omega_d$	Unlocked	$T_f = T_k$
or		where,
$ T_S < T_f - Nw_i b_i $		$T_k = F_c R_{eff} \mu_k \tanh \left[4 \left(\frac{w_i}{N} - w_d \right) \right]$ $T_s = F_c R_{eff} \mu_s$ $R_{eff} = \frac{2(R_o^3 - R_i^3)}{3(R_o^2 - R_i^2)}$
$\omega_i = N\omega_t$	Locked	$T_f = T_s$
and		
$ T_S \ge T_f - Nb_i\omega_i $		

The equations use these variables.

ω_t	Output drive shaft speed
ω_i	Input drive shaft speed
ω_d	Drive shaft speed
b_i	Viscous damping
F_c	Applied clutch force
N	Engaged gear
T_f	Frictional torque
T_k	Kinetic frictional torque
T_S	Static frictional torque
R_{eff}	Effective clutch radius
R_o	Annular disk outer radius
R_i	Annular disk inner radius
μ_s	Coefficient of static friction
μ_k	Coefficient of kinetic friction

Locked Rotational Dynamics

To model the rotational dynamics when the clutch is locked, the block implements these equations.

$$\begin{split} \dot{\omega}_d J_N &= \eta_N T_d - \frac{\omega_i}{N} b_N + N T_i \\ \omega_i &= N \omega_d \end{split}$$

The block determines the input torque, T_i , through differentiation.

The equations use these variables.

ω_i	Input drive shaft speed
ω_d	Drive shaft speed
N	Engaged gear
b_N	Engaged gear viscous damping
J_N	Engaged gear inertia
η_N	Engaged gear efficiency
T_d	Drive shaft torque
T_i	Applied input torque

Unlocked Rotational Dynamics

To model the rotational dynamics when the clutch is unlocked, the block implements this equation.

$$\dot{\omega}_d J_N = N T_f - \omega_d b_N + T_d$$

where:

ω_d	Drive shaft speed
N	Engaged gear
b_N	Engaged gear viscous damping
J_N	Engaged gear inertia
T_d	Drive shaft torque
T_i	Applied input torque

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Varia ble	Equations
	PwrTrnsfrd — Power	PwrEng	Engine power	P_{eng}	$\omega_i T_i$
	PwrDif frntl	Differential power	P_{diff}	$\omega_d T_d$	
	 Negative signals indicate flow out of block 				
	crossing the block boundary, but not transferred		Mechanical power loss	$P_{\it effloss}$	$\omega_d T_d (\eta_N - 1)$
		PwrDam pLoss	Mechanical damping loss	P_{dampl} oss	$-b_N\omega_d^2 - b_{in}\omega_i^2$
	inputNegative signals indicate a loss	PwrClt chLoss		P_{mech}	When locked: 0 When unlocked: $-T_k(\omega_i - N\omega_d)$

Bus Signal		Description	Varia ble	Equations
PwrStored — Stored energy rate of change • Positive signals indicate an increase • Negative signals indicate a decrease	redTra ns	Rate change in rotational kinetic energy	501	When locked: $\dot{\omega}_i \omega_i (J_{in} + \frac{J_N}{N^2})$ When unlocked: $J_{in} \dot{\omega}_i \omega_i + J_N \dot{\omega}_d \omega_d$

The equations use these variables.

b_N	Engaged gear viscous damping
J_N	Engaged gear rotational inertia
J_{in}	Flywheel rotational inertia
η_N	Engaged gear efficiency
N	Engaged gear ratio
T_i	Applied input torque, typically from the engine crankshaft or dual mass flywheel damper $$
T_d	Applied load torque, typically from the differential or drive shaft
ω_d	Initial input drive shaft rotational velocity
ω_i , $\acute{\omega_i}$	Applied drive shaft angular speed and acceleration

Ports

Input

Gear — Gear number to engage

scalar

Integer value of gear number to engage.

CltchCmd — Clutch command

scalar

Clutch pressure command.

Dependencies

To create this port, select **Control type** parameter External control.

EngTrq — Applied input torque

scalar

Applied input torque, T_i , typically from the engine crankshaft or dual mass flywheel damper, in N·m.

DiffTrq — Applied load torque

scalar

Applied load torque, T_d , typically from the differential or driveshaft, in N·m.

Temp — **Oil temperature**

scalar

Oil temperature, in K. To determine the efficiency, the block uses a 4D lookup table that is a function of:

- Gear
- · Input torque
- · Input speed
- Oil temperature

Dependencies

To create this port, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

Output

Info — Bus signal

bus

Bus signal contains these block calculations.

Signal			Description	Variable	Units
Eng	EngTrq		Input applied torque	T_i	N·m
	EngSpd		Input drive shaft speed	ω_i	rad/s
Diff	DiffTrq		Output drive shaft torque	T_t	N·m
	DiffSpd	DiffSpd		ω_t	rad/s
Cltch	CltchForce		Applied clutch force	F_c	N
	CltchLocked		Clutch lock status, Boolean: • Locked — 0 • Unlocked — 1	N/A	N/A
Trans TransSpdRatio		Speed ratio at time t	$\phi(t)$	N/A	
	TransEta		Ratio of output power to input power	η	N/A
	TransGearCmd		Commanded gear	N_{cmd}	N/A
	TransGear		Engaged gear	N	N/A
PwrInfo	PwrTrnsfrd	PwrEng	Engine power	P_{eng}	W
		PwrDiffrntl	Differential power	P_{diff}	W
	PwrNotTrnsfr d	PwrEffLoss	Mechanical power loss	$P_{effloss}$	W

Signal			Description	Variable	Units
		PwrDampLoss	Mechanical damping loss	$P_{damploss}$	W
		PwrCltchLoss	Clutch power loss	P_{mech}	W
	PwrStored	PwrStoredTrans	Rate change in rotational kinetic energy	P_{str}	W

EngSpd — Angular speed

scalar

Applied drive shaft angular speed input, ω_i , in rad/s.

DiffSpd — Angular speed

scalar

Drive shaft angular speed output, ω_d , in rad/s.

Parameters

Control type — Specify control type

Ideal integrated controller (default) | External control

The AMT delivers drive shaft torque continuously by controlling the pressure signals from the clutch. If you select **Control type** parameter **Ideal** integrated controller, the block generates idealized clutch pressure signals. To use your own clutch control signals, select **Control type** parameter External control.

Dependencies

This table summarizes the port configurations.

Control Mode	Creates Ports
External control	CltchCmd

Efficiency factors — **Specify efficiency calculation**

Gear only (default) | Gear, input torque, input speed, and temperature

To specify the block efficiency calculation, for **Efficiency factors**, select either of these options.

Setting	Block Implementation
Gear only	Efficiency determined from a 1D lookup table that is a function of the gear.
Gear, input torque, input speed, and temperature	Efficiency determined from a 4D lookup table that is a function of: • Gear
	Input torque
	Input speed
	Oil temperature

Setting Parameter To	Enables
Gear only	Efficiency vector, eta
Gear, input torque, input speed, and temperature	Efficiency torque breakpoints, Trq_bpts Efficiency speed breakpoints, omega_bpts Efficiency temperature breakpoints, Temp_bpts Efficiency lookup table, eta_tbl

Transmission

Input shaft inertia, Jin — Inertia

.01 (default) | scalar

Input shaft inertia, in kg·m^2.

Input shaft damping, bin — Damping

.001 (default) | scalar

Input shaft damping, in N·m·s/rad.

${\bf Initial\ input\ velocity,\ omegain_o-Angular\ velocity}$

0 (default) | scalar

Angular velocity, in rad/s.

$\label{eq:Gear_number_vector} \textbf{G} - \textbf{Specify number of transmission speeds}$

[-1, 0, 1, 2, 3, 4, 5] (default) | vector

Vector of integer gear commands used to specify the number of transmission speeds. Neutral gear is θ . For example, you can set these parameter values.

To Specify	Set Gear number, G To
Four transmission speeds, including neutral	[0,1,2,3,4]
Three transmission speeds, including neutral and reverse	[-1,0,1,2,3]
Five transmission speeds, including neutral and reverse	[-1,0,1,2,3,4,5]

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Transmission inertia vector**, **Transmission damping vector**, and **Efficiency vector** parameters must be equal.

Efficiency torque breakpoints, Trq_bpts — Breakpoints

[25, 50, 75, 100, 150, 200, 250] (default) | vector

Torque breakpoints for efficiency table, in $N \cdot m$.

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

Efficiency speed breakpoints, omega_bpts — Breakpoints

[52.4 78.5 105 131 157 183 209 262 314 419 524] (default) | vector

Speed breakpoints for efficiency table, rad/s.

Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

Efficiency temperature breakpoints, Temp_bpts — Breakpoints

[313 358] (default) | vector

Temperature breakpoints for efficiency table, in K.

Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

Gear ratio vector, N — Ratio of input speed to output speed [-4.47, 1, 4.47, 2.47, 1.47, 1, 0.8] (default) | vector

Vector of gear ratios (that is, input speed to output speed) with indices corresponding to the ratios specified in **Gear number**, **G**. For neutral, set the gear ratio to 1. For example, you can set these parameter values.

To Specify Gear Ratios For	Set Gear number, G To	Set Gear ratio, N To
Four transmission speeds, including neutral	[0,1,2,3,4]	[1,4.47,2.47,1.47,1]
Five transmission speeds, including neutral and reverse	[-1,0,1,2,3,4,5]	[-4.47,1,4.47,2.47,1.47,1,0.8]

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Transmission inertia vector**, **Transmission damping vector**, and **Efficiency vector** parameters must be equal.

Transmission inertia vector, Jout — Gear rotational inertia [0.128 0.01 0.128 0.1 0.062 0.028 0.01] (default) | vector

Vector of gear rotational inertias, with indices corresponding to the inertias specified in **Gear number**, **G**, in kg·m^2. For example, you can set these parameter values.

To Specify Inertia For	Set Gear number, G To	Set Inertia, J To
Four gears, including neutral	[0,1,2,3,4]	[0.01,2.28,2.04,0.32,0.028]
Inertia for five gears, including reverse and neutral	[-1,0,1,2,3,4,5]	[2.28,0.01,2.28,2.04,0.32,0.028 ,0.01]

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Transmission inertia vector**, **Transmission damping vector**, and **Efficiency vector** parameters must be equal.

Transmission damping vector, bout — Gear viscous damping coefficient

[.003 .001 .003 .0025 .002 .001 .001] (default) | vector

Vector of gear viscous damping coefficients, with indices corresponding to the coefficients specified in **Gear number**, \mathbf{G} , in N·m·s/rad. For example, you can set these parameter values.

To Specify Damping For	Set Gear number, G To	Set Damping, b To
Four gears, including neutral	[0,1,2,3,4]	[0.001,0.003,0.0025, 0.002,0.001]
Five gears, including reverse and neutral	[-1,0,1,2,3,4,5]	[0.003,0.001,0.003, 0.0025,0.002,0.001,0.001]

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Transmission inertia vector**, **Transmission damping vector**, and **Efficiency vector** parameters must be equal.

Efficiency vector, eta — Gear efficiency

[0.9, 0.9, 0.9, 0.9, 0.9, 0.95] (default) | vector

Vector of gear mechanical efficiency, with indices corresponding to the efficiencies specified in **Gear number**, **G**. For example, you can set these parameter values.

To Specify Efficiency For	Set Gear number, G To	Set Efficiency, eta To
Four gears, including neutral	[0,1,2,3,4]	[0.9,0.9,0.9,0.95]
Five gears, including reverse and neutral	[-1,0,1,2,3,4,5]	[0.9,0.9,0.9, 0.9,0.9,0.95,0.95]

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Transmission inertia vector**, **Transmission damping vector**, and **Efficiency vector** parameters must be equal.

Dependencies

To enable this parameter, set **Efficiency factors** to Gear only.

Efficiency lookup table, eta_tbl — Gear efficiency

array

Table of gear mechanical efficiency, η_N as a function of gear, input torque, input speed, and temperature.

Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

Initial output velocity, omegaout_o — Transmission

0 (default) | scalar

Transmission initial output rotational velocity, ω_{to} , in rad/s. If you select **Clutch initially locked**, the block ignores the **Initial output velocity**, **omega** o parameter value.

Initial gear, G_o — Engaged gear

0 (default) | scalar

Initial gear to engage, G_o .

Clutch and Synchronizer

Clutch pressure time constant, tauc — Time

.02 (default) | scalar

Pressure input filter time constant, τ_c , in s.

Synchronization time, ts — Time

.25 (default) | scalar

Time required for gear selection and synchronization, t_s , in s.

Clutch time, tc — Time

.5 (default) | scalar

Time required to engage and disengage the clutch during shift events, t_c , in s.

Dependencies

To create this parameter, select **Control type** parameter **Ideal** integrated controller.

Effective clutch radius, R — Radius

.2 (default) | scalar

The effective radius, R_{eff} , used with the applied clutch friction force to determine the friction force, in m. The effective radius is defined as:

$$R_{eff} = \frac{2(R_0 ^3 - R_i ^3)}{3(R_0 ^2 - R_i ^2)}$$

The equation uses these variables.

 R_o Annular disk outer radius

 R_i Annular disk inner radius

Clutch force gain, K_c — Force

5e3 (default) | scalar

Open loop lock-up clutch gain, K_c , in N.

Clutch static friction coefficient, mus — Coefficient

0.6 (default) | scalar

Dimensionless clutch disc coefficient of static friction, μ_s .

Clutch kinematic friction coefficient, muk — Coefficient

0.4 (default) | scalar

Dimensionless clutch disc coefficient of kinetic friction, μ_k .

Clutch initially locked — Select to initially lock clutch

off (default) | on

Select to lock clutch initially.

To create this parameter, select **Control type** parameter **Ideal** integrated controller.

Synchronizer initially locked — Select to initially lock synchronizer off (default) \mid on

Select to initially lock synchronizer.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also

 $AMT\ Controller\ |\ Continuously\ Variable\ Transmission\ |\ Dual\ Clutch\ Transmission\ |\ Ideal\ Fixed\ Gear\ Transmission$

Introduced in R2017a

AMT Controller

Automated manual transmission controller with clutch open, close, and synchronization timing

Library: Powertrain Blockset / Transmission / Transmission

Controllers

Description

The AMT Controller block implements an automated manual transmission (AMT) controller. You can specify the clutch open, close, and synchronization timing parameters. The block determines the clutch commands using integrator-based timers and latching logic that is based on the specified timing parameters and gear request.

Ports

Inputs

GearReq — **Gear number to engage**

scalar

Gear number request, G_{reg} .

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Variable
GearReq	Gear number request	G_{req}
GearEngd	Nominal gear commanded by the controller	G_o
Cltch	Clutch pressure command for gears, between 0 and 1	NA

GearEffct — **Effective gear for shifting**

scalar

Effective gear for shifting. The block uses this signal for the smooth application of inertial, efficiency, gear ratio, and damping parameters.

Cltch — Command for clutch pressure

scalar

Clutch pressure command, between 0 and 1.

Parameters

Initial gear, G_o — Engaged gear

0 (default) | scalar

Initial gear to engage, G_o .

Clutch actuation time, tc — Time

.1 (default) | scalar

Time required to engage and disengage the clutch during shift events, t_c , in s.

Synchronizer time, ts — Time

.01 (default) | scalar

Time required for gear selection and synchronization, t_s , in s.

Sample period, dt — Time

-1 (default) | scalar

Sample period, dt, in s.

Clutch initially locked — Select to initially lock clutch

off (default) | on

Selecting this parameter initially locks the clutch.

Synchronizer initially locked — Select to initially lock synchronizer

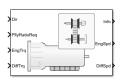
off (default) | on

Selecting this parameter initially locks the synchronizer.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.


See Also

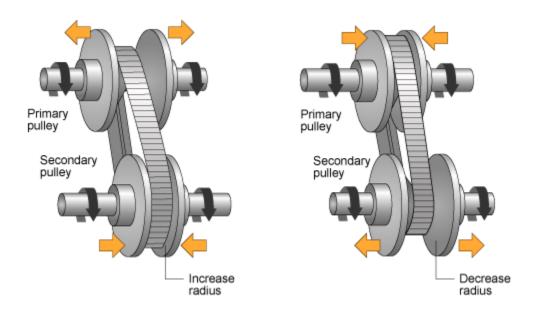
Automated Manual Transmission

Introduced in R2017a

Continuously Variable Transmission

Push belt continuously variable transmission with independent radii control **Library:** Powertrain Blockset / Transmission / Transmission Systems

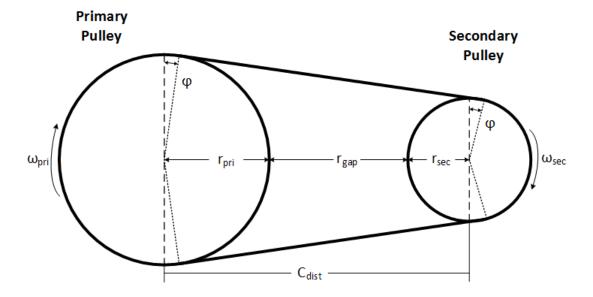
Description


The Continuously Variable Transmission block implements a push belt continuously variable transmission (CVT) with independent radii control. Use the block for control system design, powertrain matching, and fuel economy studies. You can configure the block for internal or external control:

- Internal Input direction and pulley ratio requests
- External Input direction and pulley displacement requests

The table summarizes the pulley kinematic, speed reduction, and dynamic calculations made by the Continuously Variable Transmission block.

Calculation	Pulley Kinematics	Reverse and Final Speed Reduction	Dynamics
Final angular speed ratio	✓	✓	✓
Belt torque applied to the secondary and primary pulleys			✓
Torque applied to the secondary and primary pulleys		✓	
Angular velocity of secondary and primary pulleys	✓	✓	✓
Belt and pulley geometry	✓		
Belt linear speed			✓
Wrap angle on secondary and primary pulley	✓		
Primary and secondary pulley radii	✓		


The figure shows the CVT variator with two configurations. In the first configuration, which illustrates speed reduction, the variator is set to decrease the primary pulley radius and increase the secondary pulley radius. In the second configuration, which illustrates overdrive, the variator is set to increase the primary pulley radius and decrease the secondary pulley radius.

Pulley Kinematics

Using the physical dimensions of the system, the block calculates the primary and secondary variator positions that meet the pulley ratio request.

The figure and equations summarize the geometric dependencies.


```
C_{dist} = rp_{max} + r_{gap} + r_{sec\_max}
L_0 = f(rp_{max}, rs_{max}, rp_{min}, rs_{min}, C_{dist})
ratio_{command} = f(ratio_{request}, ratio_{max}, ratio_{min})
r_{pri} = f(r_0, ratio_{command}, C_{dist})
r_{sec} = f(r_0, ratio_{command}, C_{dist})
x_{pri} = f(r_0, r_{pri}, \theta_{wedge})
x_{sec} = f(r_0, r_{sec}, \theta_{wedge})
```

Pulley gear ratio request

The equations use these variables.

ratio_{request}

ratio_{command} Pulley gear ratio command, based on request and physical limitations Gap distance between variator pulleys r_{qap} Distance between variator pulley centers C_{dist} Maximum variator primary pulley radius rp_{max} Maximum variator secondary pulley radius rs_{max} Minimum variator primary pulley radius rp_{min} Minimum variator secondary pulley radius rs_{min} r_o Initial pulley radii with gear ratio of 1 Initial belt length, resulting from variator specification L_o Variator primary pulley displacement, resulting from controller request X_{pri} Variator secondary pulley displacement, resulting from controller request χ_{sec} Variator primary pulley radius, resulting from controller request r_{pri} Variator secondary pulley radius, resulting from controller request r_{sec}

 Θ_{wedae} Variator wedge angle

 Φ Angle of belt to pulley contact point

L Belt length, resulting from variator position

Reverse and Final Speed Reduction

The CVT input shaft connects to a planetary gear set that drives the primary pulley. The shift direction determines the input gear inertia, efficiency, and gear ratio. The shift direction is the filtered commanded direction:

$$\frac{Dir_{shift}}{Dir}(s) = \frac{1}{\tau_s s + 1}$$

For forward motion ($Dir_{shift} = 1$):

$$N_i = 1$$

$$\eta_i = \eta_{fwd}$$

$$J_i = J_{fwd}$$

For reverse motion ($Dir_{shift} = -1$):

$$N_i = -N_{rev}$$

 $\eta_i = \eta_{rev}$
 $J_i = J_{rev}$

The gear ratio and efficiency determine the input drive shaft speed and torque applied to the primary pulley:

$$T_{app\ pri} = \eta_i N_i T_i$$

The block reduces the secondary pulley speed and applied torque using a fixed gear ratio.

$$T_{app_sec} = \frac{T_o}{\eta_o N_o}$$
$$\omega_o = \frac{\omega_{sec}}{N_o}$$

The final gear ratio, without slip, is given by:

$$N_{final} = \frac{\omega_i}{\omega_o} = N_i N_o \frac{r_{sec}}{r_{pri}}$$

The equations use these variables.

Direction used to determine planetary inertia, efficiency, and ratio

 τ_s Direction shift time constant

 η_{fwd} , η_{rev} Forward and reverse gear efficiency, respectively J_{fwd} , J_{rev} Forward and reverse gear inertia, respectively

 N_{rev} Reverse gear ratio

 $T_{app\ pri}$, $T_{app\ sec}$ Torque applied to primary and secondary pulleys, respectively

 T_i Input drive shaft torque

 $\omega_{i}, \, \omega_{o}$ Input and output drive shaft speed, respectively $\omega_{pri}, \, \omega_{sec}$ Primary and secondary pulley speed, respectively

 N_{final} Total no-slip gear ratio

Dynamics

The maximum torque that the CVT can transmit depends on the friction between the pulleys and belt. According to *Prediction of Friction Drive Limit of Metal V-Belt*, the torque friction is defined as:

$$T_{fric}(r_p,\mu) = \frac{2\mu F_{ax}r_p}{\cos(\vartheta_{wedge})}$$

Without macro slip, the tangential acceleration of the pulley is assumed to be equal to the belt acceleration. Once the torque reaches the static friction limit, the belt begins to slip, and the pulley and belt acceleration are independent. During slip, the torque transmitted by the belt is a function of the kinetic friction factor. During the transition from slip to non-slip conditions, the belt and tangential pulley velocities are equal.

The block implements these equations for four different slip conditions.

Condition	Equations
Belt slips on both secondary	$(J_{pri} + J_i)\dot{\omega}_{pri} = T_{app_pri} - T_{BoP_pri} - b_{pri}\omega_{pri}$
and primary pulleys	$J_{sec}\dot{\omega}_{sec} = T_{app_sec} - T_{BoP_sec} - b_{sec}\omega_{sec}$
	$m_b \dot{v}_b = \frac{T_{BoP_pri}}{r_{pri}} + \frac{T_{BoP_sec}}{r_{sec}} - b_b v_b$
	$r_{pri}\omega_{pri} \neq v_b$
	$r_{sec}\omega_{sec} \neq v_b$
Belt slips on only the primary	$(J_{pri} + J_i)\dot{\omega}_{pri} = T_{app_pri} - T_{BoP_pri} - b_{pri}\omega_{pri}$
pulley	$\left(m_b + \frac{J_{sec}}{r^2_{sec}}\right)\dot{v}_b = \frac{T_{BoP_pri}}{r_{pri}} + \frac{T_{BoP_sec}}{r_{sec}} - \left(b_b + \frac{b_{sec}}{r^2_{sec}}\right)v_b$
	$\omega_{SeC} = \frac{v_b}{r_{SeC}}$
	$r_{pri}\omega_{pri} \neq v_b$
	$T_{BoP_pri} = \operatorname{sgn}(r_{pri}\omega_{pri} - v_b)T_{fric}(r_{pri}, \mu_{kin})$
	$\left T_{BoP_sec}\right < T_{fric}(r_{sec}, \mu_{static})$
Belt slips on only the secondary pulley	$(m_b + \frac{J_{pri} + J_i}{r^2_{pri}})\dot{v}_b = \frac{T_{app_pri}}{r_{pri}} + \frac{T_{BoP_sec}}{r_{sec}} - \left(b_b + \frac{b_{pri}}{r^2_{pri}}\right)v_b$
	$J_{sec}\dot{\omega}_b = T_{app_sec} + T_{BoP_sec} - b_{sec}\omega_{sec}$
	$\omega_{pri} = \frac{v_b}{r_{pri}}$
	$r_{sec}\omega_{sec} \neq v_b$
	$T_{BoP_sec} = \operatorname{sgn}(r_{sec}\omega_{sec} - v_b)T_{fric}(r_{sec}, \mu_{kin})$
	$\left T_{BoP_pri}\right < T_{fric}(r_{pri}, \mu_{static})$
Belt does not slip	$\left(m_b + \frac{J_{sec}}{r^2_{sec}} + \frac{J_{pri} + J_i}{r^2_{pri}}\right) \dot{v}_b = \frac{T_{app_pri}}{r_{pri}} + \frac{T_{app_sec}}{r_{sec}} - \left(b_b + \frac{b_{sec}}{r^2_{sec}} + \frac{b_{pri}}{r^2_{pri}}\right)$
	$\omega_{pri} = \frac{v_b}{r_{pri}}$
	$\omega_{sec} = \frac{v_b}{r_{sec}}$
	$\left T_{BoP_pri}\right < T_{fric}(r_{pri}, \mu_{static})$
	$\left T_{BoP_sec}\right < T_{fric}(r_{sec}, \mu_{static})$

Condition	Equations
Slip direction	$\int 0 r_{pri}\omega_{pri} = v_b$
	$PriSlipDir = \left\{ 1 \mid r_{pri}\omega_{pri} > v_b \right\}$
	$PriSlipDir = \begin{cases} 0 & r_{pri}\omega_{pri} = v_b \\ 1 & r_{pri}\omega_{pri} > v_b \\ -1 & r_{pri}\omega_{pri} < v_b \end{cases}$
	$\int 0 r_{sec} \omega_{sec} = v_b$
	$SecSlipDir = \begin{cases} 1 & r_{sec}\omega_{sec} > v_b \end{cases}$
	$SecSlipDir = \begin{cases} 0 & r_{sec}\omega_{sec} = v_b \\ 1 & r_{sec}\omega_{sec} > v_b \\ -1 & r_{sec}\omega_{sec} < v_b \end{cases}$

The equations use these variables.

T_{BoP_pri} , T_{BoP_sec}	Belt torque acting on the primary and secondary pulleys, respectively
T_{app_pri} , T_{app_sec}	Torque applied to primary and secondary pulleys, respectively
$J_{ m pri}$, $J_{ m sec}$	Primary and secondary pulley rotational inertias, respectively
b_{pri} , b_{sec}	Primary and secondary pulley rotational viscous damping, respectively
F_{ax}	Pulley clamp force
μ	Coefficient of friction
μ_{kin} , μ_{static}	Coefficient of kinetic and static friction
v_b , a_b	Linear speed and acceleration of the belt, respectively
m_b	Total belt mass
r_{pri} , r_{sec}	Radii of the primary and secondary pulleys, respectively
Φ_{wrap}	Wrap angle of belt to pulley contact point
Φ_{wrap_pri} , Φ_{wrap_sec}	Primary and secondary pulley wrap angles, respectively

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Variab le	Equations
	PwrTrnsfrd — Power	PwrEng	Engine power	P_{eng}	$\omega_i T_i$
fo	transferred between blocksPositive signals indicate flow into block	PwrDif frntl	Differential power	P_{diff}	$\omega_o T_o$
	Negative signals indicate flow out of block				
	PwrNotTrnsfrd — Power crossing the block boundary, but not transferred	PwrBlt Loss	Belt slip power loss		$(J_{in} + J_{pri})\dot{\omega}_{pri}\omega_{pri} + J_{sec}\dot{\omega}_{sec}\omega_{sec} + 2$
	Positive signals indicate an inputNegative signals indicate a loss				$m_b \dot{v}_b v_b + b_{pri} \omega_{pri}^2 + b_{sec} \omega_{sec}^2$ $T_{app_{pri}} \omega_{pri} - T_{app_{sec}} \omega_{sec}$

Bus Sig	ınal		Description	Variab le	Equations
		PwrGea rInLos s	Input planetary gear mechanical power loss	$P_{grinloss}$	$-\left \omega_{i}T_{i}-T_{app_pri}\omega_{pri}\right $
			Output gear reduction mechanical power loss	$P_{groutlos}$	$-\left \omega_{o}T_{o}-T_{app_sec}\omega_{sec}\right $
		PwrDam pLoss	Mechanical damping loss	$P_{damplos}$	$-b_{pri}\omega_{pri}^2 - b_{sec}\omega_{sec}^2$ $-b_b v_b^2$
	PwrStored — Stored energy rate of change • Positive signals indicate an increase		Rate change in rotational kinetic energy	P_{str}	$ (J_{in} + J_{pri})\dot{\omega}_{pri}\omega_{pri} + J_{sec}\dot{\omega}_{sec}\omega_{sec} + m_b\dot{v}_b v_b $
	Negative signals indicate a decrease				

The equations use these variables.

T_{app_pri} , T_{app_sec}	Torque applied to primary and secondary pulleys, respectively
T_i , T_o	Input and output drive shaft torque, respectively
J_{pri} , J_{sec}	Primary and secondary pulley rotational inertias, respectively
b_{pri} , b_{sec}	Primary and secondary pulley rotational viscous damping, respectively
ω_{pri} , ω_{sec}	Primary and secondary pulley speed, respectively
ω_i , ω_o	Input and output drive shaft speed, respectively
v_b , a_b	Linear speed and acceleration of the belt, respectively
r_{pri} , r_{sec}	Radii of the primary and secondary pulleys, respectively

Ports

Inputs

Dir — Direction request

scalar

Direction request, Dir_{req} , controlling the direction. The block filters the request to determine the direction, forward or reverse. Dir equals 1 for forward motion. Dir equals -1 for reverse.

$$Dir = \begin{cases} 1 & \text{when } Dir_{req} \ge 0 \\ -1 & \text{when } Dir_{req} < 0 \end{cases}$$

PllyRatioReq — Pulley ratio request

scalar

CVT pulley ratio request, *ratio*_{request}.

Dependencies

To create this port, for the **Control mode** parameter, select **Ideal integrated controller**.

PriDisp — **Primary pulley displacement**

scalar

Variator primary pulley displacement, x_{pri} , in m.

Dependencies

To create this port, for the **Control mode** parameter, select External control.

SecDisp — Secondary pulley displacement

scalar

Variator secondary pulley displacement, x_{sec} , in m.

Dependencies

To create this port, for the **Control mode** parameter, select External control.

EngTrq — Input drive shaft torque

scalar

External torque applied to the input drive shaft, T_i , in N·m.

DiffTrq — Output drive shaft torque

scalar

External torque applied to the output drive shaft, T_o , in N·m.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Variable	Units
EngTrq	Input shaft torque	T_i	N·m
DiffTrq	Output shaft torque	T_o	N·m
EngSpd	Input shaft speed	ω_i	rad/s
DiffSpd	Output shaft speed	ω_o	rad/s
PriRadius	Primary pulley radius	r_{pri}	m
PriPhi	Primary pulley wrap angle	Φ_{pri}	rad
SecRadius	Secondary pulley radius	r_{sec}	m
SecPhi	Secondary pulley wrap angle	Φ_{sec}	rad
BltLngthDelta	Change in belt length	ΔL	m
BltLngth	Belt length	L	m
BltLngthInit	Initial belt length	L_o	m

Signal		Description	Variable	Units	
		Belt torque acting on the primary pulley	T_{BoP_pri}	N·m	
Blt0nSec	Trq		Belt torque acting on the secondary pulley	T_{BoP_sec}	N·m
BltVel			Linear speed of the belt	v_b	m/s
PriAngVe	l		Primary pulley speed ω_{pri}		rad/s
SecAngVe	l		Secondary pulley speed	ω_{sec}	rad/s
PriSlipD	ir		Primary pulley slip direction indicator	PriSlipDir	N/A
SecSlipD	SecSlipDir		Secondary pulley slip direction indicator	SecSlipDir	N/A
TransSpdI	Ratio		Total no-slip gear ratio	N_{final}	N/A
PwrInfo	PwrInfo PwrTrnsfrd Pw		Engine power	P_{eng}	W
		PwrDiffrnt l	Differential power	P_{diff}	W
	_	PwrBltLoss	Belt slip power loss	$P_{bltloss}$	W
	frd	PwrGearInL oss	Input planetary gear mechanical power loss	$P_{grinloss}$	W
		PwrGearOut Loss	Output gear reduction mechanical power loss	$P_{groutloss}$	W
		PwrDampLos s	Mechanical damping loss	$P_{damploss}$	W
	PwrStored	PwrStoredT rans	Rate change in rotational kinetic energy	P_{str}	W

EngSpd — Input drive shaft speed

scalar

Input drive shaft angular speed, ω_i , in rad/sec.

DiffSpd — Output drive shaft speed

scalar

Output drive shaft angular speed, ω_o , in rad/sec.

Parameters

Control mode — **External or internal**

Ideal integrated controller (default) | External control

Specify the control method, either internal or external.

Dependencies

This table summarizes the port and input model configurations.

Control Mode	Creates Ports
Ideal integrated controller	PllyRatioReq
External control	PriDisp
	SecDisp

Kinematics

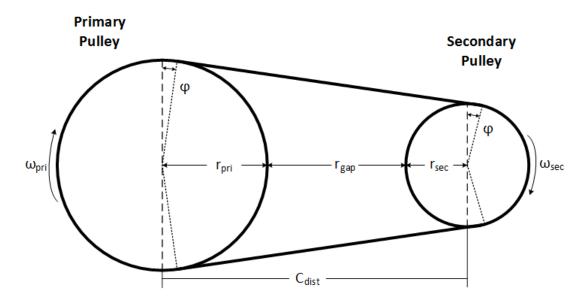
Maximum variator primary pulley radius, rp_max — Radius .08 (default) | scalar

Maximum variator primary pulley radius, rp_{max} , in m.

Maximum variator secondary pulley radius, rs_max — Radius .07 (default) | scalar

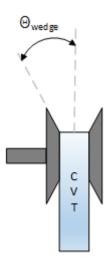
Maximum variator secondary pulley radius, rs_{max} , in m.

Minimum variator primary pulley radius, rp_min — Radius .03 (default) | scalar


Minimum variator primary pulley radius, rp_{min} , in m.

Minimum variator secondary pulley radius, rs_min — Radius .03 (default) | scalar

Minimum variator secondary pulley radius, rs_{min} , in m.


Gap distance between variator pulleys, rgap — Specify crown wheel connection .025 (default) | scalar

The gap between the secondary and primary pulleys, r_{gap} , in m. The figure shows the pulley geometry.

Variator wedge angle, the tawedge — Specify crown wheel connection $11 \, ({\rm default}) \mid {\rm scalar}$

Variator wedge angle, Θ_{wedge} , in deg.

Dynamics

Primary pulley inertia, J_pri — Inertia

0.1 (default) | scalar

Primary pulley inertia, J_{pri} , in kg·m².

Secondary pulley inertia, J_sec — Inertia

0.1 (default) | scalar

Secondary pulley inertia, J_{sec} , in kg·m².

Primary pulley damping coefficient, b_pri — Damping

0.001 (default) | scalar

Primary pulley damping coefficient, b_{pri} , in N·m·s/rad.

Secondary pulley damping coefficient, b_sec — Damping

0.001 (default) | scalar

Secondary pulley damping coefficient, b_{sec} , in N·m·s/rad.

Belt damping coefficient, b_b — Damping

0.0025 (default) | scalar

Belt damping coefficient, b_b , in kg/s.

Static friction coefficient, mu_static — Friction

0.3 (default) | scalar

Static friction coefficient between the belt and primary pulley, μ_{static} , dimensionless.

Kinetic friction coefficient, mu_kin — Friction

0.2 (default) | scalar

Kinetic friction coefficient between the belt and primary pulley, μ_{kin} , dimensionless.

Belt mass, m_b — Mass

3 (default) | scalar

Belt mass, m_b , in kg.

Pulley clamp force, F ax — Pulley clamp force

5000 (default) | scalar

Pulley clamp force, F_{ax} , in N.

Reverse and Output Ratio

Forward inertia, J_fwd — Inertia

0.1 (default) | scalar

Forward inertia, J_{fwd} , in kg·m².

Reverse inertia, J_rev — Inertia

0.1 (default) | scalar

Reverse inertia, J_{rev} , in kg·m².

Forward efficiency, eta_fwd — Efficiency

0.95 (default) | scalar

Forward efficiency, η_{fwd} , dimensionless.

Reverse efficiency, eta_rev — Efficiency

0.95 (default) | scalar

Reverse efficiency, η_{rev} , dimensionless.

Reverse gear ratio, N_rev — Ratio

2 (default) | scalar

Reverse gear ratio, N_{rev} , dimensionless.

Shift time constant, tau_s — Constant

.01 (default) | scalar

Shift time constant, τ_s , in s.

Output gear ratio, N o — Ratio

2 (default) | scalar

Output gear ratio, N_o , dimensionless.

Output gear efficiency, eta_o — Efficiency

0.98 (default) | scalar

Output gear efficiency, η_o , dimensionless.

References

[1] Ambekar, Ashok G. Mechanism and Machine Theory. New Delhi: Prentice-Hall of India, 2007.

- [2] Bonsen, B. *Efficiency optimization of the push-belt CVT by variator slip control*. Ph.D. Thesis. Eindhoven University of Technology, 2006.
- [3] CVT How Does It Work. CVT New Zealand 2010 Ltd, 10 Feb. 2011. Web. 25 Apr. 2016.
- [4] Klaassen, T. W. G. L. *The Empact CVT: Dynamics and Control of an Electromechanically Actuated CVT*. Ph.D. Thesis. Eindhoven University of Technology, 2007.
- [5] Sakagami, K. *Prediction of Friction Drive Limit of Metal V-Belt*. Warrendale, PA: SAE International Journal of Engines 8(3):1408-1416, 2015.

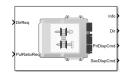
Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also

CVT Controller

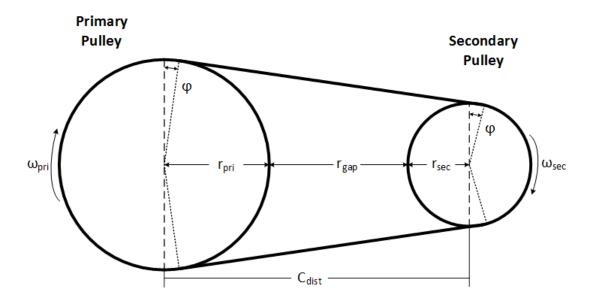

Introduced in R2017a

CVT Controller

Continuously variable transmission controller

Library: Powertrain Blockset / Transmission / Transmission

Controllers


Description

The CVT Controller block implements a push belt continuously variable transmission (CVT) controller. The block uses standard pulley and geometric equations to calculate the kinematic setpoints for the CVT variator. You can use the block to control a CVT.

Pulley Kinematics

Using the physical dimensions of the system, the block calculates the primary and secondary variator positions that meet the pulley ratio request.

The figure and equations summarize the geometric dependencies.

$$C_{dist} = rp_{max} + r_{gap} + r_{sec\ max}$$

$$L_0 = f(rp_{max}, rs_{max}, rp_{min}, rs_{min}, C_{dist})$$

 $ratio_{command} = f(ratio_{request}, ratio_{max}, ratio_{min})$

 $r_{pri} = f(r_0, ratio_{command}, C_{dist})$

 $r_{\text{sec}} = f(r_0, ratio_{command}, C_{dist})$

 $x_{pri} = f(r_0, r_{pri}, \theta_{wedge})$

 $x_{\text{sec}} = f(r_0, r_{\text{sec}}, \theta_{\text{wedge}})$

The equations use these variables.

ratio_{request} Pulley gear ratio request

ratio_{command} Pulley gear ratio command, based on request and physical limitations

 r_{gap} Gap distance between variator pulleys C_{dist} Distance between variator pulley centers rp_{max} Maximum variator primary pulley radius rs_{max} Maximum variator secondary pulley radius rp_{min} Minimum variator primary pulley radius rs_{min} Minimum variator secondary pulley radius rs_{min} Minimum variator secondary pulley radius ro_{o} Initial pulley radii with gear ratio of 1

 L_o Initial belt length, resulting from variator specification

 x_{pri} Variator primary pulley displacement, resulting from controller request x_{sec} Variator secondary pulley displacement, resulting from controller request

 r_{pri} Variator primary pulley radius, resulting from controller request r_{sec} Variator secondary pulley radius, resulting from controller request

 Θ_{wedge} Variator wedge angle

 Φ Angle of belt to pulley contact point

L Belt length, resulting from variator position

Ports

Inputs

DirReq — Direction request

scalar

Direction request, Dir_{req} , controlling the direction, either forward or reverse. Dir equals 1 for forward motion. Dir equals -1 for reverse.

$$Dir = \begin{cases} 1 & \text{when } Dir_{req} \ge 0 \\ -1 & \text{when } Dir_{req} < 0 \end{cases}$$

PllyRatioReq — Pulley ratio request

scalar

CVT pulley ratio request, ratio_{request}.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal		Description	Variable	Units
Radius	PriRadius	Variator primary pulley radius, resulting from controller request	r_{pri}	m
	SecRadius	Variator secondary pulley radius, resulting from controller request	r_{sec}	m
	InitPllyRadius	Initial pulley radii with gear ratio of 1	r_o	m
RatioAdj		Pulley gear ratio command, based on request and physical limitations	ratio _{command}	N/A
RatioMax		Maximum pulley ratio	ratio _{max}	N/A
RatioMin		Minimum pulley ratio	ratio _{min}	N/A
PriDispCmd		Variator primary pulley displacement, resulting from controller request	X _{pri}	m
SecDispCmd		Variator secondary pulley displacement, resulting from controller request	X _{sec}	m

Dir — Direction request

scalar

Direction request, Dir_{req} , controlling the direction, either forward or reverse. Dir equals 1 for forward motion. Dir equals -1 for reverse.

$$Dir = \begin{cases} 1 & \text{when } Dir_{req} \ge 0 \\ -1 & \text{when } Dir_{req} < 0 \end{cases}$$

PriDispCmd — Primary pulley displacement

scalar

Variator primary pulley displacement, x_{pri} , in m.

SecDispCmd — Secondary pulley displacement

scalar

Variator secondary pulley displacement, x_{sec} , in m.

Parameters

Kinematics

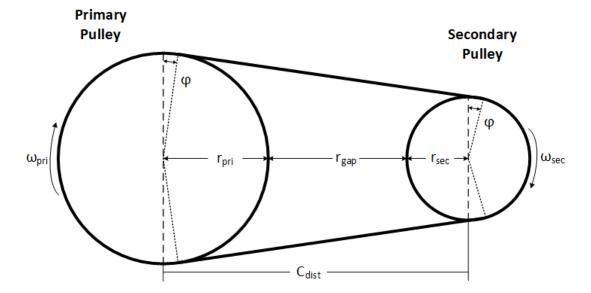
Maximum variator primary pulley radius, rp_max — Radius .08 (default) | scalar

Maximum variator primary pulley radius, rp_{max} , in m.

Maximum variator secondary pulley radius, rs_max — Radius .07 (default) | scalar

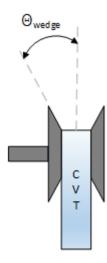
Maximum variator secondary pulley radius, rs_{max} , in m.

Minimum variator primary pulley radius, rp_min — Radius .03 (default) | scalar


Minimum variator primary pulley radius, rp_{min} , in m.

Minimum variator secondary pulley radius, rs_min — Radius .03 (default) | scalar

Minimum variator secondary pulley radius, rs_{min} , in m.


Gap distance between variator pulleys, rgap — Specify crown wheel connection .025 (default) | scalar

The gap between the secondary and primary pulleys, r_{gap} , in m. The figure shows the pulley geometry.

Variator wedge angle, thetawedge — Specify crown wheel connection 11 (default) | scalar

Variator wedge angle, Θ_{wedge} , in deg.

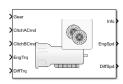
References

- [1] Ambekar, Ashok G. Mechanism and Machine Theory. New Delhi: Prentice-Hall of India, 2007.
- [2] Bonsen, B. *Efficiency optimization of the push-belt CVT by variator slip control*. Ph.D. Thesis. Eindhoven University of Technology, 2006.
- [3] CVT How Does It Work. CVT New Zealand 2010 Ltd. February 10, 2011. Accessed April 25, 2016.
- [4] Klaassen, T. W. G. L. *The Empact CVT: Dynamics and Control of an Electromechanically Actuated CVT.* Ph.D. Thesis. Eindhoven University of Technology, 2007.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.


See Also

Continuously Variable Transmission

Introduced in R2017a

Dual Clutch Transmission

Dual clutch transmission that applies torque to the drive shaft **Library:** Powertrain Blockset / Transmission / Transmission Systems

Description

The Dual Clutch Transmission block implements a dual clutch transmission (DCT). In a DCT, two clutches apply mechanical torque to the drive shaft. Odd gears engage one clutch, while even gears engage the secondary clutch. The number of gears is specified via an integer vector with corresponding gear ratios, inertias, viscous damping, and efficiency factors. The clutch and synchronization engagement rates are linear and adjustable. You can provide external clutch signals or configure the block to generate idealized internal clutch signals. The block implements the transmission model with minimal parameterization or computational cost.

Use the block to model a simplified automated manual transmission (AMT) for:

- Power and torque capacity sizing
- · Determining gear ratio impact on fuel economy and performance

To determine the rotational drive shaft speed and reaction torque, the Dual Clutch Transmission block calculates:

- · Clutch lock-up and clutch friction
- Locked rotational dynamics
- Unlocked rotational dynamics

To specify the block efficiency calculation, for **Efficiency factors**, select either of these options.

Setting	Block Implementation	
Gear only	Efficiency determined from a 1D lookup table that is a function the gear.	
Gear, input torque, input speed, and temperature	Efficiency determined from a 4D lookup table that is a function of: • Gear • Input torque • Input speed • Oil temperature	

Clutch Control

The DCT delivers drive shaft torque continuously by controlling the pressure signals from both clutches. If you select **Control mode** parameter Ideal integrated controller, the block generates idealized clutch pressure signals. The block uses the maximum pressure from each clutch

to approximate the single-clutch commands that result in equivalent drive shaft torque. To use your own clutch control signals, select **Control mode** parameter External control.

Clutch Lock-Up and Clutch Friction

Based on the clutch lock-up condition, the block implements one of these friction models.

If	Clutch Condition	Friction Model
$\omega_i \neq N\omega_d$	Unlocked	$T_f = T_k$
or		where,
$\left T_{S} < \left T_{f} - Nw_{i}b_{i}\right \right $		$T_k = F_c R_{eff} \mu_k \tanh \left[4 \left(\frac{w_i}{N} - w_d \right) \right]$ $T_s = F_c R_{eff} \mu_s$
		$R_{eff} = \frac{2(R_o^3 - R_i^3)}{3(R_o^2 - R_i^2)}$
$\omega_i = N\omega_t$	Locked	$T_f = T_S$
and		
$ T_S \ge T_f - Nb_i \omega_i $		

The equations use these variables.

ω_t	Output drive shaft speed
ω_i	Input drive shaft speed
ω_d	Drive shaft speed
b_i	Viscous damping
F_c	Applied clutch force
N	Engaged gear
T_f	Frictional torque
T_k	Kinetic frictional torque
T_{S}	Static frictional torque
R_{eff}	Effective clutch radius
R_o	Annular disk outer radius
R_i	Annular disk inner radius
μ_s	Coefficient of static friction
μ_k	Coefficient of kinetic friction

Locked Rotational Dynamics

To model the rotational dynamics when the clutch is locked, the block implements these equations.

$$\dot{\omega}_d J_N = \eta_N T_d - \frac{\omega_i}{N} b_N + N T_i$$

$$\omega_i = N \omega_d$$

The block determines the input torque, T_i , through differentiation.

The equations use these variables.

Input drive shaft speed ω_i Drive shaft speed ω_d N Engaged gear b_N Engaged gear viscous damping Engaged gear inertia J_N Engaged gear efficiency η_N Drive shaft torque T_d Applied input torque T_i

Unlocked Rotational Dynamics

To model the rotational dynamics when the clutch is unlocked, the block implements this equation.

$$\dot{\omega}_d J_N = N T_f - \omega_d b_N + T_d$$

where:

 $egin{array}{lll} \omega_d & & {
m Drive \ shaft \ speed} \\ N & & {
m Engaged \ gear} \\ b_N & & {
m Engaged \ gear \ viscous \ damping} \\ J_N & & {
m Engaged \ gear \ inertia} \\ \end{array}$

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal		Description	Varia ble	Equations	
		PwrEng	Engine power	P_{eng}	$\omega_i T_i$
fo		PwrDif frntl	Differential power	P_{diff}	$\omega_d T_d$
	crossing the block boundary, but		Mechanical power loss	$P_{effloss}$	$\omega_d T_d (\eta_N - 1)$
		PwrDam pLoss	Mechanical damping loss	P _{dampl} oss	$-b_N\omega_d^2 - b_{in}\omega_i^2$

Bus Signal		Description	Varia ble	Equations
	PwrClt chLoss	Clutch power loss	P_{mech}	When locked: 0 When unlocked: $-T_k(\omega_i - N\omega_d)$
rate of change		Rate change in rotational kinetic energy		When locked: $\dot{\omega}_i \omega_i (J_{in} + \frac{J_N}{N^2})$ When unlocked: $J_{in} \dot{\omega}_i \omega_i + J_N \dot{\omega}_d \omega_d$

The equations use these variables.

b_N	Engaged gear viscous damping
J_N	Engaged gear rotational inertia
J_{in}	Flywheel rotational inertia
η_N	Engaged gear efficiency
N	Engaged gear ratio
T_i	Applied input torque, typically from the engine crankshaft or dual mass flywheel damper
T_d	Applied load torque, typically from the differential or drive shaft
ω_d	Initial input drive shaft rotational velocity
ω_i , $\acute{\omega_i}$	Applied drive shaft angular speed and acceleration

Ports

Inputs

Gear — Gear number to engage

scalar

Integer value of gear number to engage.

CltchACmd — Command for odd-numbered gears

scalar

Clutch pressure command for odd-numbered gears, between 0 and 1.

Dependencies

To create this port, select **Control mode** parameter External control.

CltchBCmd — Command for even-numbered gears

scalar

Clutch pressure command for even-numbered gears, between $\boldsymbol{0}$ and $\boldsymbol{1}$.

Dependencies

To create this port, select **Control mode** parameter External control.

EngTrq — Applied torque

scalar

Applied input torque, T_i , typically from the engine crankshaft or dual mass flywheel damper, in N·m.

DiffTrq — Applied torque

scalar

Applied load torque, T_d , typically from the drive shaft, in N·m.

Temp — **Oil temperature**

scalar

Oil temperature, in K. To determine the efficiency, the block uses a 4D lookup table that is a function of:

- Gear
- · Input torque
- · Input speed
- Oil temperature

Dependencies

To create this port, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

Output

Info - Bus signal

bus

Bus signal containing these block calculations.

Signal		Description	Variable	Units
Eng	EngTrq	Applied input torque, typically from the engine crankshaft or dual mass flywheel damper		N·m
	EngSpd	Applied drive shaft angular speed input	ω_i	rad/s
Diff	DiffTrq	Applied load torque, typically from the differential	T_d	N·m
	DiffSpd	Drive shaft angular speed output	ω_d	rad/s
Cltch	CltchForce	Applied clutch force	F_c	N
	CltchLocked	Clutch state	NA	NA

Signal		Description	Variable	Units	
Trans			Input to output speed ratio at time t	$\Phi(t)$	NA
	TransEta		Ratio of output power to input power	η_N	NA
	TransGearCmd		Commanded gear	N_{cmd}	NA
	TransGear		Engaged gear	N	NA
PwrInfo	PwrTrnsfrd	PwrEn g	Engine power	P_{eng}	W
		PwrDi ffrnt l	Differential power	P_{diff}	W
	PwrNotTrnsfrd	PwrEf fLoss	Mechanical power loss	$P_{effloss}$	W
		PwrDa mpLos s	Mechanical damping loss	$P_{damploss}$	W
		PwrCl tchLo ss	Clutch power loss	P_{mech}	W
	PwrStored	PwrSt oredT rans	Rate change in rotational kinetic energy	P_{str}	W

EngSpd — Angular speed

scalar

Drive shaft angular speed, ω_d , in rad/s.

DiffSpd — Angular speed

scalar

Drive shaft angular speed, ω_d , in rad/s.

Parameters

Control mode — Specify control mode

External control (default) | Ideal integrated controller

The DCT delivers drive shaft torque continuously by controlling the pressure signals from both clutches. If you select **Control mode** parameter Ideal integrated controller, the block generates idealized clutch pressure signals. The block uses the maximum pressure from each clutch to approximate the single-clutch commands that result in equivalent drive shaft torque. To use your own clutch control signals, select **Control mode** parameter External control.

Dependencies

This table summarizes the port configurations.

Control Mode	Creates Ports
External control	CltchACmd
	CltchBCmd

Efficiency factors — **Specify efficiency calculation**

Gear only (default) | Gear, input torque, input speed, and temperature

To specify the block efficiency calculation, for **Efficiency factors**, select either of these options.

Setting	Block Implementation
Gear only	Efficiency determined from a 1D lookup table that is a function of the gear.
Gear, input torque, input speed, and temperature	 Efficiency determined from a 4D lookup table that is a function of: Gear Input torque Input speed Oil temperature

Dependencies

Setting Parameter To	Enables
Gear only	Efficiency vector, eta
Gear, input torque, input speed, and temperature	Efficiency torque breakpoints, Trq_bpts Efficiency speed breakpoints, omega_bpts Efficiency temperature breakpoints, Temp_bpts Efficiency lookup table, eta_tbl

Transmission

Input shaft inertia, Jin — Inertia

0.1 (default) | scalar

Input shaft inertia, in kg·m^2.

Input shaft damping, bin — Damping

0.001 (default) | scalar

Input shaft damping, in N·m·s/rad.

Initial input velocity, omegain_o — Angular velocity

0 (default) | scalar

Angular velocity, in rad/s.

Efficiency torque breakpoints, Trq_bpts — Breakpoints

[25 50 75 100 150 200 250] (default) | vector

Torque breakpoints for efficiency table, in N·m.

Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

Efficiency speed breakpoints, omega bpts — Breakpoints

[52.4 78.5 105 131 157 183 209 262 314 419 524] (default) | vector

Speed breakpoints for efficiency table, in rad/s.

Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

Efficiency temperature breakpoints, Temp_bpts — Breakpoints

[313 358] (default) | vector

Temperature breakpoints for efficiency table, in K.

Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

Gear number vector, $\mathbf{G}-\mathbf{Specify}$ number of transmission speeds

[-1, 0, 1, 2, 3, 4, 5, 6, 7, 8] (default) | vector

Vector of integers used to specify the number of transmission speeds. Neutral gear is 0. For example, you can set these parameter values.

To Specify	Set Gear number, G to
Four transmission speeds, including neutral	[0,1,2,3,4]
Three transmission speeds, including neutral and reverse	[-1,0,1,2,3]
Five transmission speeds, including neutral and reverse	[-1,0,1,2,3,4,5]

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Transmission inertia vector**, **Damping vector**, and **Efficiency vector** parameters must be equal.

Gear ratio vector, N — Ratio of input speed to output speed

[-4.70, 4.70, 4.700, 3.130,2.100, 1.670,1.290, 1.000,0.840, 0.670] (default) | vector

Vector of gear ratios (that is, input speed to output speed) with indices corresponding to the ratios specified in **Gear number**, **G**. For neutral, set the gear ratio to 1. For example, you can set these parameter values.

To Specify Gear Ratios for	Set Gear number, G to	Set Gear ratio, N to
Four transmission speeds, including neutral	[0,1,2,3,4]	[1,4.47,2.47,1.47,1]

To Specify Gear Ratios for	Set Gear number, G to	Set Gear ratio, N to
Five transmission speeds, including neutral and reverse	[-1,0,1,2,3,4,5]	[-4.47,1,4.47,2.47,1.47,1,0.8]

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Transmission inertia vector**, **Damping vector**, and **Efficiency vector** parameters must be equal.

Transmission inertia vector, Jout — Gear rotational inertia [0.08 0.08 0.08 0.04 0.02 0.01 0.01 0.01 0.01 0.01] (default) | vector

Vector of gear rotational inertias, with indices corresponding to the inertias specified in **Gear number**, **G**, in kg·m^2. For example, you can set these parameter values.

To Specify Inertia for	Set Gear number, G to	Set Inertia, J to
Four gears, including neutral	[0,1,2,3,4]	[0.01,2.28,2.04,0.32,0.028]
Inertia for five gears, including reverse and neutral	[-1,0,1,2,3,4,5]	[2.28,0.01,2.28,2.04,0.32,0.028 ,0.01]

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Transmission inertia vector**, **Damping vector**, and **Efficiency vector** parameters must be equal.

Damping vector, bout — Gear viscous damping coefficient

[.003 .001 .003 .0025 .002 .001 .001 .001 .001 .001] (default) | vector

Vector of gear viscous damping coefficients, with indices corresponding to the coefficients specified in **Gear number**, \mathbf{G} , in N·m·s/rad. For example, you can set these parameter values.

To Specify Damping for	Set Gear number, G to	Set Damping, b to
Four gears, including neutral	[0,1,2,3,4]	[0.001,0.003,0.0025, 0.002,0.001]
Five gears, including reverse and neutral	[-1,0,1,2,3,4,5]	[0.003,0.001,0.003,0.0025, 0.002,0.001,0.001]

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Transmission inertia vector**, **Damping vector**, and **Efficiency vector** parameters must be equal.

Efficiency vector, eta — Gear efficiency

[0.930, 0.930, 0.940, 0.947, 0.948, 0.946, 0.943, 0.940, 0.935] (default) | vector

Vector of gear mechanical efficiency, with indices corresponding to the efficiencies specified in **Gear number**, **G**. For example, you can set these parameter values.

To Specify Efficiency for	Set Gear number, G to	Set Efficiency, eta to
Four gears, including neutral	[0,1,2,3,4]	[0.9,0.9,0.9,0.95]
Five gears, including reverse and neutral		[0.9,0.9,0.9, 0.9,0.9,0.95,0.95]

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Transmission inertia vector**, **Damping vector**, and **Efficiency vector** parameters must be equal.

Dependencies

To enable this parameter, set **Efficiency factors** to Gear only.

Efficiency lookup table, eta_tbl — Gear efficiency array

Table of gear mechanical efficiency, η_N as a function of gear, input torque, input speed, and temperature.

Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

Initial output velocity, omegaout_o — Transmission

0 (default) | scalar

Transmission initial output rotational velocity, ω_{to} , in rad/s. If you select **Clutch initially locked**, the block ignores the **Initial output velocity**, **omega_o** parameter value.

Initial gear, G_o — Engaged gear

0 (default) | scalar

Initial gear to engage, G_o .

Clutch and Synchronizer

Clutch pressure time constant, tauc — Time

.02 (default) | scalar

Time required to engage and disengage the clutch during shift events, t_c , in s.

Synchronization time, ts — Time

.2 (default) | scalar

Time required for gear selection and synchronization, t_s , in s.

Clutch time, tc — Time

.5 (default) | scalar

Time required to engage clutch, t_c , in s.

Dependencies

To create this parameter, select **Control mode** parameter **Ideal integrated controller**.

Effective clutch radius, R — Radius

.25 (default) | scalar

The effective radius, R_{eff} , used with the applied clutch friction force to determine the friction force, in m. The effective radius is defined as:

$$R_{eff} = \frac{2(R_0 3 - R_i 3)}{3(R_0 2 - R_i 2)}$$

The equation uses these variables.

 R_o Annular disk outer radius

 R_i Annular disk inner radius

Clutch force gain, K_c — Force

5e4 (default) | scalar

Open loop lock-up clutch gain, K_c , in N.

Clutch static friction coefficient, mus — Coefficient

0.3 (default) | scalar

Dimensionless clutch disc coefficient of static friction, μ_s .

Clutch kinematic friction coefficient, muk — Coefficient

0.25 (default) | scalar

Dimensionless clutch disc coefficient of kinetic friction, μ_k .

Clutch initially locked — Select to initially lock clutch

off (default) | on

Selecting this parameter initially locks the clutch.

Dependencies

To create this parameter, select **Control mode** parameter Ideal integrated controller.

${\bf Synchronizer\ initially\ locked-Select\ to\ initially\ lock\ synchronizer}$

off (default) | on

Selecting this parameter initially locks the synchronizer.

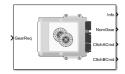
Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also

Automated Manual Transmission | DCT Controller


Introduced in R2017a

DCT Controller

Dual clutch transmission controller

Library: Powertrain Blockset / Transmission / Transmission

Controllers

Description

The DCT Controller block implements a dual clutch transmission (DCT) controller. You can specify the clutch open, close, and synchronization timing parameters. The block determines the clutch commands using integrator-based timers and latching logic that is based on the specified timing parameters and gear request.

Ports

Inputs

GearReq — **Gear number to engage**

scalar

Gear number request, G_{rea} .

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal	Description	Variable
GearReq	Gear number request	G_{req}
GearEngd	Nominal gear commanded by the controller	G_o
GearEffct	Effective gear	NA
CltchACmd	Clutch pressure command for odd-numbered gears, between 0 and 1	NA
CltchBCmd	Clutch pressure command for even-numbered gears, between $\boldsymbol{\theta}$ and $\boldsymbol{1}$	NA

NomGear — Nominal gear for shifting

scalar

Nominal gear for shifting. The Dual Clutch Transmission block uses this signal for the smooth application of inertial, efficiency, gear ratio, and damping parameters.

CltchACmd — Command for odd-numbered gears

scalar

Clutch pressure command for odd-numbered gears, between 0 and 1.

CltchBCmd — Command for even-numbered gears scalar

Clutch pressure command for even-numbered gears, between 0 and 1.

Parameters

Initial gear, G_o — Engaged gear

0 (default) | scalar

Initial gear to engage, G_o .

Clutch actuation time, tc — Time

.1 (default) | scalar

Time required to engage and disengage the clutch during shift events, t_c , in s.

Synchronizer time, ts — Time

.01 (default) | scalar

Time required for gear selection and synchronization, t_s , in s.

Sample period, dt — Time

-1 (default) | scalar

Sample period, dt, in s.

Clutch initially locked — Select to initially lock clutch

off (default) | on

Selecting this parameter initially locks the clutch.

Synchronizer initially locked — Select to initially lock synchronizer

off (default) | on

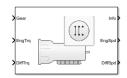
Selecting this parameter initially locks the synchronizer.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also


AMT Controller | Dual Clutch Transmission

Introduced in R2017a

Ideal Fixed Gear Transmission

Ideal fixed gear transmission without clutch or synchronization **Library:** Powertrain Blockset / Transmission / Transm

Powertrain Blockset / Transmission / Transmission Systems Vehicle Dynamics Blockset / Powertrain / Transmission

Description

The Ideal Fixed Gear Transmission implements an idealized fixed-gear transmission without a clutch or synchronization. Use the block to model the overall gear ratio and power loss when you do not need a detailed transmission model, for example, in component-sizing, fuel economy, and emission studies. The block implements a transmission model with minimal parameterization or computational cost.

To specify the block efficiency calculation, for **Efficiency factors**, select either of these options.

Setting	Block Implementation
Gear only	Efficiency determined from a 1D lookup table that is a function of the gear.
Gear, input torque, input speed, and temperature	Efficiency determined from a 4D lookup table that is a function of: • Gear • Input torque • Input speed • Oil temperature

The block uses this equation to determine the transmission dynamics:

$$\dot{\omega}_i \frac{J_N}{N^2} = \eta_N \left(\frac{T_O}{N} + T_i\right) - \frac{\omega_i}{N^2} b_N$$

$$\omega_i = N\omega_O$$

The block filters the gear command signal:

$$\frac{G}{G_{cmd}}(s) = \frac{1}{\tau_s s + 1}$$

Neutral Gear

When **Initial gear number**, **G_o** is equal to **0**, the initial gear is neutral. The block uses these parameters to decouple the input flywheel from the downstream gearing.

- Initial input velocity, omega_o
- Initial neutral input velocity, omegainN_o

The block uses these equations for the neutral gear speed and flywheel.

$$\begin{split} \dot{\omega}_{neutral} \frac{J_N}{N^2} &= \eta_N \frac{T_o}{N} - \frac{\omega_{neutral}}{N^2} b_N \\ \omega_{neutral} &= N \omega_o \\ \dot{\omega}_1 J_F &= \eta_{@N \ = \ 0} T_i - b_{@N \ = \ 0} \omega_i \\ J_F &= J_{@N \ = \ 1} - J_{@N \ = \ 0} \end{split}$$

Power Accounting

For the power accounting, the block implements these equations.

Bus Sig	gnal		Description	Varia ble	Equations	
	PwrTrnsfrd — Power	PwrEng	Engine power	P_{eng}	$\omega_i T_i$	
fo	 transferred between blocks Positive signals indicate flow into block Negative signals indicate flow out of block 	PwrDif frntl	Differential power	P_{diff}	$\omega_o T_o$	
	PwrNotTrnsfrd — Power crossing the block boundary, but		Mechanical power loss	$P_{effloss}$	$\omega_o T_o(\eta_N - 1)$	
	not transferredPositive signals indicate an input	PwrDam pLoss	Mechanical damping loss	P _{dampl} oss	For G=0: $-\frac{NNT}{ N^2 }$	
	Negative signals indicate a loss				For $G \neq 0$: $-b_N \omega_i^2 - \frac{b_i}{a_i}$	$\frac{\sqrt{\omega_{neutral}^2}}{ N^2 }$
	PwrStored — Stored energy rate of change	PwrSto redTra ns	Rate change in rotational kinetic energy		For G=0: $\frac{J_N}{N^2}\dot{\omega}_i\omega_i$	
	Positive signals indicate an increase				For $G \neq 0$: $J_F \dot{\omega}_i \omega_i + \frac{J_N}{N^2}$	$\dot{\omega}_{ m neutral}\omega_{ m neutral}$
	Negative signals indicate a decrease				1	

The equations use these variables.

b_N	Engaged gear viscous damping
J_N	Engaged gear rotational inertia
J_F	Flywheel rotational inertia
η_N	Engaged gear efficiency
G	Engaged gear number
G_{cmd}	Gear number to engage
N	Engaged gear ratio

T_i	Applied input torque, typically from the engine crankshaft or dual mass flywheel damper
T_o	Applied load torque, typically from the differential or drive shaft
ω_o	Initial input drive shaft rotational velocity
ω_i , $\acute{\omega_i}$	Applied drive shaft angular speed and acceleration
ω_{No}	Initial neutral gear input rotational velocity
$\omega_{neutral}$	Neutral gear drive shaft rotational velocity

 τ_s Shift time constant

Ports

Inputs

Gear — Gear number to engage

scalar

Integer value of gear number to engage, G_{cmd} .

EngTrq — Applied input torque

scalar

Applied input torque, T_i , typically from the engine crankshaft or dual mass flywheel damper, in N·m.

DiffTrq — Applied load torque

scalar

Applied load torque, T_o , typically from the differential, in N·m.

Temp — Oil temperature

scalar

Oil temperature, in K. To determine the efficiency, the block uses a 4D lookup table that is a function of:

- Gear
- · Input torque
- · Input speed
- Oil temperature

Dependencies

To enable this port, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal			Description	Variabl e	Units
Eng	EngTrq		Applied input torque, typically from the engine crankshaft or dual mass flywheel damper	T_i	N·m
	EngSpd		Applied drive shaft angular speed input	ω_i	rad/s
Diff DiffTrq			Applied load torque, typically from the differential	T_o	N·m
	DiffSpd	DiffSpd			rad/s
Trans	TransSpdRatio	TransSpdRatio			N/A
	TransEta	Ratio of output power to input power	η_N	N/A	
	TransGearCmd	Commanded gear	N_{cmd}	N/A	
	TransGear		Engaged gear	N	N/A
PwrInfo	PwrTrnsfrd	PwrEng	Engine power	P_{eng}	W
		PwrDiffrntl	Differential power	P_{diff}	W
	PwrNotTrnsfrd	PwrEffLoss	Mechanical power loss	$P_{effloss}$	W
		PwrDampLoss	Mechanical damping loss	$P_{damploss}$	W
	PwrStored	PwrStoredTrans	Rate change in rotational kinetic energy	P_{str}	W

EngSpd — Angular speed

scalar

Applied drive shaft angular speed input, ω_{i} , in rad/s.

DiffSpd — Angular speed scalar

Drive shaft angular speed output, ω_{o} , in rad/s.

Parameters

Efficiency factors — **Specify efficiency calculation**

Gear only (default) | Gear, input torque, input speed, and temperature

To specify the block efficiency calculation, for **Efficiency factors**, select either of these options.

Setting	Block Implementation
Gear only	Efficiency determined from a 1D lookup table that is a function of the gear.
Gear, input torque, input speed, and temperature	 Efficiency determined from a 4D lookup table that is a function of: Gear Input torque Input speed Oil temperature

Dependencies

Setting Parameter To	Enables
Gear only	Efficiency vector, eta
Gear, input torque, input speed, and temperature	Efficiency torque breakpoints, Trq_bpts Efficiency speed breakpoints, omega_bpts Efficiency temperature breakpoints, Temp_bpts Efficiency lookup table, eta tbl

Gear property interpolation method — Interpolation

Nearest (default) | Linear | Flat | Cubic spline

Method that the block uses to switch the gear ratio during gear shifting.

Transmission

Gear number vector, G — Specify number of transmission speeds

[-1,0,1,2,3,4,5] (default) | vector

Vector of integer gear commands used to specify the number of transmission speeds. Neutral gear is θ . For example, you can set these parameter values.

To Specify	Set Gear number, G To
Four transmission speeds, including neutral	[0,1,2,3,4]
Three transmission speeds, including neutral and reverse	[-1,0,1,2,3]
Five transmission speeds, including neutral and reverse	[-1,0,1,2,3,4,5]

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Inertia vector**, **Damping vector**, and **Efficiency vector** parameters must be equal.

Efficiency torque breakpoints, Trq_bpts — Breakpoints

[25,50,75,100,150,200,250] (default) | vector

Torque breakpoints for efficiency table.

Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

Efficiency speed breakpoints, omega_bpts — Breakpoints

[52.4 78.5 105 131 157 183 209 262 314 419 524] (default) | vector

Speed breakpoints for efficiency table.

Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

Efficiency temperature breakpoints, Temp_bpts — Breakpoints

[313 358] (default) | vector

Temperature breakpoints for efficiency table.

Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

Gear ratio vector, N — Ratio of input speed to output speed

[-4.47,4.47,4.47,2.47,1.47,1,0.8] (default) | vector

Vector of gear ratios (that is, input speed to output speed) with indices corresponding to the ratios specified in **Gear number**, **G**. For neutral, set the gear ratio to 1. For example, you can set these parameter values.

To Specify Gear Ratios For	Set Gear number, G To	Set Gear ratio, N To
Four transmission speeds, including neutral	[0,1,2,3,4]	[1,4.47,2.47,1.47,1]
Five transmission speeds, including neutral and reverse	[-1,0,1,2,3,4,5]	[-4.47,1,4.47,2.47, 1.47,1,0.8]

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Inertia vector**, **Damping vector**, and **Efficiency vector** parameters must be equal.

Inertia vector, Jout — Gear rotational inertia

[0.128 0.01 0.128 0.1 0.062 0.028 0.01] (default) | vector

Vector of gear rotational inertias, J_N , with indices corresponding to the inertias specified in **Gear number**, **G**, in kg*m^2. For example, you can set these parameter values.

To Specify Inertia For	Set Gear number, G To	Set Inertia, J To
Four gears, including neutral	[0,1,2,3,4]	[0.01,2.28,2.04, 0.32,0.028]
Inertia for five gears, including reverse and neutral		[2.28,0.01,2.28, 2.04,0.32,0.028,0.01]

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Inertia vector**, **Damping vector**, and **Efficiency vector** parameters must be equal.

Damping vector, bout — Gear viscous damping coefficient [.003 .001 .003 .0025 .002 .001 .001] (default) | vector

Vector of gear viscous damping coefficients, b_N , with indices corresponding to the coefficients specified in **Gear number**, **G**, in N·m·s/rad. For example, you can set these parameter values.

To Specify Damping For	Set Gear number, G To	Set Damping, b To
Four gears, including neutral	[0,1,2,3,4]	[0.001,0.003, 0.0025,0.002,0.001]
Five gears, including reverse and neutral		[0.003,0.001, 0.003,0.0025, 0.002,0.001,0.001]

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Inertia vector**, **Damping vector**, and **Efficiency vector** parameters must be equal.

Efficiency vector, eta — Gear efficiency [0.9,0.9,0.9,0.9,0.9,0.9,0.95,0.95] (default) | vector

Vector of gear mechanical efficiency, η_N , with indices corresponding to the efficiencies specified in **Gear number**, **G**. For example, you can set these parameter values.

To Specify Efficiency For	Set Gear number, G To	Set Efficiency, eta To
Four gears, including neutral	[0,1,2,3,4]	[0.9,0.9,0.9,0.95]
Five gears, including reverse and neutral		[0.9,0.9,0.9, 0.9,0.9,0.95,0.95]

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Inertia vector**, **Damping vector**, and **Efficiency vector** parameters must be equal.

Dependencies

To enable this parameter, set **Efficiency factors** to Gear only.

Efficiency lookup table, eta_tbl — Gear efficiency array

Table of gear mechanical efficiency, η_N as a function of gear, input torque, input speed, and temperature.

Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

Initial gear number, G_o — Gear

0 (default) | scalar

Initial gear number, G_o , dimensionless.

Initial output velocity, omega_o — Output speed

0 (default) | scalar

Transmission initial output rotational velocity, ω_o , in rad/s.

Initial neutral input velocity, omegainN_o — Neutral gear input speed 0 (default) | scalar

Initial neutral gear input rotational velocity, ω_{No} , in rad/s.

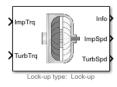
Shift time constant, tau_s — Time

.01 (default) | scalar

Shift time constant, τ_s , in s.

Extended Capabilities

C/C++ Code Generation


Generate C and C++ code using Simulink® Coder™.

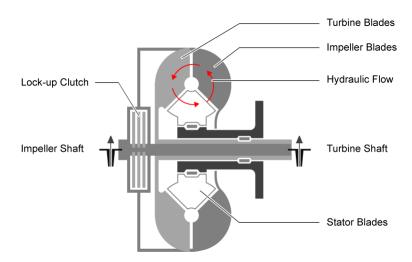
See Also

Automated Manual Transmission | Continuously Variable Transmission | Dual Clutch Transmission

Torque Converter

Three-part torque converter consisting of an impeller, turbine, and stator **Library:** Powertrain Blockset / Transmission / Torque Converters

Description


The Torque Converter block implements a three-part torque converter consisting of an impeller, turbine, and stator with an optional clutch lock-up capability. The block can simulate driving (power flowing from impeller to turbine) and coasting (power flowing from turbine to impeller).

You can specify torque converter characteristics:

- Speed ratio Ratio of turbine angular speed to impeller angular speed
- Torque ratio Ratio of turbine torque to impeller torque
- Capacity factor parameterization Function of input speed or input torque

Optional clutch lock-up configurations include:

- No lock-up Model fluid-coupling only
- Lock-up Model automatic clutch engagement
- External lock-up Model clutch pressure as input from an external signal

Dynamics

Clutch Lock-Up Condition and Clutch Friction

Based on the clutch lock-up condition, the block implements these friction models.

If	Clutch Condition	Friction Model
$\omega_i \neq \omega_t$	Unlocked	$T_f = T_k$
or		where:
$T_S < \left \frac{J_t}{(J_i + J_t)} [T_i + T_f - \omega_i (b_t + b_t)] \right $	[1]	$T_k = F_c R_{eff} m_k \tanh[4(\omega_i - \omega_t)]$
$\int_{0}^{\infty} \int_{0}^{\infty} \left(\int_{0}^$	[¹]	$T_s = F_c R_{eff} m_s$
		$R_{eff} = \frac{2(R_0 3 - R_i 3)}{3(R_0 2 - R_i 2)}$
$\omega_i = \omega_t$	Locked	$T_f = T_s$
and		
$T_S \ge \left \frac{J_t}{(J_i + J_t)} [T_i + T_f - w_t(b_t + b_t)] \right $	$ a_t + w_t b_t$	

Locked Rotational Dynamics

To model the rotational dynamics if the clutch is locked, the block implements equations.

$$\dot{\omega}(J_i + J_t) = T_i - \omega(b_i + b_t) + T_{ext}$$

$$\omega = \omega_i = \omega_t$$

The rotational velocity represents both the impeller and turbine rotational velocities.

Unlocked Rotational Dynamics

To model the rotational dynamics if the clutch is unlocked, the block implements equations.

$$\begin{split} \dot{\omega}_i J_i &= \mathbf{T}_i - \omega_i b_i - T_f - T_p \\ \dot{\omega}_t J_t &= \mathbf{T}_{ext} - \omega_t b_t + T_f + T_t \\ T_p &= \omega_i 2 \psi(\phi) \\ T_t &= T_p \zeta(\phi) \end{split}$$

To approximate the torque multiplication lag between the impeller and turbine, you can specify the parameter **Fluid torque response time constant (set to 0 to disable), tauc [s]**.

Power Accounting

For the power accounting, the block implements these equations.

Bus Sig	Bus Signal		Description	Variable	Equations
	PwrTrnsfrd — Power transferred between blocks	PwrImp	Applied impeller power	P_{imp}	$\omega_i T_i$
	 Positive signals indicate flow into block Negative signals indicate flow out of block 	PwrTur b	Applied turbine output power	P_{turb}	$\omega_t T_t$

Bus Sig	Bus Signal		Description	Variable	Equations
	crossing the block boundary, but not transferred • Positive signals indicate an	PwrDam pLoss	Mechanical damping loss	$P_{damploss}$	$-b_t\omega_t^2 - b_i\omega_i^2$
			Heat loss to transmission fluid	P_{flloss}	$-\big(T_p\omega_i-T_{hyd}\omega_t\big)$
	Negative signals indicate a loss	PwrClt chLoss	Clutch slip power loss	$P_{cltloss}$	$-T_k(\omega_i-\omega_t)$
	PwrStored — Stored energy rate of change • Positive signals indicate an		Rate change in impeller rotational kinetic energy	P_{strimp}	$\dot{\omega}_i \omega_i J_i$
	 Negative signals indicate a decrease 	PwrSto redTur b	Rate change in turbine rotational kinetic energy	$P_{strturb}$	$\dot{\omega}_t \omega_t J_t$

The block implements equations that use these variables.

T_f	Frictional torque
T_k	Kinetic frictional torque
T_S	Static frictional torque
T_i	Applied input torque
T_p	Impeller reaction torque
T_{ext}	Externally applied turbine torque
$\psi(\phi)$	Torque conversion capacity factor
$\zeta(\phi)$	Torque ratio
ω_i	Impeller rotational shaft speed
ω_t	Turbine rotational shaft speed
J_i	Impeller rotational inertia
J_t	Turbine rotational inertia
b_i	Impeller rotational viscous damping
b_t	Turbine rotational viscous damping
R_{eff}	Effective clutch radius
R_o	Annular disk outer radius
R_i	Annular disk inner radius

Ports

Inputs

${\bf ImpTrq-Applied\ impeller\ torque}$

scalar

Applied input torque, typically from the engine crankshaft or dual mass flywheel, in N·m.

TurbTrq — Applied turbine torque

scalar

Applied turbine torque, typically from the transmission, in N·m.

Clutch Force — Applied clutch force

scalar

Applied clutch force, typically from a hydraulic actuator, in N.

Dependencies

To create this port, select External lock-up input for the **Lock-up clutch configuration** parameter.

Output

Info — Bus signal

bus

Bus signal containing these block calculations.

Signal		Description	Units	
Imp	ImpTrq		Applied input torque	N·m
	ImpSpd		Impeller rotational shaft speed	rad/s
Turb	TurbTrq		Applied turbine torque	N·m
	TurbSpd		Turbine rotational shaft speed	rad/s
Cltch	CltchForce CltchLocked		Applied clutch force	N
			Clutch locked or unlocked state	N/A
TrqConv	TrqConvSpdRatio		Turbine to impeller speed ratio	N/A
	TrqConvEta		Torque conversion efficiency	N/A
PwrInfo PwrTrnsfrd PwrNotTrnsfr d	PwrImp	Applied impeller power	W	
		PwrTurb	Applied turbine output power	W
	PwrNotTrnsfr	PwrDampLoss	Mechanical damping loss	W
	d	PwrFluidCplingLoss	Heat loss to transmission fluid	W
		PwrCltchLoss	Clutch slip power loss	W
PwrStored	PwrStored PwrStoredImp Rate change in impeller rotational kinetic energy			W
		PwrStoredTurb	Rate change in turbine rotational kinetic energy	W

ImpSpd — Impeller speed

scalar

Impeller rotational shaft speed, ω_i , in rad/s.

TrbSpd — Turbine speed

scalar

Turbine rotational shaft speed, ω_t , in rad/s.

Parameters

Configuration

Lock-up clutch configuration — Select lock-up clutch configuration

Lock-up (default) | No lock-up | External lock-up input

To Model	Select
Fluid-coupling only	No lock-up
Automatic clutch engagement	Lock-up
Clutch pressure as input from an external signal	External lock-up input

Dependencies

To enable the **Clutch** parameters, select Lock-up or External lock-up input for the **Lock-up clutch configuration** parameter.

Torque Converter

Impeller shaft inertia, Ji - Inertia

.1 (default) | scalar

Impeller shaft inertia, in kg·m^2.

Impeller shaft viscous damping, bi — Viscous damping coefficient

.001 (default) | scalar

Impeller shaft viscous damping, in N·m·s/rad.

Turbine shaft inertia, Jt - Inertia

.1 (default) | scalar

Turbine shaft inertia, in kg·m^2.

Turbine shaft viscous damping, bt — Viscous damping coefficient

.001 (default) | scalar

Turbine shaft viscous damping, in N·m·s/rad.

Initial impeller shaft velocity, omegai_o — Angular velocity 0 (default) | scalar

Initial impeller shaft velocity, in rad/s.

Initial turbine shaft velocity, omegat_o — Angular velocity 0 (default) | scalar

Initial turbine shaft velocity, in rad/s.

Speed ratio vector, phi — Ratio

[0 0.50 0.60 0.70 0.80 0.87 0.92 0.94 0.96 0.97] (default) | vector

Vector of turbine speed to impeller speed ratios. Breakpoints for the capacity and torque multiplication vectors.

Capacity factor parameterization — Select factor ratio type

Input speed / sqrt(input torque) (default) | Absorbed torque / input speed^2

To Set Factor Ratio to	Select
Impeller angular velocity to square root impeller torque	<pre>Input speed / sqrt(input torque)</pre>
Impeller absorbed torque to square of impeller angular velocity	Absorbed torque / input speed^2

Capacity vector, psi — Vector

[12.2938 12.8588 13.1452 13.6285 14.6163 16.2675 19.3503 22.1046 29.9986 50.00] (default) | vector

Capacity factor parameterization Setting	Capacity Vector Units
<pre>Input speed / sqrt(input torque)</pre>	(rad/s)/(N·m)^0.5
Absorbed torque / input speed^2	N·m/(rad/s)^2

Torque ratio vector, zeta — Vector

[2.2320 1.5462 1.4058 1.2746 1.1528 1.0732 1.0192 0.9983 0.9983 0.9983] (default) | vector

Vector of turbine torque to impeller speed ratios.

Fluid torque response time constant (set to θ to disable), tauTC — Time constant

.02 (default) | scalar

To account for the delay in torque calculations due to changing input torque, specify the fluid torque transfer time constant, in s.

Interpolation method — Select interpolation method

Linear (default) | Flat | Nearest

Interpolates the torque ratio and capacity factor functions between the discrete relative velocity values.

Clutch

Clutch force equivalent net radius, Reff — Effective radius

.3 (default) | scalar

The effective radius, R_{eff} , used with the applied clutch friction force to determine the friction force, in m. The effective radius is defined as:

$$R_{eff} = \frac{2(R_o 3 - R_i 3)}{3(R_o 2 - R_i 2)}$$

The equation uses these variables.

 R_0 Annular disk outer radius

 R_i Annular disk inner radius

Dependencies

To enable the **Clutch** parameters, select Lock-up or External lock-up input for the **Lock-up clutch configuration** parameter.

Static friction coefficient, mus — Coefficient

1.2 (default) | scalar

Dimensionless clutch disc coefficient of static friction.

Dependencies

To enable the **Clutch** parameters, select Lock-up or External lock-up input for the **Lock-up clutch configuration** parameter.

Kinetic friction coefficient, muk — Coefficient

1 (default) | scalar

Dimensionless clutch disc coefficient of kinetic friction.

To enable the **Clutch** parameters, select Lock-up or External lock-up input for the **Lock-up clutch configuration** parameter.

Initially lock clutch — Select to initially lock clutch

off (default) | on

Dependencies

To enable this parameter, select Lock-up or External lock-up input for the **Lock-up clutch** configuration parameter.

Lock-up speed ratio threshold, philu — Threshold

```
.85 (default) | scalar
```

Set speed ratio threshold that engages clutch lock-up.

Dependencies

To enable this parameter, select Lock-up for the Lock-up clutch configuration parameter.

Minimum lock-up engagement speed, omegal — Angular velocity

900*pi/30 (default) | scalar

Set the minimum impeller speed that engages clutch lock-up, in rad/s.

Dependencies

To enable this parameter, select Lock-up for the Lock-up clutch configuration parameter.

Lock-up disengagement speed, omegau — Angular velocity

800*pi/30 (default) | scalar

Set the minimum impeller speed that disengages clutch lock-up, in rad/s.

Dependencies

To enable this parameter, select Lock-up for the Lock-up clutch configuration parameter.

Lock-up clutch force gain, K_c — Gain

5000 (default) | scalar

Open loop clutch lock-up force gain, in N.

Dependencies

To enable this parameter, select Lock-up for the Lock-up clutch configuration parameter.

Lock-up clutch time constant, tauC — Time constant

.0500 (default) | scalar

Open loop clutch lock-up time constant, in s.

Dependencies

To enable this parameter, select Lock-up for the Lock-up clutch configuration parameter.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also

CI Core Engine | SI Core Engine

Functions

mdf

Access information contained in MDF-file

Syntax

```
mdf0bj = mdf(mdfFileName)
```

Description

mdf0bj = mdf(mdfFileName) identifies a measurement data format (MDF) file and returns an MDF-file object, which you can use to access information and data contained in the file. You can specify a full or partial path to the file.

Examples

Create MDF-File Object for Specified MDF-File

Create an MDF object for a given file, and view the object display.

```
mdf0bj = mdf('MDFFile.mf4')
MDF with properties:
   File Details
                   Name: 'MDFFile.mf4'
            Path: 'c:\temp\MDFFile.mf4'
Author: 'HOK'

Department: 'Research'
Project: 'MDF'
                Subject: 'CAN bus'
                Comment: 'This file contains CAN messages'
               Version: '4.10'
              DataSize: 32100
     InitialTimestamp: 2016-02-27 12:09:02
   Creator Details
    ProgramIdentifier: 'mmddff.04'
               Creator: [1×1 struct]
   File Contents
            Attachment: [1×1 struct]
          ChannelNames: {6×1 cell}
          ChannelGroup: [1×6 struct]
```

Input Arguments

mdfFileName — MDF-file name

```
char vector | string
```

MDF-file name, specified as a character vector or string, including the necessary full or relative path.

Example: 'MDFFile.mf4'
Data Types: char | string

Output Arguments

mdf0bj — MDF-file

MDF-file object

MDF-file, returned as an MDF-file object. The object provides access to the MDF-file information contained in the following properties.

Property	Description
Name	Name of the MDF-file, including extension
Path	Full path to the MDF-file, including file name
Author	Author who originated the MDF-file
Department	Department that originated the MDF-file
Project	Project that originated the MDF-file
Subject	Subject matter in the MDF-file
Comment	Open comment field from the MDF-file
Version	MDF standard version of the file
DataSize	Total size of the data in the MDF-file, in bytes
InitialTimestamp	Time when file data acquisition began in UTC or local time
ProgramIdentifier	Originating program of the MDF-file
Creator	Structure containing details about creator of the MDF-file, with these fields: VendorName, ToolName, ToolVersion, UserName, and Comment
Attachment	Structure of information about attachments contained within the MDF-file, with these fields: Name, Path, Comment, Type, MIMEType, Size, EmbeddedSize, and MD5CheckSum
ChannelNames	Cell array of the channel names in each channel group
ChannelGroup	Structure of information about channel groups contained within the MDF-file, with these fields: AcquisitionName, Comment, NumSamples, DataSize, Sorted, and Channel

See Also

Functions

read | saveAttachment

read

Read channel data from MDF-file

Syntax

```
data = read(mdf0bj)
data = read(mdf0bj,chanGroupIndex,chanName)
data = read(mdf0bj,chanGroupIndex,chanName,startPosition)
data = read(mdf0bj,chanGroupIndex,chanName,startPosition,endPosition)
data = read(mdf0bj,chanGroupIndex,chanName,startPosition,endPosition,'OutputFormat',fmtType)
[data,time] = read(mdf0bj,chanGroupIndex,chanName,startPosition,endPosition,'OutputFormat','Vector')
```

Description

data = read(mdf0bj) reads all data for all channels from the MDF-file identified by the MDF-file
object mdf0bj, and assigns the output to data. If the file data is one channel group, the output is a
timetable; multiple channel groups are returned as a cell array of timetables, where the cell array
index corresponds to the channel group number.

data = read(mdf0bj,chanGroupIndex,chanName) reads all data for the specified channel from
the MDF-file identified by the MDF-file object mdf0bj.

data = read(mdf0bj,chanGroupIndex,chanName,startPosition) reads data from the
position specified by startPosition.

data = read(mdf0bj,chanGroupIndex,chanName,startPosition,endPosition) reads data
for the range specified from startPosition to endPosition.

```
data = read(mdf0bj,chanGroupIndex,chanName,startPosition,
endPosition,'OutputFormat',fmtType) returns data with the specified output format.
```

[data,time] = read(mdf0bj,chanGroupIndex,chanName,startPosition,
endPosition,'OutputFormat','Vector') returns two vectors of channel data and
corresponding timestamps.

Examples

Read All Data from MDF-File

Read all available data from the MDF-file.

```
mdf0bj = mdf('MDFFile.mf4');
data = read(mdf0bj);
```

Read All Data from Multiple Channels

Read all available data from the MDF-file for specified channels.

```
mdfObj = mdf('MDFFile.mf4');
data = read(mdfObj,1,{'Channel1','Channel2'});
```

Read Range of Data from Specified Index Values

Read a range of data from the MDF-file using indexing for startPosition and endPosition to specify the data range.

```
mdf0bj = mdf('MDFFile.mf4');
data = read(mdf0bj,1,{'Channel1','Channel2'},1,10);
```

Read Range of Data from Specified Time Values

Read a range of data from the MDF-file using time values for startPosition and endPosition to specify the data range.

```
mdf0bj = mdf('MDFFile.mf4');
data = read(mdf0bj,1,{'Channel1','Channel2'},seconds(5.5),seconds(7.3));
```

Read All Data in Vector Format

Read all available data from the MDF-file, returning data and time vectors.

```
mdf0bj = mdf('MDFFile.mf4');
[data,time] = read(mdf0bj,1,'Channel1','OutputFormat','Vector');
```

Read All Data in Time Series Format

Read all available data from the MDF-file, returning time series data.

```
mdf0bj = mdf('MDFFile.mf4');
data = read(mdf0bj,1,'Channel1','OutputFormat','TimeSeries');
```

Read Data from Channel List Entry

Read data from a channel identified by the channelList function.

Get list of channels and display their names and group numbers.

```
mdf0bj = mdf('File05.mf4');
chlist = channelList(mdf0bj);
chlist(:,1:2)

4×2 table
```

ChannelName	ChannelGroupNumber
"Float_32_LE_0ffset_64" "Float_64_LE_Master_0ffset_0"	2 2

Read data from the first channel in the list.

```
data = read(mdf0bj,chlist{1,2},chlist{1,1});
data(1:5,:)
```

5×1 timetable

Time	Float_32_LE_0ffset_64
0 sec	5
0.01 sec	5.1
0.02 sec	5.2
0.03 sec	5.3
0.04 sec	5.4

Input Arguments

mdf0bj - MDF-file

MDF-file object

MDF-file, specified as an MDF-file object.

Example: mdf('MDFFile.mf4')

chanGroupIndex — Index of the channel group

numeric value

Index of channel group, specified as a numeric value that identifies the channel group from which to read.

Example: 1

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

chanName — Name of channel

char vector | string

Name of channel, specified as a character vector, string, or array. chanName identifies the name of a channel in the channel group. Use a cell array of character vectors or array of string to identify multiple channels.

Example: 'Channel1'

Data Types: char | string | cell

startPosition — First position of channel data

numeric value | duration

First position of channel data, specified as a numeric value or duration. The startPosition option specifies the first position from which to read channel data. Provide a numeric value to specify an index position; use a duration to specify a time position. If only startPosition is provided without the endPosition option, the data value at that location is returned. When used with endPosition

to specify a range, the function returns data from the startPosition (inclusive) to the endPosition (noninclusive).

Example: 1

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | duration

endPosition — Last position of channel data range

numeric value | duration

Last position of channel data range, specified as a numeric value or duration. The endPosition option specifies the last position for reading a range of channel data. Provide both the startPosition and endPosition to specify retrieval of a range of data. The function returns up to but not including endPosition when reading a range. Provide a numeric value to specify an index position; use a duration to specify a time position.

Example: 1000

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | duration

fmtType — Format for output data

'Timetable' (default) | 'Vector' | 'TimeSeries'

Format for output data, specified as a character vector or string. This option formats the output according to the following table.

OutputFormat	Description
'Timetable'	Return a timetable from one or more channels into one output variable. This is the only format allowed when reading from multiple channels at the same time. (Default.)
	Note: The timetable format includes columns for the MDF channels. Because the column titles must be valid MATLAB identifiers, they might not be exactly the same as those values in the MDF object ChannelNames property. The column headers are derived from the property using the function matlab.lang.makeValidName. The original channel names are available in the VariableDescriptions property of the timetable object.
'Vector'	Return a vector of numeric data values, and optionally a vector of time values from one channel. Use one output variable to return only data, or two output variables to return both data and time vectors.
'TimeSeries'	Return a time series of data from one channel.

Example: 'Vector'

Data Types: char | string

Output Arguments

data — Channel data

timetable (default) | double | time series | cell array

Channel data, returned as vector of doubles, a time series, a timetable, or cell array of timetables, according to the 'OutputFormat' option setting and the number of channel groups.

time — Channel data times

double

Channel data times, returned as a vector of double elements. The time vector is returned only when the ' $\mathsf{OutputFormat'}$ is set to ' $\mathsf{Vector'}$.

See Also

Functions

mdf | saveAttachment

Topics

"Time Series" (MATLAB)

"Represent Dates and Times in MATLAB" (MATLAB)

"Tables" (MATLAB)

saveAttachment

Save attachment from MDF-file

Syntax

```
saveAttachment(mdf0bj,AttachmentName)
saveAttachment(mdf0bj,AttachmentName,DestFile)
```

Description

saveAttachment(mdfObj,AttachmentName) saves the specified attachment from the MDF-file to the current MATLAB working folder. The attachment is saved with its existing name.

saveAttachment(mdfObj,AttachmentName,DestFile) saves the specified attachment from the MDF-file to the given destination. You can specify relative or absolute paths to place the attachment in a specific folder.

Examples

Save Attachment with Original Name

Save an MDF-file attachment with its original name in the current folder.

```
mdf0bj = mdf('MDFFile.mf4');
saveAttachment(mdf0bj,'AttachmentName.ext')
```

Save Attachment with New Name

Save an MDF-file attachment with a new name in the current folder.

```
mdf0bj = mdf('MDFFile.mf4');
saveAttachment(mdf0bj,'AttachmentName.ext','MyFile.ext')
```

Save Attachment in Parent Folder

Save an MDF-file attachment in a folder specified with a relative path name, in this case in the parent of the current folder.

```
mdf0bj = mdf('MDFFile.mf4');
saveAttachment(mdf0bj,'AttachmentName.ext','..\MyFile.ext')
```

Save Attachment in Specified Folder

This example saves an MDF-file attachment using an absolute path name.

```
mdf0bj = mdf('MDFFile.mf4');
saveAttachment(mdf0bj,'AttachmentName.ext','C:\MyDir\MyFile.ext')
```

Input Arguments

mdf0bj - MDF-file

MDF-file object

MDF-file, specified as an MDF-file object.

Example: mdf('MDFFile.mf4')

AttachmentName — MDF-file attachment name

char vector | string

MDF-file attachment name, specified as a character vector or string. The name of the attachment is available in the Name field of the MDF-file object Attachment property.

```
Example: 'file1.dbc'
Data Types: char | string
```

DestFile — Destination file name for the saved attachment

existing attachment name (default) | char vector | string

Destination file name for the saved attachment, specified as a character vector or string. The specified destination can include an absolute or relative path, otherwise the attachment is saved in the current folder.

```
Example: 'MyFile.ext'
Data Types: char | string
```

See Also

Functions

mdf | read

mdfDatastore

Datastore for collection of MDF-files

Description

Use the MDF datastore object to access data from a collection of MDF-files.

Creation

Syntax

```
mdfds = mdfDatastore(location)
mdfds = mdfDatastore( ,'Name1', Value1, 'Name2', Value2,...)
```

Description

mdfds = mdfDatastore(location) creates an MDFDatastore based on an MDF-file or a
collection of files in the folder specified by location. All files in the folder with
extensions .mdf, .dat, or .mf4 are included.

mdfds = mdfDatastore(___, 'Name1', Value1, 'Name2', Value2,...) specifies function options and properties of mdfds using optional name-value pairs.

Note This function is supported only on 64-bit Windows® operating systems.

Input Arguments

location — Location of MDF datastore files

character vector | cell array | DsFileSet object

Location of MDF datastore files, specified as a character vector, cell array of character vectors, or matlab.io.datastore.DsFileSet object identifying either files or folders. The path can be relative or absolute, and can contain the wildcard character *. If location specifies a folder, by default the datastore includes all files in that folder with the extensions .mdf, .dat, or .mf4.

```
Example: 'CANape.MF4'
Data Types: char | cell | DsFileSet
```

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments to set file information or object "Properties" on page 8-12. Allowed options are IncludeSubfolders, FileExtensions, and the properties ReadSize, SelectedChannelGroupNumber, and SelectedChannelNames.

```
Example: 'SelectedChannelNames','Counter_B4'
```

IncludeSubfolders — Include files in subfolders

```
false (default) | true
```

Include files in subfolders, specified as a logical. Specify true to include files in each folder and recursively in subfolders.

```
Example: 'IncludeSubfolders',true
```

Data Types: logical

FileExtensions — Custom extensions for filenames to include in MDF datastore { '.mdf', '.dat', '.mf4'} (default) | char | cell

Custom extensions for filenames to include in the MDF datastore, specified as a character vector or cell array of character vectors. By default, the supported extensions include .mdf, .dat, and .mf4. If your files have custom or nonstandard extensions, use this Name-Value setting to include files with those extensions.

```
Example: 'FileExtensions',{'.myformat1','.myformat2'}
Data Types: char | cell
```

Properties

Channel Groups — All channel groups present in first MDF-file (read-only)

table

All channel groups present in first MDF-file, returned as a table.

```
Data Types: table
```

Channels — All channels present in first MDF-file (read-only)

table

All channels present in first MDF-file, returned as a table.

Those channels targeted for reading must have the same name and belong to the same channel group in each file of the MDF datastore

```
Data Types: table
```

Files — Files included in datastore

```
char | string | cell
```

Files included in the datastore, specified as a character vector, string, or cell array.

```
Example: {'file1.mf4','file2.mf4'}
Data Types: char|string|cell
```

ReadSize — Size of data returned by read

```
'file' (default) | numeric | duration
```

Size of data returned by the read function, specified as 'file', a numeric value, or a duration. A character vector value of 'file' causes the entire file to be read; a numeric double value specifies the number of records to read; and a duration value specifies a time range to read.

If you later change the ReadSize property value type, the datastore resets.

Example: 50

Data Types: double | char | duration

SelectedChannelGroupNumber — Channel group to read

numeric scalar

Channel group to read, specified as a numeric scalar value.

Example: 1

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SelectedChannelNames — Names of channels to read

char | string | cell

Names of channels to read, specified as a character vector, string, or cell array.

Those channels targeted for reading must have the same name and belong to the same channel group in each file of the MDF datastore.

Example: 'Counter_B4'

Data Types: char | string | cell

Object Functions

read Read data in MDF datastore
readall Read all data in MDF datastore
preview Subset of data from MDF datastore
reset Reset MDF datastore to initial state

hasdata Determine if data is available to read from MDF datastore

partition Partition MDF datastore

numpartitions Number of partitions for MDF datastore combine (MATLAB) Combine data from multiple datastores

transform (MATLAB) Transform datastore

isPartitionable (MATLAB) Determine whether datastore is partitionable isShuffleable (MATLAB) Determine whether datastore is shuffleable

Examples

Create an MDF Datastore

Create an MDF datastore from the sample file CANape. MF4, and read it into a timetable.

```
mdfds = mdfDatastore(fullfile(matlabroot, 'examples', 'vnt', 'CANape.MF4'));
while hasdata(mdfds)
    m = read(mdfds);
end
```

See Also

hasdata (MDFDatastore)

Determine if data is available to read from MDF datastore

Syntax

```
tf = hasdata(mdfds)
```

Description

tf = hasdata(mdfds) returns logical 1 (true) if there is data available to read from the MDF datastore specified by mdfds. Otherwise, it returns logical 0 (false).

Examples

Check MDF Datastore for Readable Data

Use hasdata in a loop to control read iterations.

```
mdfds = mdfDatastore(fullfile(matlabroot, 'examples', 'vnt', 'CANape.MF4'));
while hasdata(mdfds)
    m = read(mdfds);
end
```

Input Arguments

mdfds — MDF datastore

MDF datastore object

MDF datastore, specified as an MDF datastore object.

```
Example: mdfds = mdfDatastore('CANape.MF4')
```

Output Arguments

```
tf — Indicator of data to read 1\mid \theta
```

Indicator of data to read, returned as a logical 1 (true) or 0 (false).

See Also

Functions

```
mdfDatastore | read | readall | reset
```

numpartitions (MDFDatastore)

Number of partitions for MDF datastore

Syntax

```
N = numpartitions(mdfds)
N = numpartitions(mdfds,pool)
```

Description

N = numpartitions (mdfds) returns the recommended number of partitions for the MDF datastore mdfds. Use the result as an input to the partition function.

N = numpartitions(mdfds,pool) returns a reasonable number of partitions to parallelize mdfds over the parallel pool, pool, based on the number of files in the datastore and the number of workers in the pool.

Examples

Find Recommended Number of Partitions for MDF Datastore

Determine the number of partitions you should use for your MDF datastore.

```
mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','CANape.MF4'));
N = numpartitions(mdfds);
```

Input Arguments

mdfds — MDF datastore

MDF datastore object

MDF datastore, specified as an MDF datastore object.

```
Example: mdfds = mdfDatastore('CANape.MF4')
```

pool — Parallel pool

parallel pool object

Parallel pool specified as a parallel pool object.

Example: gcp

Output Arguments

N — Number of partitions

double

Number of partitions, returned as a double. This number is the calculated recommendation for the number of partitions for your MDF datastore. Use this when partitioning your datastore with the partition function.

See Also

Functions

mdfDatastore|partition|read|reset

partition (MDFDatastore)

Partition MDF datastore

Syntax

```
subds = partition(mdfds,N,index)
subds = partition(mdfds,'Files',index)
subds = partition(mdfds,'Files',filename)
```

Description

subds = partition(mdfds,N,index) partitions the MDF datastore mdfds into the number of
parts specified by N, and returns the partition corresponding to the index index.

subds = partition(mdfds,'Files',index) partitions the MDF datastore by files and returns
the partition corresponding to the file of index index in the Files property.

subds = partition(mdfds,'Files',filename) partitions the datastore by files and returns the
partition corresponding to the specified filename.

Examples

Partition an MDF Datastore into Default Parts

Partition an MDF datastore from the sample file CANape. MF4, and return the first part.

```
mdfds = mdfDatastore(fullfile(matlabroot, 'examples', 'vnt', 'CANape.MF4'));
N = numpartitions(mdfds);
subds1 = partition(mdfds,N,1);
```

Partition an MDF Datastore by Its Files

Partition an MDF datastore according to its files, and return partitions by index and file name.

```
cd c:\temp
mdfds = mdfDatastore({'CANape1.MF4','CANape2.MF4','CANape3.MF4'});
mdfds.Files

ans =
    3×1 cell array
    'c:\temp\CANape1.MF4'
    'c:\temp\CANape2.MF4'
    'c:\temp\CANape3.MF4'
```

```
subds2 = partition(mdfds,'files',2);
subds3 = partition(mdfds,'files','c:\temp\CANape3.MF4');
```

Input Arguments

mdfds — MDF datastore

MDF datastore object

MDF datastore, specified as an MDF datastore object.

Example: mdfds = mdfDatastore('CANape.MF4')

N — Number of partitions

positive integer

Number of partitions, specified as a double of positive integer value. Use the numpartitions function for the recommended number or partitions.

Example: numpartitions(mdfds)

Data Types: double

index — Index

positive integer

Index, specified as a double of positive integer value. When using the 'files' partition scheme, this value corresponds to the index of the MDF datastore object Files property.

Example: 1

Data Types: double

filename — File name

character vector

File name, specified as a character vector. The argument can specify a relative or absolute path.

```
Example: 'CANape.MF4'
Data Types: char
```

Output Arguments

subds — MDF datastore partition

MDF datastore object

MDF datastore partition, returned as an MDF datastore object. This output datastore is of the same type as the input datastore mdfds.

See Also

Functions

mdfDatastore | numpartitions | read | reset

preview (MDFDatastore)

Subset of data from MDF datastore

Syntax

data = preview(mdfds)

Description

data = preview(mdfds) returns a subset of data from MDF datastore mdfds without changing the
current position in the datastore.

Examples

Examine Preview of MDF Datastore

```
mdfds = mdfDatastore(fullfile(matlabroot, 'examples', 'vnt', 'CANape.MF4'));
data = preview(mdfds)
```

data2 =

10×74 timetable

Time	Counter_B4	Counter_B5	Counter_B6	Counter_B7	PWM
0.00082554 sec	0	0	1	0	100
0.010826 sec	0	0	1	0	100
0.020826 sec	0	0	1	0	100
0.030826 sec	0	0	1	0	100
0.040826 sec	0	0	1	0	100
0.050826 sec	0	0	1	0	100
0.060826 sec	0	0	1	0	100
0.070826 sec	0	0	1	0	100

Input Arguments

mdfds — MDF datastore

MDF datastore object

MDF datastore, specified as an MDF datastore object.

Example: mdfds = mdfDatastore('CANape.MF4')

Output Arguments

data — Subset of data

timetable

Subset of data, returned as a timetable of MDF records.

See Also

Functions

hasdata|mdfDatastore|read

read (MDFDatastore)

Read data in MDF datastore

Syntax

```
data = read(mdfds)
[data,info] = read(mdfds)
```

Description

data = read(mdfds) returns data from the MDF datastore mdfds into the timetable data.

The read function returns a subset of data from the datastore. The size of the subset is determined by the ReadSize property of the datastore object. On the first call, read starts reading from the beginning of the datastore, and subsequent calls continue reading from the endpoint of the previous call. Use reset to read from the beginning again.

[data,info] = read(mdfds) also returns to the output argument info information, including
metadata, about the extracted data.

Examples

Read Datastore by Files

Read data from an MDF datastore one file at a time.

```
mdfds = mdfDatastore({'CANape1.MF4','CANape2.MF4','CANape3.MF4'});
mdfds.ReadSize = 'file';
data = read(mdfds);
```

Read the second file and view information about the data.

```
[data2,info2] = read(mdfds);
info2

struct with fields:

    Filename: 'CANape2.MF4'
    FileSize: 57592

MDFFileProperties: [1×1 struct]
```

Input Arguments

mdfds — MDF datastore

MDF datastore object

MDF datastore, specified as an MDF datastore object.

```
Example: mdfds = mdfDatastore('CANape.MF4')
```

Output Arguments

data — Output data

timetable

Output data, returned as a timetable of MDF records.

info — Information about data

structure array

Information about data, returned as a structure array with the following fields:

Filename FileSize MDFFileProperties

See Also

Functions

hasdata | mdfDatastore | preview | readall | reset

readall (MDFDatastore)

Read all data in MDF datastore

Syntax

```
data = readall(mdfds)
```

Description

data = readall(mdfds) reads all the data in the datastore specified by mdfds and returns it to
timetable data.

After the readall function returns all the data, it resets mdfds to point to the beginning of the datastore.

If all the data in the datastore does not fit in memory, then readall returns an error.

Examples

Read All Data in Datastore

Read all the data from a multiple file MDF datastore into a timetable.

```
mdfds = mdfDatastore({'CANape1.MF4','CANape2.MF4','CANape3.MF4'});
data = readall(mdfds);
```

Input Arguments

mdfds — MDF datastore

MDF datastore object

MDF datastore, specified as an MDF datastore object.

```
Example: mdfds = mdfDatastore('CANape.MF4')
```

Output Arguments

data — Output data

timetable

Output data, returned as a timetable of MDF records.

See Also

Functions

hasdata | mdfDatastore | preview | read | reset

reset (MDFDatastore)

Reset MDF datastore to initial state

Syntax

reset(mdfds)

Description

reset(mdfds) resets the MDF datastore specified by mdfds to its initial read state, where no data has been read from it. Resetting allows your to reread from the same datastore.

Examples

Reset MDF Datastore

Reset an MDF datastore so that you can read from it again.

```
mdfds = mdfDatastore(fullfile(matlabroot, 'examples', 'vnt', 'CANape.MF4'));
data = read(mdfds);
reset(mdfds);
data = read(mdfds);
```

Input Arguments

mdfds — MDF datastore

MDF datastore object

MDF datastore, specified as an MDF datastore object.

Example: mdfds = mdfDatastore('CANape.MF4')

See Also

Functions

hasdata | mdfDatastore | read

channelList

Information on available MDF groups and channels

Syntax

```
chans = channelList(mdfobj)
channelList(mdf0bj,chanName)
channelList(mdf0bj,chanName,'ExactMatch',true)
```

Description

chans = channelList(mdfobj) returns a table of information about channels and groups in the
specified MDF-file.

channelList(mdf0bj,chanName) searches the MDF-file to generate a list of channels matching the specified channel name. The search by default is case-insensitive and identifies partial matches. A table is returned containing information about the matched channels and the containing channel groups. If no matches are found, an empty table is returned.

channelList(mdfObj,chanName,'ExactMatch',true) searches the channels for an exact match, including case sensitivity. This is useful if a channel name is a substring of other channel names.

Examples

View Available MDF Channels

View all available MDF channels.

View Specific MDF Channels

```
Filter on channel names.
```

```
chans = channelList(mdf0bj,'Float')
chans =
```

2×9 table

ChannelName	ChannelGroupNumber	ChannelGroupNumSamples
"Float_32_LE_0ffset_64" "Float_64_LE_Master_0ffset_0"	2 2	10000 10000
<pre>chans = channelList(mdf0bj,'</pre>	Float','ExactMatch	n',true)
chans =		
0×9 empty table		

Input Arguments

mdf0bj — MDF-file

MDF-file object

MDF-file, specified as an MDF-file object.

Example: mdf('File01.mf4')

chanName — Name of channel

char vector | string

Name of channel, specified as a character vector or string. By default, case-insensitive and partial matches are returned.

Example: 'Channel1'
Data Types: char | string

Output Arguments

chans — Information on available MDF channels

table

Information on available MDF channels, returned as a table. To access specific elements, you can index into the table.

See Also

Functions

mdf

Introduced in R2018b

mdfVisualize

View channel data from MDF-file

Syntax

mdfVisualize(mdfFileName)

Description

mdfVisualize(mdfFileName) opens an MDF-file in the Simulation Data Inspector for viewing and interacting with channel data. mdfFileName is the name of the MDF-file, specified as a full or partial path.

Note This function is supported only on 64-bit Windows operating systems.

Examples

View MDF Data

View the data from a specified MDF-file in the Simulation Data Inspector.

```
mdfVisualize('File01.mf4')
```

Input Arguments

mdfFileName — MDF-file name

char vector | string

MDF-file name, specified as a character vector or string, including the necessary full or relative path.

```
Example: 'MDFFile.mf4'
Data Types: char | string
```

See Also

Functions

mdf | read

Topics

"View and Analyze Simulation Results" (Simulink)

autoblks.pwr.PlantInfo

Analyze powertrain power and energy

Description

To assess powertrain efficiencies, use the autoblks.pwr.PlantInfo object to evaluate and report power and energy for component-level blocks and system-level reference applications.

Creation

Syntax

VehPwrAnalysis = autoblks.pwr.PlantInfo(SysName)

Description

MATLAB creates an autoblks.pwr.PlantInfo object for the system that you specify. VehPwrAnalysis = autoblks.pwr.PlantInfo(SysName) where SysName is the name of the model or subsystem that you want to analyze.

Input Arguments

SysName — Model name

character vector

Model that you want to analyze.

Example: 'SiCiPtReferenceApplication'

Data Types: char

Properties

AvgEff — Average efficiency

double

This property is read-only.

Average efficiency, dimensionless.

Eff — Time series of efficiency

time series

This property is read-only.

Efficiency, η , dimensionless. To calculate the efficiency, the Eff property implements this equation.

$$\eta = \frac{\sum P_{output} - \sum P_{store}(P_{store} > 0)}{\sum P_{input} - \sum P_{store}(P_{store} < 0)}$$

The equation uses these variables.

 P_{store} Stored power

 P_{input} , P_{output} Input and output power logged by Power Accounting Bus

Creator block

EnrgyBalanceAbsTol — Energy balance absolute tolerance

0.0100 (default)

Energy balance absolute tolerance, EnrgyBal_{AbsTol}.

To determine if the system conserves energy, the isEnrgyBalanced method checks the energy conservation at each time step.

$$E_{Err} = \sum E_{trans} + \sum E_{nottrans} - \sum E_{store}$$

Blocks change the input energy plus released stored energy to output energy plus stored energy. For example, a mapped engine block uses fuel (not transferred energy) to produce torque (transferred energy) and heat loss (not transferred energy). The total modified energy represents the average between the input fuel energy and the energy exiting the system (torque and heat loss). To calculate the total energy modified by the block, the method uses the integral of the average transferred, not transferred, and stored power.

$$E_{total} = \frac{1}{2} \left| \int_{0}^{t_{end}} \left(\sum |P_{trans}| + \sum |P_{nottrans}| + \sum |P_{store}| \right) dt \right|_{t = t_{end}}$$

If the energy conservation error is within an error tolerance, the method returns true. Specifically, if either condition is met, the method returns true.

Condition		
$\frac{ E_{Err} }{E_{total}} < EnrgyBal_{RelTol}$	or	$E_{total} < EnrgyBal_{AbsTol}$

The equations use these variables.

 E_{Err} Energy conservation error E_{total} Total energy modified by block

 $EnrgyBal_{RelTol}$, $EnrgyBal_{AbsTol}$ Energy balance relative and absolute tolerance, respectively

 P_{trans} , E_{trans} Transferred power and energy, respectively $P_{nottrans}$, $E_{nottrans}$ Not transferred power and energy, respectively

 P_{store} , E_{store} Stored power and energy, respectively

 P_{input} , P_{output} Input and output power logged by Power Accounting Bus

Creator block

Data Types: double

EnrgyBalanceRelTol — Energy balance relative tolerance

0.0100 (default)

Energy balance relative tolerance, EnrgyBal_{RelTol}.

To determine if the system conserves energy, the isEnrgyBalanced method checks the energy conservation at each time step.

$$E_{Err} = \sum E_{trans} + \sum E_{nottrans} - \sum E_{store}$$

Blocks change the input energy plus released stored energy to output energy plus stored energy. For example, a mapped engine block uses fuel (not transferred energy) to produce torque (transferred energy) and heat loss (not transferred energy). The total modified energy represents the average between the input fuel energy and the energy exiting the system (torque and heat loss). To calculate the total energy modified by the block, the method uses the integral of the average transferred, not transferred, and stored power.

$$E_{total} = \frac{1}{2} \left| \int_{0}^{t_{end}} \left(\sum_{i} |P_{trans}| + \sum_{i} |P_{nottrans}| + \sum_{i} |P_{store}| \right) dt \right|_{t = t_{end}}$$

If the energy conservation error is within an error tolerance, the method returns true. Specifically, if either condition is met, the method returns true.

Condition		
$\frac{ E_{Err} }{E_{total}} < EnrgyBal_{RelTol}$	or	$E_{total} < EnrgyBal_{AbsTol}$

The equations use these variables.

 E_{Err} Energy conservation error

 E_{total} Total energy modified by block

 $EnrgyBal_{RelTol}$, $EnrgyBal_{AbsTol}$ Energy balance relative and absolute tolerance, respectively

 P_{trans} , E_{trans} Transferred power and energy, respectively

 $P_{nottrans}$, $E_{nottrans}$ Not transferred power and energy, respectively

 P_{store} , E_{store} Stored power and energy, respectively

 P_{input} , P_{output} Input and output power logged by Power Accounting Bus

Creator block

Data Types: double

EnrgyUnits — Energy units

MJ (default) | J

Energy units.

Example: VehPwrAnalysis.EnrgyUnits = 'MJ';

Data Types: char

PwrUnits — Power units

kW (default) | W

Power units.

Example: VehPwrAnalysis.PwrUnits = 'kW';

Data Types: char

Object Methods

addLoggedData Add logged data

dispSignalSummary Display powertrain subsystem energy analysis

dispSysSummary Display powertrain system efficiency findChildSys Powertrain subsystem energy analysis

histogramEff Display powertrain subsystem efficiency histogram

isEnrgyBalanced Logical flag for energy conservation

loggingOff Turn signal logging off loggingOn Turn signal logging on

run Run powertrain energy and power analysis

sdiSummary Display Simulation Data Inspector plots of powertrain energy and power

xlsSysSummary Write powertrain energy analysis to spreadsheet

Examples

Create PlantInfo Object for Powertrain Energy Analysis

Analyze the power and energy in the conventional vehicle reference application. To create a PlantInfo object, see "step 2" on page 8-32.

Open the conventional vehicle reference application. By default, the application has a mapped 1.5 L spark-ignition (SI) engine and a dual clutch transmission. Project files open in a writable location.

autoblkConVehStart

2 Set the system name to SiCiPtReferenceApplication.

Create the autoblks.pwr.PlantInfo object.

Use the PwrUnits and EnrgyUnits properties to specify the units.

```
SysName = 'SiCiPtReferenceApplication';
VehPwrAnalysis = autoblks.pwr.PlantInfo(SysName);
VehPwrAnalysis.PwrUnits = 'kW';
VehPwrAnalysis.EnrgyUnits = 'MJ';
```

3 Use the run method to turn on logging, run simulation, and add logged data to the object.

```
run(VehPwrAnalysis);
```

4 Use the dispSysSummary method to display the results.

```
dispSysSummary(VehPwrAnalysis);
```

5 Use the xlsSysSummary method to write the results to a spreadsheet.

```
xlsSysSummary(VehPwrAnalysis, 'EnergySummary.xlsx');
```

6 Use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the Engine subsystem.

To display the results, use the dispSignalSummary method.

Use the histogramEff method to display a histogram of the time spent at each engine plant efficiency.

```
EngSysName = 'SiCiPtReferenceApplication/Passenger Car/Engine';
EngPwrAnalysis = findChildSys(VehPwrAnalysis,EngSysName);
dispSignalSummary(EngPwrAnalysis);
histogramEff(EngPwrAnalysis);
```

7 Use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the Drivetrain subsystem.

To display the results, use the dispSignalSummary method.

```
DrvtrnSysName = 'SiCiPtReferenceApplication/Passenger Car/Drivetrain';
DrvtrnPwrAnalysis = findChildSys(VehPwrAnalysis,DrvtrnSysName);
dispSignalSummary(DrvtrnPwrAnalysis);
```

8 To plot the results, use the sdiSummary method.

```
sdiSummary(VehPwrAnalysis,{EngSysName,DrvtrnSysName})
```

See Also

Power Accounting Bus Creator

Topics

"Conventional Vehicle Powertrain Efficiency"
"Analyze Power and Energy"

dispSignalSummary

Display powertrain subsystem energy analysis

Syntax

dispSignalSummary(SubSystem)

Description

The dispSignalSummary(SubSystem) method displays the subsystem energy for the autoblks.pwr.PlantInfo object. Use the autoblks.pwr.PlantInfo object to evaluate and report power an energy for component-level blocks and system-level models.

After you use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the subsystem that you want to analyze, use the dispSignalSummary(SubSystem) method to display the results.

Examples

Use dispSignalSummary Method to Display Subsystem Results

Analyze the power and energy in the conventional vehicle reference application. To use the dispSignalSummary method to display the engine and drivetrain subsystem results, see "step 6" on page 8-34 and "step 7" on page 8-35.

Open the conventional vehicle reference application. By default, the application has a mapped 1.5 L spark-ignition (SI) engine and a dual clutch transmission. Project files open in a writable location.

autoblkConVehStart

2 Set the system name to SiCiPtReferenceApplication.

Create the autoblks.pwr.PlantInfo object.

Use the PwrUnits and EnrgyUnits properties to specify the units.

```
SysName = 'SiCiPtReferenceApplication';
VehPwrAnalysis = autoblks.pwr.PlantInfo(SysName);
VehPwrAnalysis.PwrUnits = 'kW';
VehPwrAnalysis.EnrgyUnits = 'MJ';
```

3 Use the run method to turn on logging, run simulation, and add logged data to the object.

run(VehPwrAnalysis);

4 Use the dispSysSummary method to display the results.

dispSysSummary(VehPwrAnalysis);

5 Use the xlsSysSummary method to write the results to a spreadsheet.

```
xlsSysSummary(VehPwrAnalysis, 'EnergySummary.xlsx');
```

6 Use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the Engine subsystem.

To display the results, use the dispSignalSummary method.

Use the histogramEff method to display a histogram of the time spent at each engine plant efficiency.

```
EngSysName = 'SiCiPtReferenceApplication/Passenger Car/Engine';
EngPwrAnalysis = findChildSys(VehPwrAnalysis, EngSysName);
dispSignalSummary(EngPwrAnalysis);
histogramEff(EngPwrAnalysis);
```

7 Use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the Drivetrain subsystem.

To display the results, use the dispSignalSummary method.

```
DrvtrnSysName = 'SiCiPtReferenceApplication/Passenger Car/Drivetrain';
DrvtrnPwrAnalysis = findChildSys(VehPwrAnalysis,DrvtrnSysName);
dispSignalSummary(DrvtrnPwrAnalysis);
```

8 To plot the results, use the sdiSummary method.

```
sdiSummary(VehPwrAnalysis,{EngSysName,DrvtrnSysName})
```

Input Arguments

SubSystem — Subsystem name

character vector

Subsystem that you want to analyze.

```
Example: 'SiCiPtReferenceApplication/Passenger Car/Engine'
Example: 'SiCiPtReferenceApplication/Passenger Car/Drivetrain'
Data Types: char
```

See Also

autoblks.pwr.PlantInfo

Topics

"Analyze Power and Energy"

dispSysSummary

Display powertrain system efficiency

Syntax

dispSysSummary(PlantInfoObj)

Description

After you use the run method to analyze the powertrain power and energy, use the dispSysSummary(PlantInfoObj) method to display the system efficiency for the autoblks.pwr.PlantInfo object.

Use instances of the autoblks.pwr.PlantInfo object to evaluate and report power an energy for component-level blocks and system-level models.

Examples

Use dispSysSummary Method to Display Energy Analysis Results

Analyze the power and energy in the conventional vehicle reference application. To use the dispSysSummary method to display the results, see "step 4" on page 8-36.

Open the conventional vehicle reference application. By default, the application has a mapped 1.5 L spark-ignition (SI) engine and a dual clutch transmission. Project files open in a writable location.

```
autoblkConVehStart
```

2 Set the system name to SiCiPtReferenceApplication.

Create the autoblks.pwr.PlantInfo object.

Use the PwrUnits and EnrgyUnits properties to specify the units.

```
SysName = 'SiCiPtReferenceApplication';
VehPwrAnalysis = autoblks.pwr.PlantInfo(SysName);
VehPwrAnalysis.PwrUnits = 'kW';
VehPwrAnalysis.EnrgyUnits = 'MJ';
```

3 Use the run method to turn on logging, run simulation, and add logged data to the object.

```
run(VehPwrAnalysis);
```

4 Use the dispSysSummary method to display the results.

```
dispSysSummary(VehPwrAnalysis);
```

5 Use the xlsSysSummary method to write the results to a spreadsheet.

```
xlsSysSummary(VehPwrAnalysis, 'EnergySummary.xlsx');
```

6 Use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the Engine subsystem.

To display the results, use the dispSignalSummary method.

Use the histogramEff method to display a histogram of the time spent at each engine plant efficiency.

```
EngSysName = 'SiCiPtReferenceApplication/Passenger Car/Engine';
EngPwrAnalysis = findChildSys(VehPwrAnalysis,EngSysName);
dispSignalSummary(EngPwrAnalysis);
histogramEff(EngPwrAnalysis);
```

7 Use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the Drivetrain subsystem.

To display the results, use the dispSignalSummary method.

```
DrvtrnSysName = 'SiCiPtReferenceApplication/Passenger Car/Drivetrain';
DrvtrnPwrAnalysis = findChildSys(VehPwrAnalysis,DrvtrnSysName);
dispSignalSummary(DrvtrnPwrAnalysis);
```

8 To plot the results, use the sdiSummary method.

sdiSummary(VehPwrAnalysis, {EngSysName, DrvtrnSysName})

Input Arguments

PlantInfoObj — Instance of PlantInfo object

autoblks.pwr.PlantInfo object

autoblks.pwr.PlantInfo object for the system that you want to analyze.

See Also

autoblks.pwr.PlantInfo

Topics

"Analyze Power and Energy"

findChildSys

Powertrain subsystem energy analysis

Syntax

findChildSys(PlantInfoObj,SubSystem)

Description

The findChildSys(PlantInfo0bj,SubSystem) method finds and returns an autoblks.pwr.PlantInfo object for the subsystem. Use the autoblks.pwr.PlantInfo object to evaluate and report power an energy for component-level blocks and system-level reference applications.

After you use the run method to analyze the powertrain power and energy, use the findChildSys method to evaluate specific subsystems.

Examples

Use findChildSys Method to Analyze Subsystems

Analyze the power and energy in the conventional vehicle reference application. To use the findChildSys method to analyze the engine and drivetrain subsystems, see "step 6" on page 8-38 and "step 7" on page 8-39.

Open the conventional vehicle reference application. By default, the application has a mapped 1.5 L spark-ignition (SI) engine and a dual clutch transmission. Project files open in a writable location.

autoblkConVehStart

2 Set the system name to SiCiPtReferenceApplication.

Create the autoblks.pwr.PlantInfo object.

Use the PwrUnits and EnrgyUnits properties to specify the units.

```
SysName = 'SiCiPtReferenceApplication';
VehPwrAnalysis = autoblks.pwr.PlantInfo(SysName);
VehPwrAnalysis.PwrUnits = 'kW';
VehPwrAnalysis.EnrgyUnits = 'MJ';
```

3 Use the run method to turn on logging, run simulation, and add logged data to the object.

run(VehPwrAnalysis);

4 Use the dispSysSummary method to display the results.

dispSysSummary(VehPwrAnalysis);

5 Use the xlsSysSummary method to write the results to a spreadsheet.

```
xlsSysSummary(VehPwrAnalysis, 'EnergySummary.xlsx');
```

6 Use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the Engine subsystem.

To display the results, use the dispSignalSummary method.

Use the histogramEff method to display a histogram of the time spent at each engine plant efficiency.

```
EngSysName = 'SiCiPtReferenceApplication/Passenger Car/Engine';
EngPwrAnalysis = findChildSys(VehPwrAnalysis, EngSysName);
dispSignalSummary(EngPwrAnalysis);
histogramEff(EngPwrAnalysis);
```

7 Use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the Drivetrain subsystem.

To display the results, use the dispSignalSummary method.

```
DrvtrnSysName = 'SiCiPtReferenceApplication/Passenger Car/Drivetrain';
DrvtrnPwrAnalysis = findChildSys(VehPwrAnalysis,DrvtrnSysName);
dispSignalSummary(DrvtrnPwrAnalysis);
```

8 To plot the results, use the sdiSummary method.

sdiSummary(VehPwrAnalysis,{EngSysName,DrvtrnSysName})

Input Arguments

PlantInfoObj — Instance of PlantInfo object

autoblks.pwr.PlantInfo object

autoblks.pwr.PlantInfo object for the system that you want to analyze.

SubSystem — Subsystem name

character vector

Subsystem that you want to analyze.

```
Example: 'SiCiPtReferenceApplication/Passenger Car/Engine'
Example: 'SiCiPtReferenceApplication/Passenger Car/Drivetrain'
Data Types: char
```

See Also

autoblks.pwr.PlantInfo

Topics

"Analyze Power and Energy"

histogramEff

Display powertrain subsystem efficiency histogram

Syntax

histogramEff(SubSystem)

Description

The histogramEff(SubSystem) method displays a histogram of the powertrain subsystem efficiency for the autoblks.pwr.PlantInfo object. Use instances of the autoblks.pwr.PlantInfo object to evaluate and report power an energy for component-level blocks and system-level models.

After you use the findChildSys method to analyze the powertrain subsystem power and energy, use the histogramEff method to display a histogram of the efficiency.

Examples

Use histogramEff Method to Display Results

Analyze the power and energy in the conventional vehicle reference application. To use the histogramEff method to display a histogram of the time spent at each engine plant efficiency, see "step 6" on page 8-40.

Open the conventional vehicle reference application. By default, the application has a mapped 1.5 L spark-ignition (SI) engine and a dual clutch transmission. Project files open in a writable location.

autoblkConVehStart

2 Set the system name to SiCiPtReferenceApplication.

Create the autoblks.pwr.PlantInfo object.

Use the PwrUnits and EnrgyUnits properties to specify the units.

```
SysName = 'SiCiPtReferenceApplication';
VehPwrAnalysis = autoblks.pwr.PlantInfo(SysName);
VehPwrAnalysis.PwrUnits = 'kW';
VehPwrAnalysis.EnrgyUnits = 'MJ';
```

3 Use the run method to turn on logging, run simulation, and add logged data to the object.

run(VehPwrAnalysis);

4 Use the dispSysSummary method to display the results.

```
dispSysSummary(VehPwrAnalysis);
```

5 Use the xlsSysSummary method to write the results to a spreadsheet.

```
xlsSysSummary(VehPwrAnalysis, 'EnergySummary.xlsx');
```

6 Use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the Engine subsystem.

To display the results, use the dispSignalSummary method.

Use the histogramEff method to display a histogram of the time spent at each engine plant efficiency.

```
EngSysName = 'SiCiPtReferenceApplication/Passenger Car/Engine';
EngPwrAnalysis = findChildSys(VehPwrAnalysis, EngSysName);
dispSignalSummary(EngPwrAnalysis);
histogramEff(EngPwrAnalysis);
```

7 Use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the Drivetrain subsystem.

To display the results, use the dispSignalSummary method.

```
DrvtrnSysName = 'SiCiPtReferenceApplication/Passenger Car/Drivetrain';
DrvtrnPwrAnalysis = findChildSys(VehPwrAnalysis,DrvtrnSysName);
dispSignalSummary(DrvtrnPwrAnalysis);
```

8 To plot the results, use the sdiSummary method.

```
sdiSummary(VehPwrAnalysis, {EngSysName, DrvtrnSysName})
```

Input Arguments

SubSystem — Subsystem name

character vector

Subsystem that you want to analyze.

```
Example: 'SiCiPtReferenceApplication/Passenger Car/Engine'
Example: 'SiCiPtReferenceApplication/Passenger Car/Drivetrain'
Data Types: char
```

See Also

autoblks.pwr.PlantInfo

Topics

"Analyze Power and Energy"

run

Run powertrain energy and power analysis

Syntax

run(PlantInfoObj)

Description

Use the run(PlantInfoObj) method to turn signal logging on, run a powertrain energy and power analysis, and add data to the autoblks.pwr.PlantInfo object. Use instances of the autoblks.pwr.PlantInfo object to evaluate and report power an energy for component-level blocks and system-level models.

Examples

Use run Method for Powertrain Energy Analysis

Analyze the power and energy in the conventional vehicle reference application. To use the run method for the analysis, see "step 3" on page 8-42.

Open the conventional vehicle reference application. By default, the application has a mapped 1.5 L spark-ignition (SI) engine and a dual clutch transmission. Project files open in a writable location.

autoblkConVehStart

2 Set the system name to SiCiPtReferenceApplication.

Create the autoblks.pwr.PlantInfo object.

Use the PwrUnits and EnrgyUnits properties to specify the units.

```
SysName = 'SiCiPtReferenceApplication';
VehPwrAnalysis = autoblks.pwr.PlantInfo(SysName);
VehPwrAnalysis.PwrUnits = 'kW';
VehPwrAnalysis.EnrgyUnits = 'MJ';
```

3 Use the run method to turn on logging, run simulation, and add logged data to the object.

run(VehPwrAnalysis);

4 Use the dispSysSummary method to display the results.

```
dispSysSummary(VehPwrAnalysis);
```

5 Use the xlsSysSummary method to write the results to a spreadsheet.

```
xlsSysSummary(VehPwrAnalysis, 'EnergySummary.xlsx');
```

6 Use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the Engine subsystem.

To display the results, use the dispSignalSummary method.

Use the histogramEff method to display a histogram of the time spent at each engine plant efficiency.

```
EngSysName = 'SiCiPtReferenceApplication/Passenger Car/Engine';
EngPwrAnalysis = findChildSys(VehPwrAnalysis,EngSysName);
dispSignalSummary(EngPwrAnalysis);
histogramEff(EngPwrAnalysis);
```

7 Use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the Drivetrain subsystem.

To display the results, use the dispSignalSummary method.

```
DrvtrnSysName = 'SiCiPtReferenceApplication/Passenger Car/Drivetrain';
DrvtrnPwrAnalysis = findChildSys(VehPwrAnalysis,DrvtrnSysName);
dispSignalSummary(DrvtrnPwrAnalysis);
```

8 To plot the results, use the sdiSummary method.

sdiSummary(VehPwrAnalysis,{EngSysName,DrvtrnSysName})

Input Arguments

PlantInfoObj — Instance of PlantInfo object

autoblks.pwr.PlantInfo object

autoblks.pwr.PlantInfo object for the system that you want to analyze.

See Also

autoblks.pwr.PlantInfo

Topics

"Analyze Power and Energy"

sdiSummary

Display Simulation Data Inspector plots of powertrain energy and power

Syntax

sdiSummary(PlantInfoObj,blocknames)

Description

The sdiSummary(PlantInfoObj, blocknames) method plots the powertrain energy and power analysis results for the autoblks.pwr.PlantInfo object.

Use instances of the autoblks.pwr.PlantInfo object to evaluate and report power an energy for component-level blocks and system-level models.

Examples

Use sdiSummary Method to Plot Results

Analyze the power and energy in the conventional vehicle reference application. To use the sdiSummary method to display the Simulation Data Inspector plots of the engine and drivetrain results, see "step 8" on page 8-45.

Open the conventional vehicle reference application. By default, the application has a mapped 1.5 L spark-ignition (SI) engine and a dual clutch transmission. Project files open in a writable location.

```
autoblkConVehStart
```

2 Set the system name to SiCiPtReferenceApplication.

Create the autoblks.pwr.PlantInfo object.

Use the PwrUnits and EnrgyUnits properties to specify the units.

```
SysName = 'SiCiPtReferenceApplication';
VehPwrAnalysis = autoblks.pwr.PlantInfo(SysName);
VehPwrAnalysis.PwrUnits = 'kW';
VehPwrAnalysis.EnrgyUnits = 'MJ';
```

3 Use the run method to turn on logging, run simulation, and add logged data to the object.

```
run(VehPwrAnalysis);
```

4 Use the dispSysSummary method to display the results.

```
dispSysSummary(VehPwrAnalysis);
```

5 Use the xlsSysSummary method to write the results to a spreadsheet.

```
xlsSysSummary(VehPwrAnalysis, 'EnergySummary.xlsx');
```

6 Use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the Engine subsystem.

To display the results, use the dispSignalSummary method.

Use the histogramEff method to display a histogram of the time spent at each engine plant efficiency.

```
EngSysName = 'SiCiPtReferenceApplication/Passenger Car/Engine';
EngPwrAnalysis = findChildSys(VehPwrAnalysis,EngSysName);
dispSignalSummary(EngPwrAnalysis);
histogramEff(EngPwrAnalysis);
```

7 Use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the Drivetrain subsystem.

To display the results, use the dispSignalSummary method.

```
DrvtrnSysName = 'SiCiPtReferenceApplication/Passenger Car/Drivetrain';
DrvtrnPwrAnalysis = findChildSys(VehPwrAnalysis,DrvtrnSysName);
dispSignalSummary(DrvtrnPwrAnalysis);
```

8 To plot the results, use the sdiSummary method.

sdiSummary(VehPwrAnalysis, {EngSysName, DrvtrnSysName})

Input Arguments

PlantInfoObj — Instance of PlantInfo object

autoblks.pwr.PlantInfo object

autoblks.pwr.PlantInfo object for the system that you want to analyze.

blocknames - Block or name

character vector | string | 'all'

Block or subsystem names, specified as a character vector or a string, separated by a comma.

```
Example: 'SiCiPtReferenceApplication/Passenger Car/Engine'
```

```
Example: 'SiCiPtReferenceApplication/Passenger Car/
```

Engine','SiCiPtReferenceApplication/Passenger Car/Drivetrain'

Data Types: char | string

See Also

autoblks.pwr.PlantInfo

Topics

"Analyze Power and Energy" Simulation Data Inspector

xlsSysSummary

Write powertrain energy analysis to spreadsheet

Syntax

xlsSysSummary(PlantInfoObj,filename,sheet)

Description

The xlsSysSummary(PlantInfoObj,filename,sheet) method exports the system energy and efficiency for the autoblks.pwr.PlantInfo object. Use the autoblks.pwr.PlantInfo object to evaluate and report power an energy for component-level blocks and system-level models.

After you use the run method to analyze the powertrain power and energy, use the xlsSysSummary method to write the results to a spreadsheet.

Examples

Use xlsSysSummary Method to Write Results to Spreadsheet

Analyze the power and energy in the conventional vehicle reference application. To use the xlsSysSummary method to write the results to a spreadsheet, see "step 5" on page 8-46.

Open the conventional vehicle reference application. By default, the application has a mapped 1.5 L spark-ignition (SI) engine and a dual clutch transmission. Project files open in a writable location.

```
autoblkConVehStart
```

2 Set the system name to SiCiPtReferenceApplication.

Create the autoblks.pwr.PlantInfo object.

Use the PwrUnits and EnrgyUnits properties to specify the units.

```
SysName = 'SiCiPtReferenceApplication';
VehPwrAnalysis = autoblks.pwr.PlantInfo(SysName);
VehPwrAnalysis.PwrUnits = 'kW';
VehPwrAnalysis.EnrgyUnits = 'MJ';
```

3 Use the run method to turn on logging, run simulation, and add logged data to the object.

```
run(VehPwrAnalysis);
```

4 Use the dispSysSummary method to display the results.

```
dispSysSummary(VehPwrAnalysis);
```

5 Use the xlsSysSummary method to write the results to a spreadsheet.

```
xlsSysSummary(VehPwrAnalysis, 'EnergySummary.xlsx');
```

6 Use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the Engine subsystem.

To display the results, use the dispSignalSummary method.

Use the histogramEff method to display a histogram of the time spent at each engine plant efficiency.

```
EngSysName = 'SiCiPtReferenceApplication/Passenger Car/Engine';
EngPwrAnalysis = findChildSys(VehPwrAnalysis, EngSysName);
dispSignalSummary(EngPwrAnalysis);
histogramEff(EngPwrAnalysis);
```

7 Use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the Drivetrain subsystem.

To display the results, use the dispSignalSummary method.

```
DrvtrnSysName = 'SiCiPtReferenceApplication/Passenger Car/Drivetrain';
DrvtrnPwrAnalysis = findChildSys(VehPwrAnalysis,DrvtrnSysName);
dispSignalSummary(DrvtrnPwrAnalysis);
```

8 To plot the results, use the sdiSummary method.

```
sdiSummary(VehPwrAnalysis,{EngSysName,DrvtrnSysName})
```

Input Arguments

PlantInfoObj — Instance of PlantInfo object

autoblks.pwr.PlantInfo object

autoblks.pwr.PlantInfo object for the system that you want to analyze.

filename — File name

character vector | string

File name, specified as a character vector or a string.

If filename does not exist, xlsSysSummary creates a file, determining the format based on the specified extension. To create a file compatible with Excel® 97-2003 software, specify an extension of .xls. To create files in Excel 2007 formats, specify an extension of .xlsx, .xlsb, or .xlsm. If you do not specify an extension, xlsSysSummary uses the default, .xls.

```
Example: 'myFile.xlsx' or "myFile.xlsx"
Example: 'C:\myFolder\myFile.xlsx'
Example: 'myFile.csv'
Data Types: char | string
```

sheet - Worksheet name

character vector | string | positive integer

Worksheet name, specified as one of the following:

- Character vector or string that contains the worksheet name. The name cannot contain a colon
 (:). To determine the names of the sheets in a spreadsheet file, use xlsfinfo.
- Positive integer that indicates the worksheet index.

If sheet does not exist, xlswrite adds a sheet at the end of the worksheet collection. If sheet is an index larger than the number of worksheets, xlswrite appends empty sheets until the number of worksheets in the workbook equals sheet. In either case, xlswrite generates a warning indicating that it has added a worksheet.

Data Types: char | string | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

See Also

autoblks.pwr.PlantInfo|xlswrite

Topics

"Analyze Power and Energy"

addLoggedData

Add logged data

Syntax

addLoggedData(PlantInfoObj,logsout)

Description

addLoggedData(PlantInfoObj,logsout) adds logged signal data to the autoblks.pwr.PlantInfo object specified by the Simulink.SimulationData.Dataset signal data object.

If the data logged for the system does not conserve energy, the method returns a warning.

If the Simulink.SimulationData.Dataset object does not include data for the Power Accounting Bus Creator blocks in the system, the method returns an error.

Input Arguments

PlantInfoObj — Instance of PlantInfo object

autoblks.pwr.PlantInfo object

autoblks.pwr.PlantInfo object for the system that you want to analyze.

logsout — Dataset object for signals

Simulink.SimulationData.Dataset object

Simulink.SimulationData.Dataset object for signals that you want to log.

See Also

Power Accounting Bus Creator | autoblks.pwr.PlantInfo

Topics

"Analyze Power and Energy"

isEnrgyBalanced

Logical flag for energy conservation

Syntax

flag=isEnrgyBalanced(PlantInfoObj)

Description

flag=isEnrgyBalanced(PlantInfoObj) returns logical 1 (true) if the system conserves energy. Otherwise, it returns logical 0 (false).

Input Arguments

PlantInfoObj — Instance of PlantInfo object

autoblks.pwr.PlantInfo object

autoblks.pwr.PlantInfo object for the system that you want to analyze.

Output Arguments

flag — Indicator of energy conservation

1 (true) | 0 (false)

Indicator of energy conservation, returned as a logical 1 (true) or 0 (false).

Data Types: logical

Algorithms

To determine if the system conserves energy, the <code>isEnrgyBalanced</code> method checks the energy conservation at each time step.

$$E_{Err} = \sum E_{trans} + \sum E_{nottrans} - \sum E_{store}$$

Blocks change the input energy plus released stored energy to output energy plus stored energy. For example, a mapped engine block uses fuel (not transferred energy) to produce torque (transferred energy) and heat loss (not transferred energy). The total modified energy represents the average between the input fuel energy and the energy exiting the system (torque and heat loss). To calculate the total energy modified by the block, the method uses the integral of the average transferred, not transferred, and stored power.

$$E_{total} = \frac{1}{2} \left| \int_{0}^{t_{end}} \left(\sum_{i} |P_{trans}| + \sum_{i} |P_{nottrans}| + \sum_{i} |P_{store}| \right) dt \right|_{t = t_{end}}$$

If the energy conservation error is within an error tolerance, the method returns true. Specifically, if either condition is met, the method returns true.

Condition		
$\frac{ E_{Err} }{E_{total}} < EnrgyBal_{RelTol}$	or	$E_{total} < EnrgyBal_{AbsTol}$

The equations use these variables.

 E_{Err} Energy conservation error E_{total} Total energy modified by block

 $EnrgyBal_{RelTol}$, $EnrgyBal_{AbsTol}$ Energy balance relative and absolute tolerance, respectively

 P_{trans} , E_{trans} Transferred power and energy, respectively $P_{nottrans}$, $E_{nottrans}$ Not transferred power and energy, respectively

 P_{store} , E_{store} Stored power and energy, respectively

 P_{input} , P_{output} Input and output power logged by Power Accounting Bus

Creator block

See Also

Power Accounting Bus Creator | autoblks.pwr.PlantInfo

Topics

"Analyze Power and Energy"

loggingOff

Turn signal logging off

Syntax

loggingOff(PlantInfoObj)

Description

loggingOff(PlantInfoObj) turns signal logging off for all Power Accounting Bus Creator blocks
in the autoblks.pwr.PlantInfo system object.

Input Arguments

PlantInfoObj — Instance of PlantInfo object

autoblks.pwr.PlantInfo object

autoblks.pwr.PlantInfo object for the system that you want to analyze.

See Also

Power Accounting Bus Creator | autoblks.pwr.PlantInfo

Topics

"Analyze Power and Energy"

loggingOn

Turn signal logging on

Syntax

loggingOn(PlantInfoObj)

Description

loggingOn(PlantInfoObj) turns signal logging on for all Power Accounting Bus Creator blocks in the autoblks.pwr.PlantInfo system object.

Input Arguments

PlantInfoObj — Instance of PlantInfo object

autoblks.pwr.PlantInfo object

autoblks.pwr.PlantInfo object for the system that you want to analyze.

See Also

Power Accounting Bus Creator | autoblks.pwr.PlantInfo

Topics

"Analyze Power and Energy"

Battery.PulseSequence

Define a single pulse sequence

Description

Use the Battery.PulseSequence object to define a single experimental pulse sequence at a specific temperature and pulse current magnitude.

You can place multiple experimental pulse sequences into an array of Battery.PulseSequence objects. To do so, create a Battery.PulseSequence object for each experimental pulse sequence instance.

To use the Battery. PulseSequence object and methods, you need these products:

- · Powertrain Blockset
- Curve Fitting Toolbox™
- Optimization Toolbox[™]
- Parallel Computing Toolbox[™]
- · Simulink Design Optimization

Creation

Syntax

ps0bj = Battery.PulseSequence

Description

MATLAB creates a ps0bj = Battery.PulseSequence object that defines a pulse sequence.

Properties

Data — Raw data

m-by-5 array

An m-by-5 array of pulse sequence data. Use the addData object function to add the data. addData computes the charge and state of charge (SOC), using the assumption that the experimental test ranges is 0% to 100% SOC.

Array Element	Description	Unit
Data(m,1)	Time	s
Data(m,2)	Voltage	V
Data(m,3)	Current	A
Data(m,4)	Charge	A·s

Array Element	Description	Unit
Data(m,5)	State of charge (SOC)	Dimensionless

Data Types: double

ModelName — Name of model

character vector

Name of the model to use for simulation

Example: 'BatteryEstim3RC PTBS'

Data Types: char

MetaData — Battery. MetaData object properties

0-by-1 array

Battery.MetaData object properties containing metadata for the data.

Data Types: function handle

Capacity — Pulse sequence capacity

scalar

Capacity observed as the difference between lowest and highest energy, in A·s. Calculated by the addData method, but can be overwritten.

Example: 0.0

Data Types: double

Parameters — Battery. Parameters object properties

0-by-1 array

Battery.Parameters object containing the most recently determined battery equivalent circuit parameters.

Data Types: function handle

ParametersHistory — Battery.ParametersHistory object properties

0-by-1 array

Battery.ParametersHistory object array containing the history of the battery equivalent circuit parameters through different estimation steps. The last element is the most recent parameter set.

Data Types: function handle

Object Functions

addData Import pulse sequence experimental data

createPulses Identify pulses and create pulse objects from experimental data

estimateInitialEmR0 Estimate open circuit voltage and series resistance estimateInitialEmRx Estimate open circuit voltage and RC pair resistance

estimateInitialTau Estimate RC pair time constant

estimateParameters Estimate parameters

getSocIdxForPulses Return state of charge index for pulses

loadDataFromMatFile Load pulse data from a MAT-file

plot Plot pulse sequence data plotIdentifiedPulses Plot identified pulses

plotLatestParameters Plot latest pulse sequence parameters plotSimulationResults Plot pulse sequence simulation results

populatePulseParameters Populate pulse parameters removePulses Remove pulses from sequence

repairTimeVector Repair time vector

Examples

Add File Data to Battery. PulseSequence Object

This example shows how to add data to a Battery. PulseSequence object.

Create a pulse sequence object.

```
ps0bj = Battery.PulseSequence;
disp(ps0bj)
```

Load data from a file.

```
FileName = 'Synthetic_LiPo_PulseDischarge.mat';
[time,voltage,current] = Battery.loadDataFromMatFile(FileName);
```

Add the data to the pulse sequence.

addData(psObj,time,voltage,current);

See Also

Battery.MetaData | Battery.Parameters | Battery.Pulse | sdo.OptimizeOptions

Topics

"Generate Parameter Data for Datasheet Battery Block"

Introduced in R2016b

[&]quot;Generate Parameter Data for Equivalent Circuit Battery Block"

addData

Import pulse sequence experimental data

Syntax

```
addData(psObj,Time,Voltage,Current)
```

Description

addData(psObj,Time,Voltage,Current) adds the pulse sequence experimental data to the Battery.PulseSequence object. The Time, Voltage, and Current input arrays must have equal lengths. addData computes the charge and state of charge (SOC), using the assumption that the experimental test range is 0% to 100% SOC.

Examples

Add Data to Battery.PulseSequence Object

This example shows how to add data to a Battery. PulseSequence object.

```
Create a pulse sequence object.
```

```
psObj = Battery.PulseSequence;
disp(psObj)

Load data from a file.

FileName = 'Synthetic_LiPo_PulseDischarge.mat';
[time,voltage,current] = Battery.loadDataFromMatFile(FileName);
Add the data to the pulse sequence.
addData(psObj,time,voltage,current);
```

Input Arguments

```
ps0bj — Instance of Battery.PulseSequence class
```

```
Battery.PulseSequence object
```

Battery.PulseSequence object for the pulse sequence that you want to analyze.

```
Time — Time
m-by-1 array
m-by-1 array of time data, in s.
Data Types: double
Voltage — Voltage
```

m-by-1 array

m-by-1 array of voltage data, in V.

Data Types: double

Current — **Current**

m-by-1 array

m-by-1 array of current data, in A.

Data Types: double

See Also

Battery.PulseSequence

Topics

"Generate Parameter Data for Datasheet Battery Block"

"Generate Parameter Data for Equivalent Circuit Battery Block"

Introduced in R2016b

loadDataFromMatFile

Load pulse data from a MAT-file

Syntax

```
[Time, Voltage, Current] = loadDataFromMatFile(FileName)
[Time, Voltage, Current] = loadDataFromMatFile(FileName, Name, Value)
```

Description

[Time, Voltage, Current] = loadDataFromMatFile(FileName) function loads pulse data from a MAT-file.

[Time, Voltage, Current] = loadDataFromMatFile(FileName, Name, Value) function loads pulse data from a MAT-file with additional options specified by one or more Name, Value pair arguments.

Examples

Load File Data to Battery.PulseSequence Object

This example shows how to add data to a Battery. PulseSequence object.

Create a pulse sequence object.

```
psObj = Battery.PulseSequence;
disp(psObj);

Load data from a file.

FileName = 'Synthetic_LiPo_PulseDischarge.mat';
[time,voltage,current] = Battery.loadDataFromMatFile(FileName);

Add the data to the pulse sequence.

addData(psObj,time,voltage,current);
```

Input Arguments

```
FileName — Path or file name
```

```
untitled.mat (default) | path, or MAT-file name
```

Path or file name of the MAT-file that contains the pulse sequence data.

```
Example: 'Synthetic_LiPo_PulseDischarge.mat'
Data Types: char
```

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: Battery.loadDataFromMatFile(FileName, 'TimeVariable', 'myTimeVariable')

TimeVariable — Time variable in MAT-file

time (default) | character vector

Use this value to specify the time variable to search for in the MAT-file. If unspecified, the method searches for variables containing 'time'.

Example: Battery.loadDataFromMatFile(FileName, 'TimeVariable', 'myTimeVariable')
Data Types: char

VoltageVariable — Voltage variable in MAT-file

volt (default) | character vector

Use this value to specify the voltage variable to search for in the MAT-file. If unspecified, the method searches for variables containing 'voltage'.

Example

Battery.loadDataFromMatFile(FileName, 'VoltageVariable', 'myVoltageVariable')

Data Types: char

CurrentVariable — Current variable in MAT-file

current (default) | character vector

Use this value to specify the current variable to search for in the MAT-file. If unspecified, the method searches for variables containing 'current'.

Example:

Battery.loadDataFromMatFile(FileName, 'CurrentVariable', 'myCurrentVariable')

Data Types: char

Output Arguments

Time — Time

m-by-1 array

m-by-1 array of time data, in s.

Data Types: double

Voltage — **Voltage**

m-by-1 array

m-by-1 array of voltage data, in V.

Data Types: double

Current — **Current**

m-by-1 array

m-by-1 array of current data, in A.

Data Types: double

See Also

Battery.PulseSequence

Topics

"Generate Parameter Data for Datasheet Battery Block"
"Generate Parameter Data for Equivalent Circuit Battery Block"

Introduced in R2016b

createPulses

Identify pulses and create pulse objects from experimental data

Syntax

```
createPulses(ps0bj)
createPulses(ps0bj,Name,Value)
```

Description

createPulses(ps0bj) identifies the location of pulse events. Creates separate pulse objects from the Battery.PulseSequence object experimental data.

createPulses(psObj, Name, Value) identifies the location of pulse events. Creates separate pulse objects from the Battery.PulseSequence object experimental data with additional options specified by one or more Name, Value pair arguments.

Examples

Create Pulse Objects from Data

This example shows how to create pulse objects from data.

```
Create a pulse sequence object.
```

```
psObj = Battery.PulseSequence;
disp(psObj)

Load data from a file.

FileName = 'Synthetic_LiPo_PulseDischarge.mat';
[time,voltage,current] = Battery.loadDataFromMatFile(FileName);

Add the data to the pulse sequence.

addData(psObj,time,voltage,current);

Create pulse objects from data.

createPulses(psObj,...
    'CurrentOnThreshold',0.1,...
    'NumRCBranches',3,...
    'RCBranchesUse2TimeConstants',false,...
    'PreBufferSamples',10,...
    'PostBufferSamples',15);
```

Input Arguments

psObj — Instance of Battery.PulseSequence class

Battery.PulseSequence object

Battery.PulseSequence object for the pulse sequence that you want to analyze.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: createPulses(ps0bj, 'CurrentOnThreshold',0.1)

CurrentOnThreshold — Minimum current magnitude

0.025 (default) | scalar

Use this value to specify the minimum current magnitude for identifying the pulse locations, in A. The createPulses function considers values below the CurrentOnThrehsold as relaxation or measurement noise.

Example: createPulses(ps0bj, 'CurrentOnThreshold',0.1)
Data Types: double

NumRCBranches — Number of RC branches

3 (default) | scalar

Use this value to specify the number of RC branches. To change the number of branches after an estimation, you must rerun createPulses along with any estimation steps. Rerunning ensures that the estimation parameters are the right size.

Example: createPulses(ps0bj,'NumRCBranches',4)
Data Types: uint32

RCBranchesUse2TimeConstants — Use load and relaxation time constants

false

The createPulses function does not support using separate time constants for load and relaxation when it estimates each RC branch. If you set the value to true, the createPulses function might produce an error.

Example: createPulses(ps0bj, 'RCBranchesUse2TimeConstants', false)
Data Types: logical

PreBufferSamples — Pulses to retain before pulse estimation

10 (default) | scalar

Use this value to specify the number of pulses to retain before pulse estimation. The buffer allows the estimation to focus on matching the measured data before the pulse begins.

Example: createPulses(ps0bj,'PreBufferSamples',5)
Data Types: uint32

PostBufferSamples — Pulses to retain for next estimation

15 (default) | scalar

Use this value to specify the number of pulses to retain before the next pulse estimation. The buffer allows the estimation to focus on matching the transition when the next pulse begins. Typically, the end transition of one pulse and the starting transition at the next pulse are at the same state of

charge (SOC). Therefore, both transitions help determine the parameter values at that SOC breakpoint.

Example: createPulses(ps0bj, 'PostBufferSamples',14)

Data Types: uint32

PulseRequires2Samples — Pulse requires two consecutive samples under current false (default)

Use this value to specify that there must be two consecutive samples under current to define a pulse. Set to true if occasional noise spikes in the current measurement trigger a false pulse detection. By default, the value is false, indicating that a single sample above the threshold detects a pulse event.

Example: createPulses(ps0bj, 'PulseRequires2Samples', true)

Data Types: logical

See Also

Battery.PulseSequence

Topics

"Generate Parameter Data for Datasheet Battery Block"

"Generate Parameter Data for Equivalent Circuit Battery Block"

estimateInitialEmR0

Estimate open circuit voltage and series resistance

Syntax

```
estimateInitialEmR0(ps0bj)
estimateInitialEmR0(ps0bj,Name,Value)
```

Description

estimateInitialEmR0(ps0bj) estimates the open circuit voltage, *Em*, and series resistance, *Ro*, for the Battery.PulseSequence object data. For the estimation, the method uses data points around each pulse transition. The method uses estimated values to determine the minimum and maximum constraint values. The method stores the results in an Battery.Parameters object.

<code>estimateInitialEmR0(ps0bj,Name,Value)</code> estimates the open circuit voltage, Em, and series resistance, Ro, for the <code>Battery.PulseSequence</code> object data with additional options specified by one or more <code>Name,Value</code> pair arguments.

Input Arguments

psObj — Instance of Battery.PulseSequence class

Battery.PulseSequence object

Battery.PulseSequence object for the pulse sequence that you want to analyze.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

```
Example:
estimateInitialEmR0(ps0bj,'SetEmConstraints',false,'EstimateEm',true,'Estimat
eR0',true)
```

SetEmConstraints — Use open circuit voltage constraints

true (default)

Use this value to specify if the method constrains the open circuit voltage, *Eo*, to within maximum or minimum values. To determine the maximum and minimum voltage, the method uses the voltage at the end of relaxation as a constraint for future estimation steps.

If the pulse is a discharge pulse, the voltage rises during relaxation. The final relaxation voltage is set to the minimum constraint for Eo at the corresponding state of charge (SOC).

If the pulse is a charge pulse, the voltage falls during relaxation. The final relaxation voltage is set to the maximum constraint at the corresponding SOC.

```
Example: estimateInitialEmR0(ps0bj,'SetEmConstraints',false)
```

Data Types: logical

EstimateEm — Estimate open circuit voltage

true (default) | false

Use this value to specify if the method estimates the open circuit voltage, Em. Use the default setting, true, unless you have already defined the Em values from outside analysis.

Example: eestimateInitialEmR0(ps0bj, 'EstimateEm', false)

Data Types: logical

EstimateR0 — Estimate series resistance

true (default) | false

Use this value to specify if the method estimates the series resistance, R0. Use the default setting, true, unless you have already defined the R0 values from outside analysis.

Example: estimateInitialEmR0(ps0bj, 'EstimateR0', false)

Data Types: logical

See Also

Battery.PulseSequence

Topics

"Generate Parameter Data for Datasheet Battery Block"

"Generate Parameter Data for Equivalent Circuit Battery Block"

estimateInitialEmRx

Estimate open circuit voltage and RC pair resistance

Syntax

```
estimateInitialEmRx(ps0bj)
estimateInitialEmRx(ps0bj,Name,Value)
```

Description

estimateInitialEmRx(ps0bj) estimates the open circuit voltage, *Em*, and RC pair resistance, *Ex*, for the Battery.PulseSequence object data. For the estimation, the method solves a linear system of equations throughout the pulse sequence. The method stores the results in a Battery.Parameters object.

estimateInitialEmRx(ps0bj,Name,Value) estimates the open circuit voltage, Em, and RC pair resistance, Ex, for the Battery.PulseSequence object data with additional options specified by one or more Name, Value pair arguments.

Input Arguments

psObj — Instance of Battery.PulseSequence class

Battery.PulseSequence object

Battery. PulseSequence object for the pulse sequence that you want to analyze.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example:

```
estimateInitialEmRx(ps0bj,'IgnoreRelaxation',false,'ShowPlots',true,'ShowBefo
rePlots',true,'PlotDelay',0.5,'EstimateEm',true)
```

EstimateEm — Estimate voltage

```
true (default) | false
```

Use this value to specify if the method estimates the open circuit voltage, *Em*.

```
Example: estimateInitialEmRx(ps0bj,'EstimateEm',false)
```

Data Types: logical

RetainEm — Retain voltage estimate

```
true (default) | false
```

Use this value to specify if the method retains the open circuit voltage, *Em*, estimate. Set to true if you want the method to use an external open circuit voltage to state of charge (SOC) relationship. If EstimateEm is false, this option does not apply.

Example: estimateInitialEmRx(ps0bj,'RetainEm',false)

Data Types: logical

EstimateR0 — Estimate series resistance

true (default) | false

Use this value to specify if the method estimates the series resistance, Ro.

Example: estimateInitialEmRx(ps0bj,'EstimateR0',false)

Data Types: logical

RetainR0 — Retain series resistance

true (default) | false

Use this value to specify if the method retains the identified series resistance, *Ro*, estimate. Set to true if you want the method to use an existing series resistance to state of charge (SOC) relationship. If EstimateEm is false, this option does not apply.

Example: estimateInitialEmRx(ps0bj,'RetainR0',false)

Data Types: logical

ShowPlots — Show estimation plots

false (default) | true

Use this value to specify if the method shows plots during each estimation step.

Example: estimateInitialEmRx(ps0bj, 'ShowPlots', true)

Data Types: logical

ShowBeforePlots — Show before estimation plots

false (default) | true

Use this value to specify if the method shows before plots during each estimation step. If ShowPlots is false, this option does not apply.

Example: estimateInitialEmRx(ps0bj, 'ShowBeforePlots', true)

Data Types: logical

PlotDelay — Plot delay

0.0 (default) | scalar

Use this value to specify the time delay after showing the plots, in s.

Example: estimateInitialEmRx(ps0bj,'PlotDelay',0.1)

Data Types: double

IgnoreRelaxation — Estimate series resistance

false (default) | true

Use this value to specify if the method completely ignores the relaxation and fits only the main pulse.

Example: estimateInitialEmRx(ps0bj,'IgnoreRelaxation',true)

Data Types: logical

See Also

Battery.PulseSequence

Topics

"Generate Parameter Data for Datasheet Battery Block"
"Generate Parameter Data for Equivalent Circuit Battery Block"

estimateInitialTau

Estimate RC pair time constant

Syntax

```
estimateInitialTau(ps0bj)
estimateInitialTau(ps0bj,Name,Value)
```

Description

estimateInitialTau(ps0bj) estimates the RC pair time constant, *Tau* for the Battery.PulseSequence object data. For the estimation, the method fits the relaxation curve for each pulse. The method stores the results in an Battery.Parameters object.

estimateInitialTau(psObj, Name, Value) estimates the RC pair time constant, *Tau* for the Battery.PulseSequence object data with additional options specified by one or more Name, Value pair arguments.

Input Arguments

ps0bj — Instance of Battery.PulseSequence class

Battery.PulseSequence object

Battery. PulseSequence object for the pulse sequence that you want to analyze.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

```
Example:
```

```
estimateInitialTau(ps0bj,'UpdateEndingEm',false,'ShowPlots',true,'ReusePlotFi
gure',true,'UseLoadData',false,'PlotDelay',0.5)
```

ShowPlots — Show estimation plots

false (default) | true

Use this value to specify if the method shows plots during each estimation step.

```
Example: estimateInitialTau(ps0bj,'ShowPlots',true)
```

Data Types: logical

PlotDelay — Plot delay

0.0 (default) | scalar

Use this value to specify the time delay after showing the plots, in s.

```
Example: estimateInitialTau(ps0bj, 'PlotDelay',0.5)
```

Data Types: double

ReusePlotFigure — Reuse plots

true (default) | false

Use this value to specify if the method reuses the same plot figure. If false, the estimation plots are in separate figure windows. If ShowPlots is false, the option does not apply.

Example: estimateInitialTau(ps0bj, 'ReusePlotFigure', true)

Data Types: logical

UpdateEndingEm — Update voltage estimate

false (default) | true

Use this value to specify if the method updates the open circuit voltage estimate at the end of the relaxation, based on the curve fits.

Example: estimateInitialTau(ps0bj, 'UpdateEndingEm', true)

Data Types: logical

UseLoadData — Plot delay

false (default) | true

Use this value to specify if the method uses the pulse load data, instead of pulse relaxation data, to estimate the time constant, *Tau*. By default, the setting is false, and the method uses the pulse relaxation to estimate the time constant.

Example: estimateInitialTau(ps0bj, 'UseLoadData', true)

Data Types: logical

See Also

Battery.PulseSequence

Topics

"Generate Parameter Data for Datasheet Battery Block"

"Generate Parameter Data for Equivalent Circuit Battery Block"

estimateParameters

Estimate parameters

Syntax

```
estimateParameters(ps0bj)
estimateParameters(ps0bj,Name,Value)
```

Description

estimateParameters(ps0bj) estimates the parameters in the Battery.Parameters object. The method stores the results in an Battery.Parameters object.

estimateParameters (psObj, Name, Value) estimates the parameters in the Battery. Parameters object data with additional options specified by one or more Name, Value pair arguments.

To use the Battery. PulseSequence object and methods, you need these products:

- Powertrain Blockset
- Curve Fitting Toolbox
- · Optimization Toolbox
- Parallel Computing Toolbox
- Simulink Design Optimization

Input Arguments

psObj — Instance of Battery.PulseSequence class

Battery.PulseSequence object

Battery.PulseSequence object for the pulse sequence that you want to analyze.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

```
Example:
```

```
estimateParameters(ps0bj,'CarryParamToNextPulse',true,'ShowPlots',true,'Estim
ateEm',true,'RetainEm',true,'EstimateR0',true,'RetainR0',true)
```

CarryParamsToNextPulse — Use results for next SOC

```
false (default) | true
```

Use this value to specify if the method uses the identified current pulse final state of charge (SOC) parameter values as the initial estimate for the parameter values at the next SOC.

Example: estimateParameters(ps0bj,'CarryParamsToNextPulse',true)

Data Types: logical

EstimateEm — Estimate voltage

true (default) | false

Use this value to specify if the method estimates the open circuit voltage, *Em*.

Example: estimateParameters(ps0bj, 'EstimateEm', false)

Data Types: logical

RetainEm — Retain voltage estimate

true (default) | false

Use this value to specify if the method retains the identified open circuit voltage, Em, estimate. If EstimateEm is false, this option does to apply.

Example: estimateParameters(ps0bj, 'RetainEm', false)

Data Types: logical

EstimateR0 — Estimate series resistance

true (default) | false

Use this value to specify if the method estimates the series resistance, *R0*.

Example: estimateParameters(ps0bj, 'EstimateR0', false)

Data Types: logical

RetainR0 — Retain series resistance

true (default) | false

Use this value to specify if the method retains the series resistance, *Ro*, estimate. If EstimateR0 is false, this option does to apply.

Example: estimateParameters(ps0bj, 'RetainR0', false)

Data Types: logical

RelConstrRx — Rx deviation

inf (default) | scalar

Use this value to specify the RC pair resistance, Rx, deviation from previous pulse values, in percentage.

Example: estimateParameters(ps0bj, 'RelConstrRx', 100)

Data Types: double

RelConstrTx — Tx deviation

inf (default) | scalar

Use this value to specify the time constant deviation from previous pulse values, in percentage.

Example: estimateParameters(ps0bj, 'RelConstrTx', 100)

Data Types: double

SD00ptimizeOptions — Specify optimization options

'Method' is lsqnonlin and 'UseParallel' is true (default)

Use this value to specify the sdo.OptimizeOptions object options. For example:

```
SD00ptimizeOptions = sdo.OptimizeOptions(...
    'OptimizedModel',psObj.ModelName,...
    'Method','lsqnonlin',...
    'UseParallel','always')
```

ShowPlots — Show estimation plots

false (default) | true

Use this value to specify if the method shows plots during each estimation step.

```
Example: estimateParameters(ps0bj, 'ShowPlots', true)
Data Types: logical
```

ReusePlotFigure — Reuse plots

true (default) | false

Use this value to specify if the method reuses the same plot figure. If false, the estimation plots are in separate figure windows. If ShowPlots is false, the option does not apply.

```
Example: estimateParameters(psObj,'ReusePlotFigure',true)
Data Types: logical
```

PlotDelay — Plot delay

5.0 (default) | scalar

Use this value to specify the time delay after showing the plots, in s.

```
Example: estimateParameters(ps0bj,'PlotDelay',0.1)
Data Types: double
```

PulseNumbers — Pulse numbers

1 (default) | scalar

Use this value to specify the pulse numbers to estimate. The default value, 1, is set to estimate all the pulses.

Data Types: uint32

See Also

Battery.PulseSequence|sdo.OptimizeOptions

Topics

```
"Generate Parameter Data for Datasheet Battery Block"
```

[&]quot;Generate Parameter Data for Equivalent Circuit Battery Block"

getSocIdxForPulses

Return state of charge index for pulses

Syntax

idx=getSocIdxForPulses(ps0bj,pulseList)

Description

idx=getSocIdxForPulses(ps0bj,pulseList) returns the row vector index of the state of charge (SOC) lookup table breakpoints.

Input Arguments

psObj — Instance of Battery.PulseSequence class

Battery.PulseSequence object

Battery.PulseSequence object for the pulse sequence that you want to analyze.

pulseList — Index of pulses

1: NumPulses (default)

Index of pulses. For example, 1:10.

Data Types: int16

Output Arguments

idx — Indices into SOC lookup table

1-by-NumPulses array

Indices into SOC lookup table.

Data Types: int16

See Also

Battery.PulseSequence

Topics

"Generate Parameter Data for Datasheet Battery Block"

[&]quot;Generate Parameter Data for Equivalent Circuit Battery Block"

plot

Plot pulse sequence data

Syntax

plot_handle = plot(ps0bj)

Description

plot_handle = plot(ps0bj) plots the data from a Battery.PulseSequence object.

Input Arguments

ps0bj — Instance of Battery.PulseSequence class

Battery.PulseSequence object

Battery.PulseSequence object for the pulse sequence that you want to analyze.

Output Arguments

plot_handle — Plot handle

object handle

Handles to plot objects.

Data Types: function_handle

See Also

Battery.PulseSequence

Topics

"Generate Parameter Data for Datasheet Battery Block"

"Generate Parameter Data for Equivalent Circuit Battery Block"

plotIdentifiedPulses

Plot identified pulses

Syntax

plot_handle = plotIdentifiedPulses(ps0bj)

Description

plot_handle = plotIdentifiedPulses(ps0bj) plots identified pulses from a Battery.PulseSequence object.

Input Arguments

psObj — Instance of Battery.PulseSequence class

Battery.PulseSequence object

Battery.PulseSequence object for the pulse sequence that you want to analyze.

Output Arguments

plot_handle — Plot handle

object handle

Handles to plot objects.

Data Types: function handle

See Also

Battery.PulseSequence

Topics

"Generate Parameter Data for Datasheet Battery Block"

"Generate Parameter Data for Equivalent Circuit Battery Block"

plotLatestParameters

Plot latest pulse sequence parameters

Syntax

plot_handle = plotLatestParameters(ps0bj)

Description

plot_handle = plotLatestParameters(ps0bj) plots the latest pulse sequence parameters
from a Battery.PulseSequence object.

Input Arguments

psObj — Instance of Battery.PulseSequence class

Battery.PulseSequence object

Battery.PulseSequence object for the pulse sequence that you want to analyze.

Output Arguments

plot_handle — Plot handle

object handle

Handles to plot objects.

Data Types: function handle

See Also

Battery.PulseSequence

Topics

"Generate Parameter Data for Datasheet Battery Block"

"Generate Parameter Data for Equivalent Circuit Battery Block"

plotSimulationResults

Plot pulse sequence simulation results

Syntax

```
plot_handle=plotSimulationResults(ps0bj)
plot_handle=plotSimulationResults(ps0bj,param)
```

Description

plot_handle=plotSimulationResults(ps0bj) plots the simulation results of the pulse sequence based on the current parameter values.

plot_handle=plotSimulationResults(ps0bj,param) plots the simulation results of the pulse sequence based on the parameter values specified by the Battery.Parameter object.

Input Arguments

psObj — Instance of Battery.PulseSequence class

Battery.PulseSequence object

Battery.PulseSequence object for the pulse sequence that you want to analyze.

param — Instance of Battery. Parameter class

Battery.Parameter object

Battery.Parameter object for the parameters that you want to analyze.

Output Arguments

plot handle - Plot handle

object handle

Handles to plot objects.

Data Types: function handle

See Also

Battery.PulseSequence

Topics

"Generate Parameter Data for Datasheet Battery Block"

"Generate Parameter Data for Equivalent Circuit Battery Block"

populatePulseParameters

Populate pulse parameters

Syntax

populatePulseParameters(ps0bj)

Description

populatePulseParameters (ps0bj) populates parameters in the Battery.PulseSequence object based on the series of pulse objects. If the pulse objects are new, updated, or filtered, populatePulseParameters updates the identified pulse indices, SOC breakpoints, and parameters objects in Battery.PulseSequence.

Input Arguments

psObj — Instance of Battery.PulseSequence class

Battery.PulseSequence object

Battery.PulseSequence object for the pulse sequence that you want to analyze.

See Also

Battery.PulseSequence

Topics

"Generate Parameter Data for Datasheet Battery Block"

[&]quot;Generate Parameter Data for Equivalent Circuit Battery Block"

removePulses

Remove pulses from sequence

Syntax

removePulses(ps0bj,idxRemove)

Description

removePulses(ps0bj,idxRemove) removes pulses from sequence specified by the Battery.PulseSequence object.

Input Arguments

psObj — Instance of Battery.PulseSequence class

Battery.PulseSequence object

Battery.PulseSequence object for the pulse sequence that you want to analyze.

idxRemove — Index of pulse objects to remove

1: NumPulses (default)

Index of pulse objects to remove. For example, 1:10.

Data Types: int16

See Also

Battery.PulseSequence

Topics

"Generate Parameter Data for Datasheet Battery Block"

[&]quot;Generate Parameter Data for Equivalent Circuit Battery Block"

repairTimeVector

Repair time vector

Syntax

```
repairTimeVector(ps0bj)
repairTimeVector(ps0bj,MinDeltaT)
```

Description

repairTimeVector(ps0bj) repairs common problems with the experimental time vector on the Battery.PulseSequence object.

repairTimeVector(psObj,MinDeltaT) repairs common problems with the experimental time vector on the Battery.PulseSequence object using a minimum time difference.

Input Arguments

psObj — Instance of Battery.PulseSequence class

Battery.PulseSequence object

Battery.PulseSequence object for the pulse sequence that you want to analyze.

MinDeltaT — Minimum time difference

scalar

Index of pulse objects to remove. For example, 1:10.

Data Types: double

See Also

Battery.PulseSequence

Topics

"Generate Parameter Data for Datasheet Battery Block"

"Generate Parameter Data for Equivalent Circuit Battery Block"

Battery.Pulse

Define a single pulse event

Description

Use the Battery.Pulse object to define a single experimental pulse event. To create a pulse object, use the Battery.PulseSequence object function createPulses.

To use the Battery. Pulse object and methods, you need these products:

- Powertrain Blockset
- Curve Fitting Toolbox
- Optimization Toolbox
- Parallel Computing Toolbox
- Simulink Design Optimization

Creation

Syntax

pulseObj = Battery.Pulse(Battery.PulseSequence)

Description

MATLAB creates a pulseObj = Battery.Pulse(Battery.PulseSequence) object that defines a single pulse event.

Properties

Data — Raw data

1-by-5 array

An 1-by-5 array of pulse event data.

Array Element	Description	Unit
Data(1,1)	Time	S
Data(1,2)	Voltage	V
Data(1,3)	Current	A
Data(1,4)	Charge	A·s
Data(1,5)	State of charge (SOC)	Dimensionless

Data Types: double

InitialCapVoltage — Initial capacitor voltage

array

Initial voltage of each capacitor during a pulse event, in V. Property set by the Battery.PulseSequence object function estimateParameters, based on the simulated end voltage or a prior pulse.

Data Types: double

InitialChargeDeficit — Initial charge deficit

0.0 (default) | scalar

Initial charge deficit at start of pulse event, in A·s. Property set by the Battery.PulseSequence object function createPulses when the function creates the series of Battery.Pulse objects.

Example: 0.0

Data Types: double

idxLoad — Indices to load data

[1 0] (default)

Indices to load data where the pulse event load begins and ends. Property set by the Battery.PulseSequence object function createPulses when the function creates the series of Battery.Pulse objects.

Data Types: int16

idxRelax — Indices to relaxation data

[1 0] (default)

Indices to relaxation data where the pulse event relaxation begins and ends. Property set by the Battery.PulseSequence object function createPulses when the function creates the series of Battery.Pulse objects.

Data Types: int16

idxPulseSequence — Index to first pulse event data

[] (default)

Index to first pulse event data point in the Battery.PulseSequence object data. Property set by the Battery.PulseSequence object function createPulses when the function creates the series of Battery.Pulse objects.

Data Types: int16

IsDischarge — Discharge pulse

true (default)

Use this value to specify if pulse is a discharge pulse event. Property set by the Battery.PulseSequence object function createPulses when the function creates the series of Battery.Pulse objects.

Data Types: logical

Parameters — Battery. Parameters object properties

0-by-1 array

Battery.Parameters object containing the most recently determined battery equivalent circuit parameters. Property set by the Battery.PulseSequence object function createPulses when the function creates the series of Battery.Pulse objects.

Data Types: function handle

ParametersHistory — Battery.ParametersHistory object properties

0-by-1 array

Battery.ParametersHistory object array containing the history of the battery equivalent circuit parameters through different estimation steps. The last element is the most recent parameter set.

Data Types: function handle

Object Functions

plot Plot pulse event data

getLoadData Retrieve experimental data during load phase of pulse Retrieve experimental data during relaxation phase of pulse getTransitionData Retrieve experimental data during transition phase of pulse

Examples

Create Battery.Pulse Object

This example shows how to create a Battery. Pulse object.

pulseObj = Battery.Pulse(psObj);

See Also

Battery.MetaData | Battery.Parameters | Battery.PulseSequence | sdo.OptimizeOptions

Topics

"Generate Parameter Data for Datasheet Battery Block"

[&]quot;Generate Parameter Data for Equivalent Circuit Battery Block"

plot

Plot pulse event data

Syntax

plot_handle=plot(pulse0bj)

Description

plot_handle=plot(pulseObj) plots the data from a Battery.Pulse object.

Input Arguments

pulseObj — Instance of Battery.Pulse class

Battery. Pulse object

Battery. Pulse object for the pulse event that you want to analyze.

Output Arguments

plot_handle — Plot handle

object handle

Handles to plot objects.

Data Types: function_handle

See Also

Battery.Pulse

Topics

"Generate Parameter Data for Datasheet Battery Block"

"Generate Parameter Data for Equivalent Circuit Battery Block"

getLoadData

Retrieve experimental data during load phase of pulse

Syntax

LoadData = plot(pulseObj,Buffer)

Description

LoadData = plot(pulseObj, Buffer) retrieves the experimental data from a Battery.Pulse object during the load phase of a pulse.

Input Arguments

pulseObj — Instance of Battery.Pulse class

Battery. Pulse object

Battery. Pulse object for the pulse event that you want to analyze.

Buffer — **Number of samples**

vector

Number of buffer samples before and after the load data, in the form [BeforeBufferSize, AfterBufferSize]. Use the buffer to ensure that the estimation has sufficient data before and after a transition.

Output Arguments

LoadData — Load data

array

Load data during pulse event.

Data Types: double

See Also

Battery.Pulse

Topics

"Generate Parameter Data for Datasheet Battery Block"

"Generate Parameter Data for Equivalent Circuit Battery Block"

getRelaxationData

Retrieve experimental data during relaxation phase of pulse

Syntax

RelaxationData = plot(pulseObj,Buffer)

Description

RelaxationData = plot(pulseObj, Buffer) retrieves the experimental data from a Battery.Pulse object during the relaxation phase of a pulse.

Input Arguments

pulseObj — Instance of Battery.Pulse class

Battery. Pulse object

Battery. Pulse object for the pulse event that you want to analyze.

Buffer — **Number of samples**

vector

Number of buffer samples before and after the load data, in the form [BeforeBufferSize, AfterBufferSize]. Use the buffer to ensure that the estimation has sufficient data before and after a transition.

Output Arguments

RelaxationData — Relaxation data

array

Relaxation data during pulse event.

Data Types: double

See Also

Battery.Pulse

Topics

"Generate Parameter Data for Datasheet Battery Block"

"Generate Parameter Data for Equivalent Circuit Battery Block"

getTransitionData

Retrieve experimental data during transition phase of pulse

Syntax

[TransitionDataBefore,TransitionDataAfter]=plot(pulseObj,idx)
[TransitionDataBefore,TransitionDataAfter]=plot(pulseObj,idx,Buffer)

Description

[TransitionDataBefore, TransitionDataAfter]=plot(pulseObj,idx) retrieves the transition data from a Battery. Pulse object during the transition phase of a pulse.

[TransitionDataBefore, TransitionDataAfter] = plot(pulseObj,idx, Buffer) retrieves buffered experimental data from a Battery. Pulse object during the transition phase of a pulse.

Input Arguments

pulseObj — Instance of Battery.Pulse class

Battery.Pulse object

Battery. Pulse object for the pulse event that you want to analyze.

idx — Transition data index

scalar

Index of transition data.

Data Types: int16

Buffer — **Number of samples**

vector

Number of buffer samples before and after the load data, in the form [BeforeBufferSize, AfterBufferSize]. Use the buffer to ensure that the estimation has sufficient data before and after a transition.

Output Arguments

TransitionDataBefore — Data before transition

array

Data before transition during pulse event.

Data Types: double

TransitionDataAfter — Data after transition

array

Data after transition during pulse event.

Data Types: double

See Also

Battery.Pulse

Topics

"Generate Parameter Data for Datasheet Battery Block"
"Generate Parameter Data for Equivalent Circuit Battery Block"

Battery.Parameters

Define battery equivalent circuit parameters

Description

Use the Battery.Parameters object to define the battery equivalent circuit parameters. Battery.Parameters objects are contained in the Battery.PulseSequence and Battery.Pulse objects. The pulse sequence estimation sets some of the Battery.Parameters properties. You can override the properties by manually setting the properties. The number of pulses, N, in the dataset determines the length of each array.

Creation

Syntax

paramObj = Battery.Parameters

Description

MATLAB creates a paramObj = Battery.Parameters object that defines the battery equivalent circuit parameters.

Properties

SOC — State of charge breakpoints

1-by-11 array (default)

A 1-by-N array of the state of charge (SOC) breakpoints.

Data Types: double

Em — Open circuit voltage

1-by-11 array (default)

A 1-by-N array of the open circuit voltage, in V.

Data Types: double

EmMin — Minimum open circuit voltage

1-by-11 array (default)

A 1-by-N array of the minimum open circuit voltage, in V.

Data Types: double

EmMax — Maximum open circuit voltage

1-by-11 array (default)

A 1-by-N array of the maximum open circuit voltage, in V.

Data Types: double

R0 — Terminal resistance

1-by-11 array (default)

A 1-by-N array of the terminal resistance, in Ohms.

Data Types: double

ROMin — Minimum terminal resistance

1-by-11 array (default)

A 1-by-N array of the minimum terminal resistance, in Ohms.

Data Types: double

R0Max — **Maximum terminal resistance**

1-by-11 array (default)

A 1-by-N array of the maximum terminal resistance, in Ohms.

Data Types: double

Rx — RC pair resistance

3-by-11 array (default)

A 3-by-N array of the RC pair resistance, in Ohms.

Data Types: double

RxMin — Minimum RC pair resistance

3-by-11 array (default)

A 3-by-N array of the minimum RC pair resistance, in Ohms.

Data Types: double

RxMax — Maximum RC pair resistance

3-by-11 array (default)

A 3-by-N array of the maximum RC pair resistance, in Ohms.

Data Types: double

Tx — RC pair time constant

3-by-11 array (default)

A 3-by-N array of the RC pair time constant, in s.

Data Types: double

TxMin — Minimum RC pair time constant

3-by-11 array (default)

A 3-by-N array of the minimum RC pair time constant, in s.

Data Types: double

TxMax — Maximum RC pair time constant

3-by-11 array (default)

A 3-by-N array of the maximum RC pair time constant, in s.

Data Types: double

Object Functions

lookupSocFromVoltage plot Determine SOC from voltage Plot battery parameter data

Examples

Create Battery.Parameters Object

This example shows how to create a Battery. Parameters object.

Create a Battery. Parameters object.

paramObj=Battery.Parameters;

See Also

Battery.MetaData | Battery.Pulse | Battery.PulseSequence | sdo.OptimizeOptions

Topics

"Generate Parameter Data for Datasheet Battery Block"

[&]quot;Generate Parameter Data for Equivalent Circuit Battery Block"

lookupSocFromVoltage

Determine SOC from voltage

Syntax

SOC=lookupSocFromVoltage(paramObj,Voltage)

Description

SOC=lookupSocFromVoltage(paramObj,Voltage) calculates the state of charge (SOC) from the voltage for a given open-circuit voltage. Use lookupSocFromVoltage after you know the open-circuit voltage, Em, value.

Input Arguments

paramObj — Instance of Battery. Parameters class

Battery.Parameters object

Battery.Parameters object for the battery that you want to analyze.

Voltage — Open circuit voltage

scalar

Open circuit voltage, in V.

Data Types: char

Output Arguments

SOC — State of charge

scalar

State of charge.

Data Types: double

See Also

Battery.Parameters

Topics

"Generate Parameter Data for Datasheet Battery Block"

[&]quot;Generate Parameter Data for Equivalent Circuit Battery Block"

plot

Plot battery parameter data

Syntax

```
plot_handle=plot(paramObj)
plot_handle=plot(paramObj,LegendNames)
```

Description

plot_handle=plot(paramObj) plots the data from a Battery.Parameters object.

plot_handle=plot(paramObj,LegendNames) plots the data from a Battery.Parameters
object with the legend names.

Input Arguments

paramObj — Instance of Battery.Pulse class

Battery.Parameters object

Battery.Parameters object for the battery that you want to analyze.

LegendNames — Plot legends

character vector

Name of plot legends.

Data Types: char

Output Arguments

plot_handle — Plot handle

object handle

Handles to plot objects.

Data Types: function_handle

See Also

Battery.Parameters

Topics

"Generate Parameter Data for Datasheet Battery Block"

[&]quot;Generate Parameter Data for Equivalent Circuit Battery Block"

Battery.MetaData

Define battery metadata

Description

Use the Battery.MetaData object to define the battery metadata. A Battery.PulseSequence object contains the Battery.MetaData object. You must specify the metadata values.

Creation

Syntax

batmetaObj = Battery.MetaData

Description

MATLAB creates a batmetaObj = Battery.MetaData object that defines the battery metadata.

Properties

BatteryId — **Battery identification**

character vector

Battery identification name.

Data Types: double

RatingAh — Battery rating

character vector

Battery rating.

Data Types: char

Name — Dataset name

character vector

Dataset name.

Data Types: char

Date — Dataset date

character vector

Dataset date.

Data Types: char

Source — Dataset source

character vector

Dataset source.

Data Types: char

TestType — Experimental data type

character vector

Test time, for example charge or discharge.

Data Types: char

TestCurrent — Test current

scalar

Test current, in A.

Data Types: double

TestTemperature — Test temperature

scalar

Test temperature, in C.

Data Types: double

Examples

Create Battery. MetaData Object and Set Properties

This example shows how to create a Battery. MetaData object and set properties.

Create a Battery. MetaData object.

batmetaObj=Battery.MetaData;

Set Battery.MetaData properties.

```
batmetaObj.BatteryId='myBatteryId';
batmetaObj.RatingAh='myRatingAh';
batmetaObj.Name='myName';
batmetaObj.Date='myDate';
batmetaObj.Source='mySource';
batmetaObj.TestType='Charge';
batmetaObj.TestCurrent=300;
batmetaObj.TestCurrent=120;
```

Display Battery. MetaData properties.

disp(batmetaObj)

See Also

Battery.Parameters | Battery.Pulse | Battery.PulseSequence

Topics

[&]quot;Generate Parameter Data for Datasheet Battery Block"

[&]quot;Generate Parameter Data for Equivalent Circuit Battery Block"